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Abstract

There is a strong and continuously growing interest in using large electronic healthcare data-

bases to study health outcomes and the effects of pharmaceutical products. However, con-

cerns regarding disease misclassification (i.e. classification errors of the disease status)

and its impact on the study results are legitimate. Validation is therefore increasingly recog-

nized as an essential component of database research. In this work, we elucidate the inter-

relations between the true prevalence of a disease in a database population (i.e. prevalence

assuming no disease misclassification), the observed prevalence subject to disease mis-

classification, and the most common validity indices: sensitivity, specificity, positive and

negative predictive value. Based on this, we obtained analytical expressions to derive all the

validity indices and true prevalence from the observed prevalence and any combination of

two other parameters. The analytical expressions can be used for various purposes. Most

notably, they can be used to obtain an estimate of the observed prevalence adjusted for out-

come misclassification from any combination of two validity indices and to derive validity

indices from each other which would otherwise be difficult to obtain. To allow researchers to

easily use the analytical expressions, we additionally developed a user-friendly and freely

available web-application.

1. Introduction

Epidemiology relies on accurately capturing the disease status of subjects within a certain pop-

ulation. Inaccuracies in obtaining the disease status might (strongly) bias the epidemiological

findings. Particularly electronic healthcare record (eHR) databases, which have become a

prominent source of information in pharmacoepidemiology, are prone the disease misclassifi-

cation. eHR databases capture healthcare provided to large populations, their size permits the

study of rare events and their establishment within clinical practices enables studying real-

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0231333 April 22, 2020 1 / 10

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bollaerts K, Rekkas A, De Smedt T, Dodd

C, Andrews N, Gini R (2020) Disease

misclassification in electronic healthcare database

studies: Deriving validity indices—A contribution

from the ADVANCE project. PLoS ONE 15(4):

e0231333. https://doi.org/10.1371/journal.

pone.0231333

Editor: Junwen Wang, Mayo Clinic Arizona,

UNITED STATES

Received: December 1, 2019

Accepted: March 20, 2020

Published: April 22, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0231333

Copyright: © 2020 Bollaerts et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data is based on

simulations and can be recalculted using the

supplied web application.

http://orcid.org/0000-0001-7704-0527
http://orcid.org/0000-0002-6250-877X
https://doi.org/10.1371/journal.pone.0231333
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231333&domain=pdf&date_stamp=2020-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231333&domain=pdf&date_stamp=2020-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231333&domain=pdf&date_stamp=2020-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231333&domain=pdf&date_stamp=2020-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231333&domain=pdf&date_stamp=2020-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231333&domain=pdf&date_stamp=2020-04-22
https://doi.org/10.1371/journal.pone.0231333
https://doi.org/10.1371/journal.pone.0231333
https://doi.org/10.1371/journal.pone.0231333
http://creativecommons.org/licenses/by/4.0/


world effects of pharmaceutical products in a timely and cost-efficient manner. However,

although eHR databases provide a valuable source of data for pharmacoeopidemiological

research, these data are collected primarily for clinical and administrative use rather than for

research and as such, concerns regarding data quality exist [1, 2].

Research using eHR databases relies on case-finding algorithms (CFAs), by which subjects

captured by the database are classified as diseased or non-diseased, without additional contact

with them. The accuracy of the CFA to classify patients depends on the database quality and

completeness, the disease of interest and the patient group being studied [3]. Validation of

the CFAs, by which the CFA classifications are compared to a reference standard (e.g. chart

review, register), is increasingly considered an essential component of eHR database research

[3–5]. The validity of the CFAs can be measured by different validity indices; the most com-

monly used ones are sensitivity (SE), specificity (SP) positive and negative predictive value

(PPV and NPV). Once the values of such validity indices are known, the observed prevalence

or risk estimates can be corrected for misclassification [6, 7].

Despite being considered essential, validation studies are rarely performed because they are

very time- and resource intensive [3]. On top, most validation studies only report on SE and

PPV as validation cohorts often do not include subjects without the disease (bench). In this

paper, we show how validity indices can be analytically derived from each other.

2. Methods

2.1. Definitions

A CFA is typically validated by comparing its classifications with that of a reference standard.

When the reference standard is assumed to perfectly represent the true dichotomous disease

status (i.e. the reference standard is error-free), it is also called the ‘gold standard’. The valida-

tion data is conventionally captured in a 2 x 2-table representing the joint probability distribu-

tion of the CFA-derived classification and the ‘gold standard’ (Table 1). In this representation,

SE is the proportion of patients with the disease of interest who are CFA-positive, SP is the pro-

portion of persons without the disease who are CFA-negative, PPV is the proportion of CFA-

positive patients who have the disease of interest and NPV is the proportion of CFA-negative

persons without the disease of interest. These four validity indices are all conditional probabili-

ties, where SE, SP, PPV and NPV are conditioned on the number of diseased, non-diseased,

CFA-positives and CFA-negatives, respectively (Table 1). The observed prevalence (P) is then

the proportion of CFA-positives and the true prevalence (π) the proportion of diseased among

all N subjects. Obtaining the true prevalence is not always possible and requires an error-free

test. Note that the observed prevalence and the four validity indices are all CFA-dependent.

Table 1. Validity indices for dichotomous data: Sensitivity (SE), specificity (SP) positive (PPV) and negative predictive value (NPV) the observed (P) and true preva-

lence (π).

‘Gold’ standard

Positive Negative Validity index

Case Finding Algorithm Positive Nr. of True positives TP Nr. of False positives FP PPV = TP/(TP+FP)

Negative Nr. of False negatives FN Nr. of True negatives TN NPV = TN/(FN+TN)

Validity index SE = TP/(TP + FN) SP = TN/(FP + TN) N = TP+FP+FN+TN

P = (TP+FP)/N

π = (TP+FN)/N

https://doi.org/10.1371/journal.pone.0231333.t001
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2.2. Interrelationships between validity indices

The 2 x 2-table representation (Table 1) shows how the true prevalence, observed prevalence

and the validity indices SE, SP, PPV and NPV are interrelated. Alternatively, these interrela-

tions can be expressed in terms of the actual parameters themselves (and not the cell counts of

the 2x2-table). Indeed, starting from the expression relating the observed prevalence to the

true prevalence[7, 8] and from the definitions of PPV and NPV [9], we have the following sys-

tem of algebraic equations with six unknown parameters;

P ¼ SE pþ ð1 � SPÞð1 � pÞ; ð1Þ

PPV ¼ SE p=ðSE pþ ð1 � SPÞð1 � pÞÞ; ð2Þ

NPV ¼ SPð1 � pÞ=ðð1 � SEÞpþ SPð1 � pÞÞ: ð3Þ

Hence, if we know three parameters, we can derive the others. The observed prevalence P
is easily obtained by applying the CFA to the population in the database. Then, once we input

two other parameters, the remaining parameters can be analytically derived by solving the sys-

tem of algebraic equations above. For all combinations of P and any two other parameters, the

analytical solutions for the remaining three parameters are given in Table 2.

The true prevalence, observed prevalence and the four validity indices are all (conditional)

probabilities, and hence are bounded between zero and one. This imposes constraints on the

input parameters without which the analytically derived parameters might be outside the zero-

to-one range (constraints in S1 Table). More restrictive constraints result if we impose that the

CFA should detect disease better than chance alone [7] (constraints in S2 Table). A CFA per-

forms better than chance if it selects diseased persons with a higher probability than it does

non-diseased persons. Note that the issue of a CFA performing worse than chance is easily alle-

viated through swapping the CFA-results, i.e. by re-labeling the CFA-positive results as nega-

tive and vice versa.

Finally, if the uncertainty associated with some of the input parameters is known, the

uncertainty can be propagated to the derived parameters through Monte Carlo (MC) sam-

pling. In this process, repeated samples from the statistical distributions of the input parame-

ters are drawn. As the input parameters are all probabilities, it is naturally to assign beta

distributions to them[10]. Then, for each MC sample of three input parameters, the remaining

Table 2. Overview of the interrelations between validity indices and the true prevalence, given the observed prevalenceP and two other parameters.

Known Expressions

1. P, P, SE SP ¼ 1 �
ðP� SE�PÞ

1� P
PPV ¼ SE�P

P NPV ¼ 1 �
Pð1� SEÞ

1� P

2. P, P, SP SE ¼ P� ð1� PÞð1� SPÞ
P

PPV ¼ 1 �
ð1� PÞð1� SPÞ

P NPV ¼ SP ð1� PÞ
1� P

3. P, P, PPV SE ¼ P�PPV
P SP ¼ 1 �

Pð1� PPVÞ
1� P

NPV ¼ 1 � P� P�PPV
1� P

4. P, P, NPV SE ¼ 1 �
1� P� NPVð1� PÞ

P
SP ¼ NPVð1� PÞ

1� P
PPV ¼ 1 �

1� P� NPVð1� PÞ
P

5. P, SE, SP P ¼ PþSP� 1

SEþSP� 1 PPV ¼ 1 �
ðP� SEÞð1� SPÞ
P ð1� SP� SEÞ NPV ¼ ðP� SEÞ SP

ð1� PÞð1� SP� SEÞ

6. P, SE, PPV P ¼ P�PPV
SE SP ¼ 1 �

P ð1� PPVÞSE
SE� P�PPV NPV ¼ 1 �

ð1� SEÞ ðP�PPVÞ
SE ð1� PÞ

7. P, SE, NPV P ¼
ð1� PÞð1� NPVÞ

1� SE SP ¼ ð1� PÞð1� SEÞ NPV
ð1� SEÞ� ð1� PÞð1� NPVÞ PPV ¼ SE�ð1� PÞð1� NPVÞ

Pð1� SEÞ

8. P, SP, PPV P ¼ 1 �
P�ð1� PPVÞ

1� SP SE ¼ P�PPVð1� SPÞ
1� SP� Pð1� PPVÞ NPV ¼ P�SP�ð1� PPVÞ

ð1� PÞð1� SPÞ

9. P, SP, NPV P ¼ 1 �
ð1� PÞ�NPV

SP SE ¼ P�SP� ð1� SPÞð1� PÞ NPV
SP� ð1� PÞ�NPV PPV ¼ P�SP� ð1� SPÞð1� PÞNPV

P�SP

10. P, PPV, NPV P ¼ ð1 � PÞð1 � NPVÞ þ P� PPV SE ¼ P�PPV
ð1� PÞð1� NPVÞþP�PPV SP ¼ ð1� PÞ�NPV

1� ðP�PPVþð1� PÞð1� NPVÞÞ

https://doi.org/10.1371/journal.pone.0231333.t002

PLOS ONE Disease misclassification in healthcare databases: Deriving validity indices from each other

PLOS ONE | https://doi.org/10.1371/journal.pone.0231333 April 22, 2020 3 / 10

https://doi.org/10.1371/journal.pone.0231333.t002
https://doi.org/10.1371/journal.pone.0231333


parameters are derived. This results in a distribution of derived parameters, based on which

uncertainty intervals (UIs) can be derived [11]. As the true prevalence, observed prevalence

and the validity indices are correlated, the MC sampling should ideally reflect this. Not

accounting for correlation among the parameters might result in too wide UIs and in sampling

parameter combinations that violate the constraints above. However, the correlations among

the parameters are typically unknown. Therefore, we used independent sampling but rejected

the invalid parameter combinations as defined by the constraints in S1 Table or S2 Table.

Web-application

To allow users to easily explore the interrelations between the true prevalence, observed preva-

lence and the validity indices SE, SP, PPV and NPV, we developed a web application using R

[12] and the Shiny package [13]. The application is available from https://apps.p-95.com/

Interr/. The application calculates the validity indices given user-defined values of the observed

prevalence and any other two parameters. Optionally, the 95% percentile UIs of the derived

parameters are calculated through MC simulation when the 95% confidence intervals (CIs)

of the known parameters are provided. More specifically, we assign beta distributions to all

known parameters for which CIs are provided, with the shape parameters of the beta distribu-

tion derived from the provided mean values and CIs based on the method of moments [14].

Invalid combinations of parameter values are discarded and the percentages of constraint

violations are reported. We provide two types of UIs, one with the ‘bounded between 0 and 1’

constraints applied (S1 Table) and one with the more restrictive ‘better than chance’ con-

straints applied (S2 Table)

To demonstrate the web-application, we used published results on the validation of two

CFAs, one for intussusception and one for pneumonia, and derived any three indices using

the other two as input parameters.

2.4. Sensitivity analyses

We additionally conducted sensitivity analyses to investigate the impact of estimation error in

the input parameters on the derived parameters. For every combination of the observed preva-

lence and any two other parameters, we varied the input parameters one-at-the-time (OAT)

while keeping the remaining input parameters at their baseline values [15]. Specifically, the

input parameters p are varied between an under- and an overestimation with one standard

error s.e. (i.e. between p − s. e. and p + s. e.) with s.e. calculated for the binomial proportion p
from a sample of size 1000. We investigated three baseline scenarios for varying levels of π =

{0.01, 0.05, 0.2} while keeping SE and SP fixed at 0.75 and 0.99, respectively. The correspond-

ing baseline values for the observed prevalence and the predictive values were P = {0.02, 0.05,

0.16}, PPV = {0.43, 0.80, 0.95} and NPV = {1.0, 0.99, 0.94}. The biases of the derived indices are

expressed relative to their standard errors as well. For the sensitivity analyses, we applied the

less restrictive ‘bounded between 0 and 1’ constraints.

3. Results

3.1. Illustrations

Ducharme et al conducted a validation study of the diagnostic, procedural, and billing codes

for the identification of intussusception in children <18 years living in the Census Metropoli-

tan Area of Ottawa (Ontario, Canada) between 1995 and 2010 [16]. The authors calculated SE,

SP, PPV, and NPV using manual validation of hospital records using the Brighton Collabora-

tion diagnostic criteria as a gold standard. Case finding algorithms were based on a single or
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combination of ICD-9 diagnosis codes, procedure codes, and billing codes. Among the

417,997 patients, 185 patients (0.044%) met the case criteria according to the CFA chosen by

the authors and 150 patients (0.036%) where intussusception cases. The CFA’s PPV was 72.4%

(95%CI: 65.4–78.7) and the SE was 89.3% (95% CI: 83.3–93.8), while both the NPV and the SP

were>99.9% (95% CI: >99.9–100.0). Starting from the observed prevalence, SE and PPV, we

derived the NPV and SP (Fig 1). The derived values for SP and NPV were the same as those

reported in the paper. The true prevalence was derived to be 0.036% (95% UI: 0.034–0.038),

equal to the study estimate. Starting from the observed prevalence, the PPV and the true preva-

lence led to a SE of 88.5% (84.4–92.6), close to the study estimate of 89.3%.

A second example was the validation study of claims-based pneumonia CFA. In a cross-sec-

tional study of patients visiting the emergency department (ED) of a hospital in Salt Lake City,

Utah during a 5-month period, Aronsky et al assessed the validity of five different claims-

based pneumonia CFA against a ‘gold standard’ of manual review of each patient encounter

[17]. Among 10828 ED encounters, 272 (2.51%) were cases of pneumonia according to the

‘gold standard’. Their selected algorithm was positive for 219 encounters (2.02%). For this

algorithm, the authors reported SE of 65.1% (95% CI: 59.2–70.5), SP of 99.6% (95% CI: 99.5–

99.7), PPV of 80.8% (95% CI: 75.1–85.5), and NPV of 99.1% (95% CI: 98.9–99.3). First, we

used as input the PPV and NPV. The derived SE and SP were the same as those reported in the

paper, as well as the true prevalence (2.51%; 95% UI:2.4–2.6) (Fig 2). Second, we used PPV and

an interval for the true prevalence (2.00–3.00%) as input parameters. The derived ranges for

SE, SP and NPV were [54.4–81.6], [99.6–99.6] and [98.6–99.6]; all including the originally

reported values.

3.2. Sensitivity analyses

The impact of changing the input parameters (from -1 s.e. to + 1 s.e.) on the output parameters

is depicted by the vertical bars in Figs 3 and 4. The biases of the derived indices are expressed

relative to their standard errors as well and are truncated at ±3 s.e. For example, for the input

parameter combination π − P − SE and when π = 0.01 (Fig 3: upper left panel), varying π from

Fig 1. Intussusception; deriving true prevalence, specificity and negative predictive value from the observed prevalence, sensitivity and positive

predictive value.

https://doi.org/10.1371/journal.pone.0231333.g001
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-1 s.e. to + 1 s.e, has a small impact on SE and NPV (< 1 s.e. change in both directions), but a

more substantial impact on PPV (~2 s.e. change in both directions). The combined results

indicate that for the scenarios investigated the estimation error of the derived parameters is

smallest when using the parameter combination P–SE–PPV.

4. Discussion

Starting from the interrelations between the true disease prevalence, the observed prevalence

(as estimated from the misclassified data) and the four validity indices SE, SP, PPV and NPV,

we derived the analytical expressions (formulas) to obtain for every combination of the

observed prevalence and two other parameters the remaining three parameters. To facilitate

the use of these analytical expressions, we developed a freely available user-friendly web-

application.

The analytical expressions and web-application can be used for various purposes. First, they

can be used to adjust a prevalence estimate for outcome misclassification. The expression to

derive the true prevalence from the observed prevalence, SE and SP was already published in

the late 70’s, and known as the Rogan-Gladen estimator [7]. Our application allows users to

obtain an estimate of the true prevalence given an estimate of the observed prevalence and any

two other validity indices. These expressions were previously used to adjust Bordetella Pertussis
incidence rates from five European healthcare databases for outcome misclassification [18].

To the best of our knowledge, none of these analytical expressions were prior available

besides the Rogan-Gladen estimator. Second, the analytical expressions can be used to derive

validity indices that are otherwise difficult to obtain. Particularly SP and NPV require very

large validation studies, especially in the case of rare diseases. Benchimol et al [3] conducted

a systematic review of validation studies of CFAs and found that only 36.9% of the studies

reported four or more validity indices. They found that the most common validity indices

used to report the diagnostic accuracy of CFAs are SE (67.2%) and PPV (63.8%) and to a lesser

extent SP (49.8%) and NPV (32.1%). Another review study found that most studies that vali-

date diagnoses in the Clinical Practice Research Database (CPRD) were restricted to assessing

the proportion of CFA-positive cases that were confirmed by medical record review or

responses to questionnaires [19, 20], thus only providing an estimate of PPV whereas at least

two validity indices are required to adjust a prevalence estimate for outcome misclassification.

Fig 2. Pneumonia; deriving true prevalence, sensitivity and specificity from the observed prevalence, positive and negative predictive value.

https://doi.org/10.1371/journal.pone.0231333.g002
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In such cases where only one validity index is reported, the remaining validity indices can

be derived when an estimate of the true prevalence is available. Such an estimate of the true

prevalence might be obtained from external data sources such as disease registers or national

surveillance systems. Obviously, in this case, it is important to ensure that the external estimate

applies to the database population under study. Third, the comparison of validation studies is

often hampered by the use of different validity indices. The ability to convert indices will facili-

tate this comparison. Fourth, the possibility to independently estimate different validity indices

using different validation samples (e.g. a sample of diseased subjects to estimate SE and

another sample of CFA-positives to estimate PPV) will make validation more feasible. It will

undoubtedly reduce the sample size requirements compared to a comprehensive validation

study by which the ‘gold standard’ measure is obtained for a random sample of the database

population. Especially for rare diseases, such validations studies are unfeasible as very large

sample sizes are required to capture at least some diseased subjects.

Fig 3. Results of the sensitivity analyses: Investigating the impact of changing the input parameters from -1 to +1 standard error (s.e.)

on the derived parameters for varying levels of true prevalence, π = {0.01, 0.05, 0.2}, SE = 0.95 and SP = 0.75. The bias of the derived

indices are truncated at ±3 s.e.

https://doi.org/10.1371/journal.pone.0231333.g003
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The methodology of analytically deriving validity indices has limitations. The presence of

sampling error or selection bias might result in invalid parameter combinations (i.e. resulting

in derived parameters outside the [0,1] range or corresponding to a CFA that performs worse

than chance). To investigate the impact of estimation error in the input parameters on the

derived parameters we conducted sensitivity analyses. The results show that, for the scenarios

we investigated, the parameter combinations P–SE–PPV resulted in the smallest estimation

errors in the derived parameters. The assumptions applying to our analytical derivations are

the same as those underlying the conventional 2 x 2-table representation of validity indices

(Table 1). These assumptions are that the true disease status is truly dichotomous and the

dichotomous ‘gold standard’ measure reflects the true disease status without error. However,

disease is not always absent or present and there might be an underlying continuous condition

(i.e. spectrum of severity) on which classification of disease status is based, varying from the

clear absence to the clear presence of disease. In such cases, the SE and SP depend on the

Fig 4. Results of the sensitivity analyses: Investigating the impact of changing the input parameters from -1 to +1 standard error (s.e.)

on the derived parameters for varying levels of true prevalence, π = {0.3, 0.5, 0.7}, SE = 0.95 and SP = 0.75. The bias of the derived

indices are truncated at ± 3 s.e.

https://doi.org/10.1371/journal.pone.0231333.g004
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distribution of the underlying condition, and hence on the true disease prevalence [20, 21].

On top, if the gold standard measure is erroneous, the validity indices will be biased [21]. The

methodology applies to prevalence estimates and incidence proportions, and not to the more

commonly used incidence rate. Also, and irrespective of the validation methodology used, the

validity of CFAs might depend on many factors such as population characteristics, access to

healthcare and the completeness of the medical information contained in the database, thereby

limiting the generalizability of the validity indices to populations others than those for which

the validity of the CFA was initially assessed [2, 19]. Finally, disease misclassification might be

differential, meaning that the misclassification depends on the exposure status, which leads to

biased estimates of the exposure-disease association in both directions [22]. In this case, it is

important to obtain validity indices by exposure status.

Despite these limitations, we echo many others [2, 3, 5] that validation of CFAs is essential

to permit proper interpretation of the results obtained from healthcare database studies. The

estimated validity indices might ultimately be used to adjust estimates of disease occurrence

[7] or risk [6] for misclassification or to adjust power calculations [23]. By providing the ana-

lytical expressions regarding the inter-relations of the observed prevalence, true prevalence

and the most commonly used validity indices, we hope to contribute to a more widespread

use of validation studies and their results.
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