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The therapeutic effect of small hydrophilic molecules is limited by the rapid clearance
from the systemic circulation or a local site of administration. The unsuitable
pharmacokinetics and biodistribution can be improved by encapsulating them in drug
delivery systems. However, the high-water solubility, very hydrophilic nature, and low
molecular weight make it difficult to encapsulate small hydrophilic molecules in many
drug delivery systems. In this mini-review, we highlight three strategies to efficiently
encapsulate small hydrophilic molecules and achieve controlled release: physical
encapsulation in micro/nanocapsules, physical adsorption via electronic interactions,
and covalent conjugation. The principles, advantages, and disadvantages of each
strategy are discussed. This review paper could be a guide for scientists, engineers, and
medical doctors who want to improve the therapeutic efficacy of small hydrophilic drugs.
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INTRODUCTION

Small hydrophilic molecules are widely used for treating diseases such as infectious diseases
(Macielag, 2012; Zhang et al., 2015; Chandel et al., 2018), cancer (Xu et al., 2014; Zhao et al.,
2016), and local anesthesia (Howell and Chauhan, 2009; Jug et al., 2010). Although effective, the
dosage, therapeutic effect, and patient accomplishment of such compounds are usually limited
by the tendency to distribute into the biological aqueous environment of the human body,
leading to side effects (Weiniger et al., 2010; Wang et al., 2019). The pharmacokinetics and
biodistribution profile of small hydrophilic molecules can be improved by encapsulating them
in delivery systems which allow the sustained release and prolonging retention period. However,
due to the good water solubility, hydrophilic nature, and low molecular weight, such compounds
have weak interactions with many conventional drug carriers, such as hydrogels (Yu et al.,
2013), poly(lactic-co-glycolic acid) microspheres (Ramazani et al., 2016), and electrospinning
fibrous mat (Oliveira et al., 2015; Sultanova et al., 2016), leading to low encapsulation efficiency,
undesired leakage, and initial burst release. Although many delivery systems have been attempted
and shown promise in encapsulation and sustained release of hydrophilic molecules (Vrignaud
et al., 2011), most of them only work well for molecules with the moderate hydrophilicity and
medium molecular weight. When it comes to the super hydrophilic and very small molecules,
their effectiveness is not adequate. In this review, the emphasis was given to the group of super
challenging small hydrophilic molecules: compounds that have a molecular weight below 1000 Da
and have a logP (partition coefficient, or XLogP3, a computed form of logP) or logD (distribution
coefficient) value less than 3.0 under their administration condition. In particular, tetrodotoxin
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(TTX, Mw 319.27 g/mol, LogP = −1.89), one of the most
challenging compounds to encapsulate because it is small
and very hydrophilic, was selected as a reference. We
introduce three efficient strategies that have been validated
to encapsulate TTX and to achieve sustained TTX release,
including physical encapsulation in micro/nanocapsules,
physical adsorption via electronic interactions, and covalent
conjugation (Figure 1). The advantages and limitations of each
strategy were summarized (Table 1).

PHYSICAL ENCAPSULATION IN
MICRO/NANOCAPSULES

Micro/nanocapsules are colloidal drug carrier systems composed
of aqueous pockets surrounded by a hydrophobic membrane
(Couvreur et al., 2002). Based on whether the shell is composed
of lipids or polymers, the capsules are categorized as “liposomes”
and “polymersomes,” respectively. Liposomes (Torchilin, 2005;
Chen, 2010; Eloy et al., 2014) and polymersomes (Levine et al.,
2008; Anajafi and Mallik, 2015; Müller and Landfester, 2015) have
been properly summarized in many other review articles. Here,
we only briefly highlight the principles of encapsulating drugs in
them and their associated advantages and limitations.

Liposomes and polymersomes encapsulate small hydrophilic
molecules inside the internal aqueous pockets to achieve a high
encapsulation efficiency. The hydrophobic shell prevents the
encapsulated drug from rapid clearance, achieving sustained
release (Figure 1A).

There are three types of liposomes: multilamellar vesicles,
small unilamellar vesicles, and large unilamellar vesicles. The
encapsulation efficiency is highly influenced by the liposome size
and the drug release rate is determined by the liposome stability
and shell permeability (Taylor et al., 1990; Glavas-Dodov et al.,
2005). A larger internal volume leads to the higher efficiency
of drug loading, while a stable liposome structure avoids the
leakage of small molecular hydrophilic drugs. These essential
parameters of liposomes can be adjusted to a great extent by the
lipid membrane composition, chain length of the phospholipid,
drug to lipid ratio, and charge property (Eloy et al., 2014).

Many liposomal formulas for small hydrophilic drugs have
been FDA approved and marketed due to the high drug
encapsulation efficiency, extended drug half-time, and excellent
biocompatibility (Fan and Zhang, 2013). For example, DOXIL R©,
Myocet R©, and CAELYX R© are marketed liposomal formulations
for doxorubicin hydrochloride (DOX-HCl, Mw 580 g/mol,
logD = −0.45 at pH 5.8; Dubbelboer et al., 2014), and
the DAUNOXOME R© is a marketed liposomal formulation for
daunorubicin (Mw 527.5 g/mol, LogP = 1.83) (Chen, 2010).

Kohane and colleagues encapsulated TTX into liposomes and
functionalized the liposome shell with gold nanorods (Zhan et al.,
2016; Guo et al., 2020), photosensitizer (Rwei et al., 2015, 2017b),
and sonosensitizer (Rwei et al., 2017a; Cullion et al., 2018),
making the liposome sensitive to effects of near-infrared (NIR)
light and ultrasound. The prepared formulations could release the
encapsulated TTX to treat pain after operations with on-demand
irradiation (Figure 2A).

The applications of liposomes are still limited by (1) instability
in plasma: untailored or unmodified capsules can be adsorbed
by human albumin or serum and further cleared by the immune
system, inducing a short half-life in blood circulation (Wakaskar,
2018); (2) leakage during storage: the permeability of the lipid
bilayer could cause leakage of the capsuled molecules during
the formation process and the afterward storage (Zariwala et al.,
2018), inducing an initial burst release when implemented after
storage; and (3) high cost due to the expensive raw lipid materials
and cumbersome production procedures.

Polymersomes have many advantages over liposomes, which
give them greater potential as drug carriers. They are more
stable and less permeable than liposomes due to their membrane
thickness, entanglement, and lateral diffusivity (Chandrawati and
Caruso, 2012; Rideau et al., 2018). Properties of polymersomes,
including size, permeability, and charge property, are far
more versatile than that of liposomes due to the abundantly
available natural and synthetic polymer (Anajafi and Mallik,
2015; Dan, 2018; Rideau et al., 2018). The advances of polymer
chemistry allow the conjugation of active ligands, functional
molecules, antibodies onto the polymer, enabling polymersomes
the functions of targeted and stimuli-responsive (pH, redox,
enzyme, ultrasound, magnetic field, light) drug delivery (Levine
et al., 2008; Müller and Landfester, 2015; Leong et al., 2018).

However, the clinical applications of polymersomes are
hampered by the residual organic solvent, incompetent control of
the early drug release, cumbersome fabrication steps, and toxicity
concerns (Vrignaud et al., 2011; Anajafi and Mallik, 2015).

PHYSICAL ADSORPTION

Physical adsorption strategy refers to that the molecules are
physically adsorbed on carriers via inter-molecule interactions,
such as ionic interaction, H-bond, van der Waals forces,
hydrophobic interactions, dipole–dipole interactions (Margenau
and Kestner, 2013). For the delivery of small hydrophilic
molecules, ionic interaction is more preferred since others are
weaker and less efficient (Yu et al., 2017) (Figure 1B).

Such a strategy is commonly utilized to load drugs into
nanoparticles, silica nanoparticles, magnetic nanoparticles (Guo
et al., 2020), and carbon nanodots (Tang et al., 2013). Yu
utilized bioactive glass nanoparticles (BGNs) as carriers to
load two different model drugs—diclofenac sodium (DS, Mw
318.13 g/mol, LogD = 1.1 at pH 7.4) and 5-fluorouracil (5-Fu,
Mw 130.08 g/mol, XLogP3 = −0.9) (Carrer et al., 2018). GNs
demonstrated ∼45 folds improvement of DS loading because of
the strong ionic interaction between the calcium iron of BGNs
and the carboxylate group of the drug. On the contrary, BGNs
showed limited loading capability to 5-Fu because there are weak
electronic interactions between BGNs and 5-Fu (Yu et al., 2017).
Liu loaded the positively charged TTX into the negatively charged
silica nanoparticles through electronic interactions (Figure 2B).
The resulted formulation achieved sustained TTX release and
decreased TTX toxicity (Liu et al., 2018).

Polyelectrolytes (PEs) are polymers that have repeating
units bearing electrolyte groups. When placed in the ionizing
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FIGURE 1 | Strategies to obtain encapsulation and controlled release of small hydrophilic molecules. (A) Drugs are physically encapsulated inside the aqueous
pockets of the micro/nanocapsules. (B) Drugs are physically encapsulated in the polymer particles via electronic interaction. (C) Drugs are chemically conjugated
onto polymer backbones via covalent bonds.

TABLE 1 | Advantages and limitations of strategies for small hydrophilic molecules.

Advantages Limitations

Micro/nanocapsules X High drug encapsulation efficiency
X Good biocompatibility
X High modifiability

X Instability in plasma
X Leakage during storage
X High cost
X Toxicity related to solvents

Physical adsorption X Easy operation
X High biocompatibility
X Less toxicity related to solvents and chemical crosslinking agents

X Initial rapid drug release
X Less controllability

Covalent conjugation X Controllable drug loading
X Enhanced stability
X Stimuli-responsive release

X Toxicity related to solvents and coupling agents

solvent, PE will dissociate into polycations and polyanions.
Then, ionized PEs in the solution can form a complex with
oppositely charged PEs—a PE complex (PEC) (Meka et al.,
2017). Such “chaotic” aggregation of polyanions and polycations
might only be the result of partial mutual charge compensation,
leaving a huge number of ionic sites compensated by small
molecules with counter ions to preserve the electro neutrality
(Philipp et al., 1989).

One major type of PE is natural polysaccharide such as
chitosan, auricularia auricular polysaccharide (Xiong et al., 2016),
alginate, and hyaluronic acid. They are charged due to the
possession of a considerable number of charged functional
groups such as carboxyl and amino groups (Liu et al., 2008),
which cannot only capture and entrap hydrophilic drugs but also
compact the polymer chains into stable nanoparticles.

The physical adsorption method can be considered as an
energy-efficient way to achieve a high loading capacity by
merely mixing the small molecules and carriers under ambient
temperature. Physical adsorption is also advantageous in the
diversity of polymers, which allowed the regulation of drug
encapsulation efficiency, drug release profile, physical/chemical
property, and biocompatibility of the PEC (Philipp et al., 1989).
Besides, this strategy reduces the use of solvents and chemical
crosslinking agents, addressing the potential toxicity problem
(Lankalapalli and Kolapalli, 2009).

One shortcoming associated with the physical adsorption
strategy is the initial rapid drug release, which is due to the
saturation of the counter-ions of the carriers or the fast ion
exchange (Xiong et al., 2016; Yu et al., 2017). Besides, the release
profile of the drug significantly impacts on the pH, the salt
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FIGURE 2 | Strategies that have been validated to encapsulate tetrodotoxin (TTX). TTX is a naturally occurring potent sodium channel blocker. Being small and super
hydrophilic, TTX is selected as the gold standard for the drug delivery systems in this review. (A) Schematic of the photo-triggerable liposomes loaded with TTX
(reprinted with permission from Nano Lett. 2017, 17, 2, 660–665). (B) Schematic of TTX-loaded hollow silica nanoparticles (reprinted with permission from Nano
Lett. 2018, 18, 1, 32–37). (C) Schematic of the polymer-TTX conjugate, a (reprinted with permission from Nat Commun. 2019, 10, 2566).

concentration of the environment, which makes the drug release
less controllable (Kulkarni et al., 2016).

CONJUGATE DELIVERY SYSTEM

In the conjugate delivery system, small hydrophilic molecules
are covalently bonded onto the polymer or lipid chains through
cleavable linkage, turned to be prodrugs and applied in a wider
range of release routes (Figure 1C) (Adhikari et al., 2017; Irby
et al., 2018; Markovic et al., 2019).

Conjugate delivery systems overcome the main drawbacks
of non-covalent physical methods, unfavorable leakage and
burst release, due to stable linkers between drugs and polymers
(Chen et al., 2014). Zhao et al. (2019) synthesized a range of
rationally designed PEGylated and non-PEGylated polymers
to which the ultra-potent local anesthetic TTX was conjugated
by hydrolysable ester bonds. Zhao demonstrated that TTX
was released in its native form, and the release rate can be
regulated by manipulating the polymer composition (the
TTX release rate is proportional to the hydrophilicity of
polymer backbone). In vivo, the polymer-TTX conjugate
obviated TTX burst release to allow the administration
of 80 µg of TTX into rats, which that is 20-fold higher
than the reported dose tolerance limits. The described
formulation produced a sciatic nerve blockade lasting for
3 days in rats but did not cause any animal death or adverse
effects (Figure 2C).

Conjugated delivery systems allow drug loading to be
controlled by adjusting the drug-to-polymer ratio (Singh et al.,

2008). The amount of drug loaded depends on the number
of reactive sites on the backbones. Besides, through selecting
covalent bonds, stimuli-responsive drug release can be achieved
(Dutta et al., 2019). For example, hydrazone bonds show strong
stability under a neutral pH environment and sustained release
in a lower pH environment (Tang et al., 2018). The disulfide
bond is widely used as a reduction-responsive linker (Sun et al.,
2018). These bonds can facilitate rapid and differential release
of chemotherapeutic drugs in tumor cells to achieve the tumor-
targeted drug delivery (Chang et al., 2019).

Through chemical bonds, some inapplicable delivery system
for small hydrophilic molecules can be preferable. Micelles
have the typical structure containing a hydrophilic shell and
a hydrophobic core. Based on the structure, micelles were
investigated for encapsulating hydrophobic drugs because of
the hydrophobicity of the inner core (Li et al., 2011; Jhaveri
and Torchilin, 2014). While the hydrophobicity decreases their
interactions with the hydrophilic drugs, leading to low loading
capacity. The high and stable hydrophilic drug loading in micelles
could be achieved by covalently linking the drug with polymer
backbone (Liao et al., 2016; Danafar et al., 2017).

Coupling agents, catalysts, and solvents are used for the
covalent conjugation of drug to polymers. The compound residue
usually causes concern over their toxicity.

CONCLUSION AND PERSPECTIVES

Physical encapsulation in micro/nanocapsules, physical
adsorption via electronic interactions, and covalent conjugation
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are the most efficient strategies to improve the therapeutic
efficacy and to minimize side effects of small hydrophilic drugs.
Among them, liposomal formulations have been clinically used
due to the excellent lipid biocompatibility. The biocompatibility
of other materials needs to be carefully examined before their
clinical practice. Each strategy has its advantages and limitations.
The selection of a delivery method depends on the drug property,
desired drug dose, and the preferred drug release profile.

The route of administration would affect the effectiveness
of the strategies in encapsulating small hydrophilic drugs.
The three strategies described in this review would show
good controlled release for the drugs administrated by the
intramuscular, subcutaneous, intradermal injections. However,
their effectiveness may be significantly reduced for oral and

intravenous administrated drugs. The enzymatic digestion
at acidic pH in the stomach would rapidly destroy the carrier
structure and/or drug–carrier interaction, leading to the burst
drug release. The long-term circulation in the blood would
lead to the drug’s early release before the carriers reaching
to the target sites. The encapsulation of oral and intravenous
administrated small hydrophilic molecules into carriers that
could considerably improve the drug efficiency would be a
significant need in the future.
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