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ABSTRACT
Background: Early diagnosis of Parkinson’s disease
and mild cognitive impairment is important to enable
prompt treatment and improve patient welfare, yet no
standard diagnostic test is available. Metabolomics is
a powerful tool used to elucidate disease mechanisms
and identify potential biomarkers.
Objectives: The objective of this study was to use meta-
bolic profiling to understand the pathoetiology of Parkin-
son’s disease and to identify potential disease biomarkers.
Methods: This study compared the serological metabo-
lomic profiles of early-stage Parkinson’s patients (diag-
nosed < 12 months) to asymptomatic matched controls
using an established array based detection system (Dis-
coveryHD4TM, Metabolon, UK), correlating metabolite lev-
els to clinical measurements of cognitive impairment.
Results: A total of 1434 serological metabolites were
assessed in early-stage Parkinson’s disease cases

(n 5 41) and asymptomatic matched controls (n 5 40).
Post–quality control, statistical analysis identified n 5 20
metabolites, predominantly metabolites of the fatty acid
oxidation pathway, associated with Parkinson’s disease
and mild cognitive impairment. Receiver operator curve
assessment confirmed that the nine fatty acid oxidation
metabolites had good predictive accuracy (area under
curve 5 0.857) for early-stage Parkinson’s disease and
mild cognitive impairment (area under curve 5 0.759).
Conclusions: Our study indicates that fatty acid oxidation
may be an important component in the pathophysiology
of Parkinson’s disease and may have potential as a diag-
nostic biomarker for disease onset and mild cognitive
impairment. VC 2017 The Authors. Movement Disorders
published by Wiley Periodicals, Inc. on behalf of Interna-
tional Parkinson and Movement Disorder Society.

Key Words: Parkinson’s Disease; fatty acid beta oxi-
dation; metabolomics

Early clinical diagnosis of Parkinson’s disease (PD) is
important in reducing symptoms, slowing disease pro-
gression, and improving patient welfare.1 Postmortem,
PD is confirmed by the presence of Lewy bodies.2 In life,
PD diagnosis is based on clinical observation of cardinal
features2; however, the pathological processes leading to
PD can begin decades before the actual symptoms begin,
which can be mild in the early stages of disease. Imaging
technologies have improved diagnosis; however, translat-
ing these into sensitive and specific predictors of individu-
al neurodegenerative predisposition is challenging and, as
of yet, there is no single blood-based biomarker that can
be used to identify early-stage PD in clinical practice.
Moreover, the majority of PD patients will go on to
develop cognitive impairment and as of yet there is no
predictive tool to identify at-risk individuals.3

Metabolomics is a dynamic field that can be applied to
disease pathogenesis to elucidate mechanisms and identi-
fy potential biomarkers.4 In recent years, there has been a
growing interest in the use of metabolomics in PD
research.5-11 However, many of these studies do not cor-
roborate each other, possibly limited by low sample num-
ber and confounded by clinical heterogeneity and
analytical methodology.6

Here we report comprehensive serological metabolo-
mic profiling using a well characterized cohort of
early-stage PD patients and matched controls with the
aim of identifying potential biomarkers for the onset
of PD and to investigate the pathophysiological
changes associated with disease.

Methods
Fasting serum samples from 41 idiopathic early-stage

Parkinson’s patients (disease duration<1 year, mean 5

5.4 months, standard deviation 5 4.9 months) and 40
age- and gender-matched controls were selected from the
Incidence of Cognitive Impairment in Cohorts with
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Longitudinal Evaluation – Parkinson’s Disease (ICICLE-
PD) study12 and included for metabolomic profiling. All
PD cases were assessed locally by a movement disorder
specialist using Queen Square Criteria for the diagnosis of
PD13 and were treatment na€ıve. Summary demographic
data is shown in Supplementary Table 1.

All PD cases and age-matched controls underwent cog-
nitive assessment. Global cognitive function was assessed
using the Mini-Mental State Examination (MMSE)14 and
the Montreal Cognitive Assessment (MoCA).15 Mild cog-
nitive impairment (MCI), assessed during ICICLE-PD,12

was determined using published criteria (using 1.5 SD as a
cut-off) and all individuals were stratified as MCI-yes or -
no.12 Summary clinical data is shown in Supplementary
Table 1. Serum brain derived neurotrophic factor (BDNF)
levels were measured by an established sandwich enzyme-
linked immunosorbent assay (ELISA) kit (Promega, Swe-
den, Stockholm) as per the manufacturer’s guidelines.

Nontargeted mass spectrometry-based metabolomic
profiling (n 5 1434 biochemicals) was performed on all 81
serum samples using the established DiscoveryHD4TM

Metabolon platform (Metabolon, Cambridge, UK),
described previously.11,16-18 Metabolomic profiling was
performed in case-control randomized batches to control

for run-specific variation. Previously described Quality
control (QC) was used.16-18 Briefly serum samples with
>10% missing data points (n 5 0 case and n 5 0 control)
were excluded from further analysis, and metabolites with
>10% missing data points through limited detection
(n 5 43) were also removed from further analysis.

Statistical Analysis

Raw metabolite values are normalized by range scal-
ing, setting the median equal to 1.19 Normalized data
were analyzed using SPSS (Version 22.0. Armonk,
NY: IBM Corp.) with data appropriate tests (detailed
in text). Statistical significance was set at P< .05 after
Bonferroni correction for multiple testing. Principal
component analysis (PCA) was performed using the
FactoMineR (v1.24) package in R (v3.3.1). Orthogo-
nal Projections to Latent Structures Discriminant
Analysis (OPLS-DA) plots and associated analysis
were generated using MetaboAnalyst 3.0.20

Ethical Approval and Consent to Participate

Serological samples were obtained with consent
from Local Research Ethics Committee (LREC) (refer-
ence 08/H0906/147).

FIG. 1. a: Score plots of Principle Component 1 (PC1) versus Principle Component 2 (PC2) from principal component analysis (PCA) of post-QC
scaled metabolite data (n 5 1393) in cases (red) and controls (black), showing corresponding centers of gravity (open squares). b: Comparative
mean scaled intensities for the n 5 20 significantly different metabolites between early-stage PD (shaded) and age-matched controls (unshaded),
showing standard error of the mean. Highlighted are the nine metabolites associated with fatty acid beta oxidation. c: ROC curve of a logistic
regression model for distinguishing early stage PD from matched controls using the 9 fatty acid beta oxidation (FAO) metabolites (where AUC is
area under the curve). d: ROC curve of a logistic regression model for distinguishing MCI in early-stage PD from cognitively normal early-stage PD
(Mild-cognitive-impairment-normal MCI-n); where AUC is area under the curve). [Color figure can be viewed at wileyonlinelibrary.com]
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Results
PCA of post-QC scaled metabolite data (n 5 1393)

indicates that early-stage PD cases and matched con-
trols have distinct metabolic profiles (Fig. 1a), sup-
ported by separation using cross-validated orthogonal
partial least squares discriminant analysis (OPLS-DA,
R2 5 0.77 and Q2 5 0.50; Supplementary Fig. 1).21

Mann–Whitney U testing, after Bonferroni correction
for multiple testing, identified 20 metabolites that
were significantly different between early-stage PD
cases and matched controls; 13 were significantly
increased and 7 significantly decreased in cases
(Fig. 1b and Table 1). Subsequent annotation through
the Kyoto Encyclopaedia of Genes and Genomes data-
base revealed a consistent and significant increase of 9
metabolites of the fatty acid beta oxidation (FAO)
pathway, including components of both the acyl gluta-
mine and acylcarnitine pathways: hexanoylglutamine,
decanoylcarnitine, myristoleoylcarnitine, octanoylcar-
nitine, oleoylcarnitine, palmitoleoylcarnitine, suberoyl-
carnitine, octadecanedioate, and 3-hydroxysebacate. In
addition, 1-methylhistamine, a component of histidine
metabolism, and 3 xenobiotics (Metabolon ID,
x–18249, x–21735, and x-23756) were significantly
increased in PD. Because age and gender are predic-
tors of PD22 and, given the strong association to fatty
acid metabolism, we confirmed each association
through multivariate analysis, with age, gender, and
body mass index as covariates (Table 1). Kyoto Ency-
clopaedia of Genes and Genomes annotation of the 7
significantly reduced metabolites identified the follow-
ing 4 pathways: ascorbate/aldarate metabolism, benzo-
ate metabolism and lysolipid, xanthine metabolism,
which remained significant after multivariate analysis
with age and gender as covariates (Table 1).

To assess the ability of each metabolite to determine
PD status, receiver operator curves (ROC) were gener-
ated. All previously significantly different metabolites
showed individual areas under the curve (AUC)> 0.70
(Table 1), indicative of good predictive accuracy.23

Furthermore, a combined ROC curve, constructed
using binary logistic regression8,9 of the metabolically
linked FAO metabolites (n 5 9, Table 1) indicated
increased predictive accuracy (AUC 5 0.857) for early-
stage PD patients (Fig. 1c).

The measurements of cognitive decline in early-stage
PD are well documented,12 and we identified signifi-
cant associations (Bonferroni-corrected Mann–Whit-
ney U, P< .05), particularly to metabolites involved in
FAO, when stratifying PD cases by mild cognitive
impairment (MCI-y) versus cognitively normal (MCI-
n; Table 1), with cognitively impaired PD cases having
significantly higher levels of FAO metabolites than
cognitively normal cases (Supplementary Table 2).
Similar to PD, a combined ROC curve of the 9 FAO
metabolites indicated good predictive accuracy for

MCI in early-stage PD patients (AUC 5 0.759, Fig.
1d). However, despite a priori disease association to
MMSE and MoCA (Supplementary Table 1), we were
unable to correlate either to significant metabolite
levels (Supplementary Table 3).

Serological levels of brain-derived neurotrophic
factor (BDNF), a neuroprotective member of the tro-
phin family, have been linked to PD.24,25 With this in
mind, we correlated the significantly different metabo-
lites in this study to serological BDNF levels in our
cohort, identifying a significant correlations (Pearson’s
correlation ranges r 5 0.33-0.39) between increased
metabolites of FAO and increasing BDNF (Table 1).

Discussion
Our metabolomic data suggest that several metabo-

lites, particularly carnitines of the FAO pathway, are
highly associated with the onset of PD and correlate
with MCI and the expression of the neuroprotective
factor BDNF.

Dysregulation of FAO, typically an enzymatic defi-
ciency in either fatty acid breakdown, such as in
medium-chain acyl-CoA dehydrogenase deficiency, or
disruption of fatty acid transport across the mitochon-
drial membrane through defects in the carnitine trans-
port system, primarily results in a metabolic disorder
with fatty acids reaching cytotoxic levels.26 Our study
of early-stage PD serum showed a significant increase
of the metabolic intermediates of FAO when com-
pared with controls, an indicator that FAO is actually
increased. This is supported by 2 previous metabolic
studies8,9 that identified a significant increase in PD
patient urinary furoylglycine, triglylglycine and
hexanoylglycine, which are components involved in
mitochondrial fatty acid b-oxidation.8,9,27

When oxygen supply cannot meet demand, that is, dur-
ing neuronal activation or the development of pathology,
the brain shifts from glucose metabolism to inefficient
anaerobic respiration.28 However, the brain also has the
capacity to shift energy production from glucose metabo-
lism entirely, using FAO or ketones during pathological
conditions such as neurodegeneration, hypoxia/ischemia,
or posttraumatic brain injury.29 It is therefore possible
that the increase in FAO we observed in early-stage PD
cases is an attempt at attenuating neuronal cell death, a
hypothesis supported by the upregulation of BDNF, a
neuroprotective agent and further supported by our
observed significant increase in 1-methylhistamine, a
metabolite of histamine metabolism. Histamine has a role
in neuronal transmission,30 and elevated metabolite levels
have been observed in schizophrenia,31 Alzheimer’s dis-
ease, and PD patients.32 Similar to BDNF, increased hista-
mine is a marker of neuronal damage,32 and our data
suggest that 1-methylhistamine could indeed be an addi-
tional marker for neurodegeneration in early-stage PD.
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In addition, 7 metabolites were significantly reduced
in PD cases when compared with controls, supportive
of earlier observations in PD. Reduced ascorbate/alda-
rate metabolism, a marker of vitamin C deficiency,
was detected at subclinical levels in a previous study
in early PD.33 Catechol sulfate, a metabolite of benzo-
ate metabolism, is a product of both liver/kidney func-
tion and gut microflora metabolism, and a decrease
may be indicative of changes in PD gut microbiota.34

Xanthine metabolism and lysolipid metabolism were
both reduced in our early-stage PD cases, character-
ized by a reduction in 1-myristoyl-glycero-3-
phosphocholin, 2-myristoyl-glycero-3-phosphocholin
and 1,3-dimethylurate, supporting previous observa-
tions in PD LRRK2 mutation carriers10 and indicating
that caffeine absorption may be linked to PD.35,36

Despite strong associations in our cohort, we were
unable to correlate metabolite levels to typical mea-
sures of cognition such as MMSE or MoCA; likely a
limitation of the early stage of disease in our cohort,
where cognitive decline has yet to fully develop. This
is supported by a significant association to MCI,
which is more sensitive in early-stage PD,37 but this
does indicate that longitudinal studies of PD and cog-
nitive decline are recommended to assess this further.

Given the significant increase of several metabolites
in the same FAO pathway and supported by similar
results in independent cohorts,8,9 we conclude that
FAO may be an important component in PD patho-
physiology and the development of MCI. Moreover,
our data suggest that FAO metabolites are potential
biomarkers for the onset of PD and MCI, although
further study is recommended.
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Piti�e-Salpêtrière, Paris, France 4Centre Hospitalier Universitaire de
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ABSTRACT
Background: Cysteamine has been demonstrated as
potentially effective in numerous animal models of

Huntington’s disease.
Methods: Ninety-six patients with early-stage Hunting-
ton’s disease were randomized to 1200 mg delayed-

release cysteamine bitartrate or placebo daily for 18
months. The primary end point was the change from
baseline in the UHDRS Total Motor Score. A linear

mixed-effects model for repeated measures was used
to assess treatment effect, expressed as the least-

squares mean difference of cysteamine minus placebo,
with negative values indicating less deterioration rela-

tive to placebo.
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