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Abstract

The genus Perkinsus occupies a precarious phylogenetic position. To gain a better understanding of the relationship
between perkinsids, dinoflagellates and other alveolates, we analyzed the nuclear-encoded spliced-leader (SL) RNA and
mitochondrial genes, intron prevalence, and multi-protein phylogenies. In contrast to the canonical 22-nt SL found in
dinoflagellates (DinoSL), P. marinus has a shorter (21-nt) and a longer (22-nt) SL with slightly different sequences than
DinoSL. The major SL RNA transcripts range in size between 80–83 nt in P. marinus, and ,83 nt in P. chesapeaki, significantly
larger than the typical #56-nt dinoflagellate SL RNA. In most of the phylogenetic trees based on 41 predicted protein
sequences, P. marinus branched at the base of the dinoflagellate clade that included the ancient taxa Oxyrrhis and
Amoebophrya, sister to the clade of apicomplexans, and in some cases clustered with apicomplexans as a sister to the
dinoflagellate clade. Of 104 Perkinsus spp. genes examined 69.2% had introns, a higher intron prevalence than in
dinoflagellates. Examination of Perkinsus spp. mitochondrial cytochrome B and cytochrome C oxidase subunit I genes and
their cDNAs revealed no mRNA editing, but these transcripts can only be translated when frameshifts are introduced at
every AGG and CCC codon as if AGGY codes for glycine and CCCCU for proline. These results, along with the presence of the
numerous uncharacterized ‘marine alveolate group I’ and Perkinsus-like lineages separating perkinsids from core
dinoflagellates, expand support for the affiliation of the genus Perkinsus with an independent lineage (Perkinsozoa)
positioned between the phyla of Apicomplexa and Dinoflagellata.
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Introduction

Perkinsus marinus is a pathogenic alveolate causing ‘‘dermo’’

disease in oysters in estuaries of the north and central American

Atlantic and Gulf of Mexico coasts. Other species of Perkinsus cause

similar afflictions in a wide variety of other marine molluscs

worldwide, all of which yield serious losses for shellfish industries

[1]. This genus belongs to the crown group of eukaryotes known as

Alveolata, but its exact phylogenetic position is debated. Based on

the presence of cell surface micropores and an apical complex,

P. marinus is historically considered to be a member of the

Apicomplexa (for review see [2]), an exclusively parasitic lineage

responsible for malaria and other infectious diseases in humans

and animals. However, P. marinus shares cytological features with

dinoflagellates, such as flagellar spurs and closed mitosis [2].

Phylogenetic studies based on small subunit ribosomal RNA

(18S rDNA) and some conserved proteins such as actin and

tubulin also conclude that P. marinus is closer to dinoflagellates than

to apicomplexans (e.g. review by [2]–[4]), and thus are an early

branch of dinoflagellate [4], [5]. These results challenge a

proposition that both Perkinsus spp. and related Parvilucifera spp.

parasites should constitute an independent phylum named

Perkinsozoa [6], [7].

Since spliced-leader (SL) trans-splicing occurs throughout the

phylum Dinoflagellata (e.g. [8]–[11]) yet has not been found in

apicomplexans and ciliates, SL trans-splicing appears to be unique to

the dinoflagellates within the Alveolata [12]. Under this scenario,

the presence of SL trans-splicing in Perkinsus spp. [8], [13] allies

Perkinsus spp. with dinoflagellates. While dinoflagellates use a 22-nt

conserved SL (DinoSL), P. marinus harbors a longer (22 nt) and a

shorter (21 nt) SL, with sequences varying slightly from the

canonical DinoSL [14]. In addition, the genome of P. marinus

(,86 million base pairs; Project ID: 12736, http://www.ncbi.nlm.

nih.gov/genomeprj/46451) is closer in overall size to apicomplex-

ans (9–60 million base pairs; http://www.ncbi.nlm.nih.gov/geno-

meprj), but orders of magnitude smaller than dinoflagellates (3–250

billion base pairs; e.g. [15], [16]), and P. atlanticus chromosomes are

more like typical eukaryotic chromosomes than dinokaryotic

chromosomes [17]. Thus, whether Perkinsus spp. should be con-

sidered dinoflagellates remains unresolved.

Mitochondrial (mt) mRNA editing is a distinct characteristic of

dinoflagellates within Alveolata and can be a useful marker to
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assess whether a lineage of alveolate is a dinoflagellate [12]. RNA

editing is a sequence re-tailoring process that can be recognized

by changes in an RNA sequence compared to that of its encoding

DNA. Initially used to describe the insertion or deletion of uridine

residues in mitochondrial (mt) transcripts in the kinetoplastid

protozoans, the term ‘‘RNA editing’’ now also refers to

nucleotide (nt) substitutions in RNA that occur in a wide variety

of organisms (see [18], [19] for review). In Alveolata, mt gene

mRNA editing only occurs in dinoflagellates, displaying the

greatest diversity of modifications yet described in the context of a

single genomic environment. The frequency of editing events

decreases from high levels in the late-branching lineages to none

in the ancient lineages such as Oxyrrhis and Noctiluca (e.g. [12],

[19]). It is unclear if Perkinsus spp. mt gene mRNAs undergo

editing, but the mt cox1 of P. marinus is not translatable by the

standard or mitochondrial codon table. The reading frame must

be shifted 10 times by an unknown mechanism to yield a

consensus COX1 protein [20]. Once verified, this bizarre process

may be used as another molecular feature to demarcate Perkinsus

spp. from dinoflagellates.

In this study we investigated the Perkinsus genus for the SL

RNA gene structure, intron prevalence, full-length mt cox1 and

cytochrome b (cob) genes and their transcripts, and multiple-protein

phylogenetic position. With the help of the GenBank database for

six species and 33 unidentified Perkinsus sp. strains, and the P.

marinus genome sequence, we performed thorough phylogenetic

analyses and identification of introns in P. marinus. We paid special

attention to histones because these proteins were thought to be

absent in dinoflagellates until recently (for review see [21]). We

used deduced full-length amino acid (aa) sequences of 41 genes

to reconstruct phylogenetic trees. Genomic structures and cor-

responding RNA sequences of the SL gene were analyzed. Sixty-

eight Perkinsus full-length cDNAs obtained in our previous

studies [8], [14] were mapped to genome sequences to identify

corresponding genes, and combined with 36 other reported genes

to determine the frequency of introns. Although the Perkinsus clade

shares commonalities with dinoflagellates, our data show that it is

a unique lineage basal to the monophyletic clade of dinoflagellates.

Materials and Methods

Perkinsus marinus and dinoflagellate cultures, RNA
isolation and cDNA construction

Perkinsus marinus isolate ATCC 50439 and P. chesapeaki ATCC

PRA-65 were grown in tissue culture flasks with liquid media,

samples (3–46106 cells) were collected by centrifugation and total

RNAs were isolated as reported previously [14]. Dinoflagel-

lates Amphidinium carterae (CCMP1314) and Karlodinium veneficum

(CCMP2778) were grown in f/2 seawater medium at 20uC at a

12 h:12 h light:dark photocycle with a photon flux of approxi-

mately 50 mE?m22s21. When the cultures were in the exponential

growth phase, ,16106 cells were harvested and total RNAs

isolated according to Zhang et al. [8]. These RNAs were used for

cDNA synthesis as described previously [8].

Identification of the SL RNA genes from the P. marinus
genome project

Perkinsus spp. were suspected to possess a SL sequence similar to

that of dinoflagellates (DinoSL; [8]). Two types of SL sequences

were detected at the 59 end of P. marinus full-length cDNAs of pcna

and cyclins [14], PmaSL1, 59-ACCGTAGCCATCTTGGCT-

CAAG-39 (22 nt) and PmaSL2, 59-ACCGTAGCCATCTGGCT-

CAAG-39 (21 nt). These two Perkinsus SL sequences were used to

query P. marinus whole-genome shotgun reads [http://www.ncbi.

nlm.nih.gov/genomeprj/46451] to identify SL RNA genes. For

hits with 85–100% identity to the queries, the genome sequences

were collected for alignment with one another and with SL RNAs

from dinoflagellates. Type-specific primers were designed for

amplifying the putative SL RNAs (Table 1).

RNA blot analyses of SL RNA
Total RNA from ,106 cells of both Perkinsus species and four

strains of dinoflagellates in our previous studies [8], [9], including

Prorocentrum minimum (CCMP696), Polarella glacialis (CCMP2088),

Karenia brevis (CCMP2228) and Karlodinium veneficum (CCMP1975)

were used for RNA blots. RNA samples were loaded onto an 8%

acrylamide/8 M urea gel, a medium resolution gel optimal for

RNAs below 350 nt, electrophoresed, and transferred to nylon

membranes [22]. Oligonucleotide probes used for hybridization

included dinoSLa/s for detection of the general dinoflagellate SL

RNAs and the two types of Perkinsus SL RNAs (PmaSL-La/s and

PmaSL-Sa/s hybridizing to exons and PmaSL-Li and PmaSL-Si

to introns) (Table 1). The cDNA clones containing the two P.

marinus SL RNAs were dot blotted to serve as positive controls for

detection of the specific substrate SLs on RNA blots. Total RNA

from Leishmania tarentolae cells was included to provide size markers.

Oligonucleotide probes were labeled with cP32-ATP for hybrid-

ization [22].

Rapid amplification of cDNA 39 end (39 RACE) and folding
analysis

Poly (A) mRNA was depleted from P. marinus total RNA and a

poly (A) tail was added to the remaining population using

Escherichia coli Poly (A) Polymerase (Takara Mirus Bio) as reported

[8]. First-strand cDNA synthesized using GeneRacer Oligo dT

primer (Invitrogen) was used as PCR template. Two rounds of

touch-down PCR were carried using the same conditions as above,

with the extension time of 5 sec at 72uC. The first round of PCR

was performed using PmaSL-LSF1 and GeneRacer3 primers. The

PCR products were diluted 100-fold and used in the second round

PCR with PmaSL-LSF2, PmaSL-LNF2, PmaSL-LNF3, PmaSL-

S2F2, or PmaSL-S2F3, each paired with GeneRacer3, as the

nested primers (Table 1).

Structures were modeled for the two dominant types of SL RNA

transcripts using the MFOLD online program [http://mobyle.

pasteur.fr/cgi-bin/MobylePortal/portal.py?form = mfold]. Folding

was performed using the default setting except that the temperature

was set at 27uC to match the P. marinus culture conditions.

Mitochondrial gene analyses
The mt cox1 and cob sequences were PCR-amplified from both

genomic and cDNA templates using universal and Perkinsus-

specific primers designed in this (Table 2) and previous studies

[12], [23], [24]. PCR was performed with 30 cycles of 95uC for

15 sec, 50–58uC for 30 sec, and 72uC for 40 sec. PCR products

were sequenced either directly or after cloning into a T-vector,

with 5–10 clones randomly chosen for sequencing. To obtain the

ends of the mt genes, we designed Perkinsus-specific primers for

both P. marinus and P. chesapeaki (Table 2) based on the mt cox1 and

the partial cob sequences obtained from the newly released P.

marinus genome shotgun sequence.

Generation of full-length gene sequences
Ribosomal proteins (RPs) from dinoflagellates [21] were used

to query the P. marinus genome and GenBank databases to

retrieve RPs from P. marinus, apicomplexans, ciliates, diatoms and

other eukaryotic representatives. Since many of the dinoflagellate

Perkinsus Earliest Trans-Splicing Alveolate
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RP cDNAs available were not full-length, to maximize phyloge-

netic information from these genes, 22 full-length cDNAs of RPs

from dinoflagellates Amphidinium carterae CCMP1314 and K.

veneficum CCMP2778 were cloned using dinoflagellate-specific

SL coupled with 39 RACE as described previously ([8]; GenBank

accession # GU372975-GU373034). To diversify the gene

markers for phylogenetic analyses, another 12 conserved gene

sequences were collected from our ongoing cDNA sequencing

project for these two species, and their 59 and 39 ends achieved

using RACE as necessary. Using these as queries, homologs

were collected from GenBank for P. marinus and other species

mentioned above. The absence of histones, long considered a

benchmark of typical dinoflagellates, is erroneous (see [21] for

review); thus, histone genes were retrieved from the Perkinsus

genome project database. Full-length or nearly full-length mt cox1

and cob sequences were also obtained from P. marinus and P.

chesapeaki. The 39 end of cob for both Perkinsus spp. was obtained

using the 39 RACE technique with Perkinsus cob primers paired

with GeneRacer3 primer (Invitrogen). All of these genes were

used in phylogenetic analyses.

Multi-protein phylogenies
Predicted aa sequences of each gene were aligned with

homologs from related organisms using CLUSTAL W (1.8)

and inspected manually. Phylogenetic relationships of P. marinus

with alveolate relatives and other eukaryotes were inferred using

Neighbor Joining (NJ), Maximum Likelihood (ML), and MrBayes

(MB) analyses. NJ analysis was performed online [http://clustalw.

ddbj.nig.ac.jp/top-e.html] with the default setting. For ML tree

reconstruction, the datasets were run through ProtTest [25] to

identify the best-fitting aa substitution models (Table 3), which

were then employed in the phylogenetic analysis using PhymLv3.0

[26]. MB analysis was carried out with 20,000–1,000,000 MCMC

generations depending on when the average standard deviation of

split frequencies reached below 0.01, a tree sampling frequency

of 10–100, and 25% of generations discarded as burn-in [27].

To verify the reliability of the tree topologies, branch support was

estimated based on bootstrap (1,000 resamplings) in NJ, ap-

proximate Likelihood Ratio Test (aLRT) in ML, and posterior

probability in MB.

Analysis of Intron Frequency
Thirty-six and 37 unique full-length cDNAs from P. marinus and

P. chesapeaki, respectively [8], were used as the queries to nBLAST-

search against P. marinus genomic sequences to obtain the cor-

responding genomic DNA. The recently published full-length

cDNAs and genomic DNAs for proliferating cell nuclear anti-

gen (pcna) and two types of cyclins from P. marinus [14], as

well as 36 other common protein-coding genes of P. marinus

such as tubulins, gapdh, centrin, hsp90 and ribosomal proteins

reported in GenBank were compared (Table S1). Canonical GT/

AG intron/exon boundaries validated the deduced intron start

Table 1. SL RNA-related oligonucleotides used in this study.

Primer name Sequence (59-39) Application; reference*

dinoSLa/s TGTACCTTGAGCCAAAATG dinoflagellate SL RNA detection; [8]

PmaSL-La/s CTTGAGCCAAGATGGCTACG Perkinsus L-type SL RNA detection

PmaSL-Sa/s ACCTTGAGCCAGATGGCTAC Perkinsus S-type SL RNA detection

PmaSL-Li TAGCGAGAGGACCTGATATC P. marinus L-type SL RNA detection

PmaSL-Si CAGAGAGYGGAMCTGATATT P. marinus S-type SL RNA detection

LongSL1a/s CCTCGCCGACATGCGGTGA P. marinus L-type SL-like RNA detection

LongSL2a/s TGGAGAGATGCGACCCAAA P. marinus L-type SL-like RNA detection

shortSL1a/s CGTCAACACGACTAGACATGA P. marinus S-type SL-like RNA detection

shortSL2a/s GCGACTAGTACTCATGTGAA P. marinus S-type SL-like RNA detection

PmaSL-LS-F1 TGGCTCAAGGTARATATCAGKTCC 39 RACE

PmaSL-LS-F2 CTCAAGGTARATATYAGKTCCDCYCKCT 39 RACE

PmaSL-S2F2 CTCAAGGTAAATATCAGKTCCACTCT 39 RACE

PmaSL-S2F3 AAGGTAAATATCAGKTCCACTCTCTG 39 RACE

PmaSL-LNF2 CTCAAGGTAGATATCAGGTCCTCTCG 39 RACE

PmaSL-LNF3 AAGGTAGATATCAGGTCCTCTCGCTA 39 RACE

PmaSL-L1-like-F1 CCATCTTGGCTCAAGATCTTAGTG 39 RACE

PmaSL-L1-like-F2 AGATCTTAGTGTCGTGTTATTGGTC 39 RACE

PmaSL-L1-like-F3 GTGTTATTGGTCACCGCATGT 39 RACE

PmaSL-L1-like-F4 GTTATTGGTCACCGCATGTCG 39 RACE

PmaSL-L2-like-F1 GCCATCTTGGCTCAAGGTCTCA 39 RACE

PmaSL-L2-like-F2 TTGGCTCAAGGTCTCAGTGTAC 39 RACE

PmaSL-S-like-F1 GCCATCTGGCTCAAGTGTTG 39 RACE

PmaSL-S-like-F2 CCATCTGGCTCAAGTGTTGTATT 39 RACE

PmaSL-S-like-F3 TGTATTTTTGCTCCACATCATGTCTAG 39 RACE

PmaSLS-like-F4 TTGCTCCACATCATGTCTAGTCGT 39 RACE

*oligonucleotides from this study show no reference.
doi:10.1371/journal.pone.0019933.t001
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and end positions. The percentage of genes within this cohort that

contained introns was determined.
Results

Two major types of Perkinsus SL RNA
From the reported P. marinus genome database we identified two

major types of SL RNA genes: PmaSLRNA-L or L-type, and

PmaSLRNA-S or S-type (Figure 1A), with the SL exons

corresponding to the two SL sequences found previously in pcna

and cyclins [14]. These sequences were similar to DinoSL

(Figure 1B). For the L-type, we identified seven sequences

(Table 3), and all but one (AAXJ01000089, containing two units

of SL RNA) are 1–1.8 kb in length containing a single SL RNA

gene. For the S-type, 42 sequences were identified with lengths

ranging 1 to .14 kb (Table 4); of these, some were arrayed as

tandem repeats or as a single unit clustered with both or either of

the U2 and U4 snRNA genes downstream of the SL RNA gene;

others were single or 2-unit tandem-repeat sequences not

associated with U2 or U4 snRNA genes (Table 4).

The major P. marinus SL RNA transcripts are 80–83 nt
The sequences containing the two types of P. marinus SL RNA

genes (PmaSLRNAs) were conserved in the first 82–83 nt, with the

SL exon of the L type 1-nt longer than that of the S type.

Table 2. Mitochondrial gene primers designed in this study.

Primer name Sequence (59-39) Application

Ncob5a CAAATTATNACWGGWATWTTYTTRGC Universal cob PCR

Ncob5c GGTTAYGTNTTACCTTKDGGWCARATG Universal cob PCR

Ncob5d GGACAAATGTCTTWYTGGGSNGCNACNGT Universal cob PCR

Ncob3a GCRTARWANGGNTGRAARTACCAYTCNGG Universal cob PCR

Ncob3b TCYTGNGGRAAYTGNSCNCCDATCCA Universal cob PCR

Ncob3c GTTAGTAATNACWGTWGCWSCCCA Universal cob PCR

PerkinsuscobF1 ATTAATGATAGTATTAATTATTTATGAAATATAAGG Perkinsus cob PCR

PerkinsuscobF2 ACAAGTAATAACTTAGGCATAATAATAAAC Perkinsus cob PCR

PerkinsuscobF3 GGTTTCATAGGTTATATATTAGGTTGG Perkinsus cob PCR

PerkinsuscobF4 CATATTGGAGGTATAACAGTAATTATAAACT Perkinsus cob PCR

PmacobNF1 GGTTATCGTTTATATACCCATAATTATACCC Perkinsus cob PCR

PerkinsuscobNF2 TATATTACTAAGATATAATATCTAGTAAAGGGGA Perkinsus cob PCR

PerkinsuscobR1 ACCTAGATATTAATAATATTAAATATGGTATGCCT Perkinsus cob PCR

PerkinsuscobR2 AGTTTATAATTACTGTTATACCTCCAATATG Perkinsus cob PCR

PerkinsuscobR3 CCAACCTAATATATAACCTATGAAACC Perkinsus cob PCR

cox1_5a TTATGATCTTCTTYWTNRTNATGCC Universal cox1 PCR

cox1_5b GGAACAGGATGGACANTNTAYCCNCC Universal cox1 PCR

cox1_5c TTCTGGTTCTTYGGNCAYCCYGARGT Universal cox1 PCR

cox1_3a TAAACYTCRGGATGNCCRAADAACCA Universal cox1 PCR

Pmacox1F1 ATTGGTATATTAGGTATAGTATTATCTTAT P. marinus cox1 PCR

Pmacox1F2 AGAATACAATATAGGTACAGGCTGAA P. marinus cox1 PCR

Pmacox1R1 TTGAACCAATAGATGATATTAAATTCCA P. marinus cox1 PCR

Pmacox1R2 TGAACCAATAGATGATATTAAATTCCATAC P. marinus cox1 PCR

Perkinsuscox1NF1 TTCTATATATTAGTAAATAATAATAAAAGAATAGG Perkinsus cox1 PCR

Perkinsuscox1NF2 TTACATTAAATTATCAATAATTATTGGTATATTAGG Perkinsus cox1 PCR

Perkinsuscox1NF3 GTAAATTACTATAATATGGTTATAACATTACATGG Perkinsus cox1 PCR

Perkinsuscox1NR1 TTGATATTGAACCAATAGATGATATTAAATTCCA Perkinsus cox1 PCR

Perkinsuscox1NR2 ATAATATACCTAGCTAATAATGATATTACAGCACC Perkinsus cox1 PCR

Perkinsuscox1NR3 AATGGAAATGAGATACTATATAATATGTATCATGTAA Perkinsus cox1 PCR

doi:10.1371/journal.pone.0019933.t002

Table 3. Best substitution models selected by ProtTest for
phylogenetic analyses.

Gene Best Model AIC -lnL

Model
parameters

alpha p-inv

RPs concatenated LG+I+G+F 1.00 56654 1.29 0.08

Other genes concatenated LG+I+G+F 1.00 49591 0.63 0.15

Histone H2A RtREV+I+G+F 0.99 6499 0.47 0

Histone H2B LG+G+F 0.73 2440 0.59 0.12

Histone H3 LG+G 0.73 1625 0.73 0

Histone H4 JTT+G 0.58 917 0.58 0

doi:10.1371/journal.pone.0019933.t003
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Sequence similarity diminished in the downstream intron region.

The sequence upstream of SL was more complex: for the L-type

PmaSLRNAs, upstream sequences were uniform, whereas those

of the S type were diverse, with some resembling the L type

(Figure 1A). When PmaSLRNAs were aligned with the represen-

tatives of known dinoflagellate SL RNAs, PmaSLRNAs showed

similarity in the exon (i.e. the 21/22-nt SL region) and moderate

similarity in the beginning of the intron region (i.e., immediately

downstream; Figure 1B). As in dinoflagellates, the predicted Sm-

binding sequence was located in the SL exon of PmaSLRNAs, and

the 39 termini of the majority of substrate transcripts mapped

within poly-T tracts, reminiscent of the termination element in SL

RNAs of kinetoplastid [22], some dinoflagellates [9], and of other

small RNA genes.

The SL RNAs of two Perkinsus spp. and four dinoflagellates were

analyzed by gel electrophoresis and hybridization. Ethidium

Figure 1. Alignments of spliced leader (SL) RNAs of Perkinsus marinus and dinoflagellates. A) Representative genomic sequences of two
types of P. marinus SL RNA. B) P. marinus SL RNAs with the reported representatives of dinoflagellate SL RNA genomic sequences (modified according
to [9]; the number of identical clones retrieved for each type is indicated by ‘‘@number’’ following the species abbreviation and type number). The SL
region (boxed) is shown in uppercase letter, intron and the flanking regions are shown in lowercase letters, * indicates the conserved nucleotide (nt).
The first ‘A’ of SL is numbered as nt 1. SL RNA transcripts mapped by 39 RACE analyses are denoted by arrows to indicate the terminal positions,
thickness with darkness of the arrows denote relative frequency of clones that ends where it is indicated. Note that the PCR-amplified Amoebophrya
sp. genomic sequences contain only one unit of SL RNA gene, the partial SL sequence is of the primer used. Per, P. marinus, Amo, Amoebophrya sp.;
Har, Heterocapsa arctica; Kbr, Karenia brevis; Kve, Karlodinium veneficum; Ppi, Pfiesteria piscicida; Pgl, Polarella glacialis; Pmi, Prorocentrum minimum. SL
refers to SL RNA sequences obtained from SL-only repeats; SL-5S indicates SL RNA sequences from genes associated with 5S rRNA genes.
*: sequences from [8]; **: sequence from [46]; #: sequences from [9], $1-4: GQ178071-GQ178074; N: sequences missing in the original reports. Shaded
are conserved positions defined as identical in over six sequences in at least three species. A non-canonical C in the splice donor site of KbrSL-3 is
boxed. Gaps introduced in the sequence alignment are shown as ‘–’.
doi:10.1371/journal.pone.0019933.g001
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bromide staining revealed that the two Perkinsus species have

similar small RNA molecule profiles with commonalities to the

dinoflagellate P. minimum (Figure 2A). Hybridization of an RNA

blot of this gel with the 19-nt dinoflagellate SL probe DinoSLa/s

(including 14 nt of SL and 5 nt of intron; Table 1) showed the

dinoflagellate SL RNA pattern with major transcripts of ,56 nt

for the four dinoflagellates as reported previously [8], [9]; no

hybridization was detected for the two Perkinsus species (Figure 2B).

Probing the blot with P. marinus L-type or S-type SL probes

(PmaSL-La/s and PmaSL-Sa/s respectively; Table 1), strong

bands of .72 nt appeared in both Perkinsus species for both

probes, with a minor band of slightly shorter length in the P.

marinus sample for probe PmaSL-Sa/s; neither probe hybridized to

dinoflagellate SL RNA (Figure 2C, 2D), indicating that the .72-nt

bands are specific to the genus Perkinsus, and that Perkinsus SL

RNAs are longer than those of typical dinoflagellates. Consistent

with the similar RNA levels seen on the gel for the two Perkinsus

species, probe PmaSL-La/s detected equivalent levels of this SL

RNA variant (Figure 2C) in the two species. However, the band of

P. chesapeaki was weaker than that of P. marinus with probe PmaSL-

Sa/s (Figure 2D), possibly reflecting reduced expression or

impaired hybridization due to a nucleotide alteration(s) in the

exon region in P. chesapeaki. The minor band in the P. marinus lane

may represent degraded SL RNA products. To further distinguish

the two types of PmaSL RNA transcripts and to explore whether

P. chesapeaki SL RNAs have similar introns to those of P. marinus,

additional probes were designed for the PmaSLRNA L-type and

S-type intron sequences (PmaSL-Li and PmaSL-Si; Table 1). Both

Table 4. Genomic sequences containing SL RNA genes identified from P. marinus genome data.

Type Accession number No. of tandem repeats
Clustering with other
genes

L-type AAXJ01000089 2 units None

AAXJ01000634, AAXJ01008425, AAXJ01008806, AAXJ01009867,
AAXJ01011835, AAXJ01018981

single unit None

S-type AAXJ01000505 5 units U4, U2

AAXJ01002433 2 units U4, U2

AAXJ01005490, AAXJ01006336, AAXJ01008092, AAXJ01007198,
AAXJ01015199

single unit U4, U2

AAXJ01008392, AAXJ01008497, AAXJ01017256, AAXJ01001119,
AAXJ01008189, AAXJ01014861, AAXJ01009920, AAXJ01007653,
AAXJ01014749

single unit U4

AAXJ01000675, AAXJ01002387, AAXJ01010843 2 units none

AAXJ01006660, AAXJ01014035, AAXJ01016290, AAXJ01007696,
AAXJ01004715, AAXJ01007548, AAXJ01005828, AAXJ01008852,
AAXJ01009786, AAXJ01015286, AAXJ01006696, AAXJ01008101,
AAXJ01010740, AAXJ01019396, AAXJ01007558, AAXJ01002161,
AAXJ01006187, AAXJ01007317, AAXJ01003656, AAXJ01013911,
AAXJ01009158, AAXJ01019701, AAXJ01015306

1 unit none

doi:10.1371/journal.pone.0019933.t004

Figure 2. Perkinsus spp. substrate SL RNA larger than typical of dinoflagellates. A) Denaturing 8% polyacrylamide/8 M urea gel of total cell
RNA from Perkinsus spp. and other organisms. Lane 1, Leishmania tarentolae; 2, P. chesapeaki; 3, P. marinus; 4, Prorocentrum minimum; 5, Polarella
glacialis; 6, Karenia brevis and 7, Karlodinium veneficum. B–F) Probing of the blot shown in A) using oligonucleotides DinoSLa/s, PmaSL-La/s, PmaSL-
Sa/s, and designed from intron regions in the PmaSL-L and PmaSL-S genotypes, respectively. Arrows highlight the SL RNA transcripts. G) and H) Dot
blots of the PmaSLRNA-L (G) and PmaSLRNA-S (H) cDNA clones using the same probes as in (E) and (F), respectively.
doi:10.1371/journal.pone.0019933.g002
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intron probes revealed bands at .72 nt and some minor bands of

,72 nt in P. marinus (Figure 2E, 2F), but no bands in P. chesapeaki,

suggesting that P. chesapeaki SL RNAs have different intron

sequences than P. marinus. An additional band appeared at

,150 nt with PmaSL-Si for both Perkinsus spp. (Figure 2F), a likely

result of non-specific hybridization to the abundant 5.8S ribosomal

RNA (Figure 2A). To validate the specificity of the probes, 39

RACE cDNA clones of the L- and S-type SL RNA were used to

create dot blots that were hybridized separately with each probe.

Each yielded a positive signal only when the corresponding probe

was used (Figure 2G, 2H).

A 39 RACE analysis gave an assortment of 39 ends for both

PmaSLRNAs. Of the 48 PmaSLRNA cDNA clones mapped, 25

ended at the 2nd T, 11 clones at the 1st T, and 4 clones ended at

the 3rd T of the poly-T tracts present in both SL genes,

representing 83% of the ends obtained. Thus, most PmaSLRNA

transcripts were 80–83 nt in length, corresponding to the major

band observed in the RNA blots. The minor end classes of ,72 nt

may have contributed to the minor products seen by RNA

blotting, possibly representing degraded or misprocessed SL RNA

products.

PmaSL present in protein coding genes and other
genomic locations

BLAST analysis using PmaSL1 and PmaSL2 hit some cDNA

or genomic DNA sequences apparently coding for proteins

(e.g. EH076923, EH059894, EH059894, EH059894). In addition,

over 100 genomic sequences were retrieved from the genome data

that contained recognizable PmaSL1 (.60, e.g. AAXJ01000048,

AAXJ01000335, AAXJ01000111, AAXJ0100359, AAXJ01004662,

AAXJ01000077) and PmaSL2 (.40, e.g. AAXJ01000111,

AAXJ01000162, AAXJ01000192, AAXJ01000237, AAXJ01000370)

but no recognizable intron downstream. Most of these SL sequences

started with T, and were arrayed in tandem repeats, and their

downstream regions were variable. To investigate whether those SL

RNA-like genomic sequences were also expressed, we designed

primers (Table 1) containing a partial SL and downstream nucleotides

or the downstream sequences alone and applied them to 39 RACE

and RNA blotting analyses. Neither of the approaches yielded clear

products, indicating that these SL-like sequences are not functional SL

RNA genes.

Predicted PmaSLRNA structures and Sm-binding site
locale

Similar to the situation in dinoflagellates, no apparent Sm-

binding site sequence was found in the predicted intron regions of

either of the PmaSLRNAs. Instead, AUUCUGG (L-type) or

AUCUGG (S-type) found within the SL was the only recognizable

candidate Sm-binding site, as in the DinoSL (AUUUUGG). The

predicted intron region was similar between the two Pma-

SLRNAs, in contrast to the conserved intron in DinoSL RNAs,

with the exception of the ancient parasitic genus of dinoflagellates

Amoebophrya that showed considerable variation (Figure 1B). In the

structural simulation using the default conditions for all but

temperature, which was adjusted to the culture temperature of

27uC, the splice-donor dinucleotide (‘gu’ in ‘Gguag’) was double-

stranded and the putative Sm-binding site (AUUCUGG/AU-

CUGG) single-stranded, forming a small terminal loop. The

simulation yielded one comparable structure for both types of

PmaSLRNAs (Figure 3). The predicted structures were similar to

typical dinoflagellate SL RNA structures, having two stem-loops

[8], [9], with the ‘extra’ intron region situated in a bulge of

unpaired sequence connecting the two stem loops.

Unique sequences and anomalous frameshifts in
Perkinsus mt genes

All the possible combinations for cob primers designed based on

dinoflagellate cob (Table 2; [12], [23], [24]) were tested but failed

to PCR amplify any products. BLAST searching using cob aa

sequences from apicomplexans and dinoflagellates against the P.

marinus whole genome shotgun sequencing database (tblastx) hit

one contig (860 bp, AAXJ01022806) containing the 59 end of a

cob-like sequence. The corresponding mRNA of this sequence and

its 39 end were obtained for both species of Perkinsus by PCR

and 39 RACE using Perkinsus-specific primers paired with the

GeneRacer3 primer (GenBank accession numbers HQ670239,

HQ670241; Figure 4, Table 2).

Using dinoflagellate cox1 primer sets dinocox1F5-R3 [24] and

universal cox1 primer set cox1_5b-3a (Table 2), DNA fragments

were amplified from genomic and cDNA templates of P. marinus

(0.96 kb) and cDNA of P. chesapeaki (0.33 kb), respectively. Direct

sequencing of these fragments proved that they were cox1 sequences

with 50–60% identity to that of dinoflagellates and apicomplexans.

When the 0.96-kb P. marinus cox1 sequence was used to BLAST

against the P. marinus genome database, one 3147-bp sequence

(AAXJ01004741) was obtained with 100% identity to the P. marinus

DNA fragment we found. Nearly full-length cDNAs of cox1 were

generated by PCR amplification using Perkinsus-specific cox1 primers

for both Perkinsus species (GenBank accession numbers HQ670238,

HQ670240; Figure 5, Table 2). Both the cob and cox1 cDNA

sequences matched the corresponding genomic DNAs, indicating

that no mRNA editing events occurred in either transcript.

Comparison of nt and deduced aa sequences of Perkinsus cob and

cox1 with counterparts in other alveolates revealed that correct

translation of Perkinsus mt genes required the Mold/Protozoan/

Coelenterate mt codon table (TGA codes for tryptophan) in

general. To be fully translatable without internal stop codons,

however, frameshifts had to be introduced at every AGG and

CCC codon, the equivalent of using AGGY to code for glycine (six

sites in cob and 7–8 sites in cox1) and CCCCU for proline (twice in

cox1) (Figures 4, 5). An analogous result was reported by Masuda

et al. [20] for the P. marinus cox1. Multiple cDNAs and genomic

sequences substantiated these unusual reading frames, as well as

the direct sequencing of PCR products. An interesting difference

was found between the two Perkinsus species: at one site in cox1,

glycine was encoded by an AGGU codon in P. marinus, but by a

standard GGU codon in P. chesapeaki (Figure 5). With the

introduction of these invoked anomalous quadruplet and quintu-

plet codons, the deduced aa sequences of the two Perkinsus COX1

were 98% identical to each other, 46–50% similar to the homologs

in apicomplexans, 42–49% to dinoflagellates, 29–31% to ciliates,

and 38–42% to other organisms (Figure 6). For cob (Figure 4),

besides the quadruplet codon AGGY, glycine was also encoded by

the quintuplet codons UAGGC (for P. marinus) and UCGGU

(for P. chesapeaki). After these adjustments, the deduced COB aa

sequences of the two Perkinsus spp. shared 97% similarity to each

other, 34–36% to apicomplexans, 22–44% to dinoflagellates,

15–17% to ciliates, 27–33% to other organisms (Figure 6).

High density of cis-introns relative to dinoflagellates
The corresponding P. marinus genomic sequences of 39 and 29

full-length cDNAs from P. marinus and P. chesapeaki, respectively

[8], [14], were obtained. Comparison of these 68 cDNAs with the

genomic DNA sequences revealed the presence of introns in 42

genes, yielding a 61.8% intron rate. Through GenBank database

searches, we obtained an additional 36 common genes with known

genomic structures, 30 of which have intron(s) (Table S1). Overall,

the intron rate for P. marinus genes was 69.2% (72 out of 104). The
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intron-containing genes harbored between one and ten introns

with the lengths ranging from 39 to 1622 bp, the majority of

which were ,100 bp.

Multi-protein phylogeny of Perkinsus and other lineages
Twenty-two ribosomal proteins were obtained for Perkinsus and

various organisms; Maximum Likelihood (ML) trees inferred from

the individual sequences gave varied tree topologies (Figures S1,

S2, S3, S4). In general, P. marinus, dinoflagellates, apicomplexans,

and ciliates formed a monophyletic group, while in several cases

the heterokont diatoms, the closest relative of the alveolates,

branched with some of the alveolate lineages, but without

bootfostrap support. Perkinsus spp. allied with dinoflagellates in

some cases (e.g. Figures S1C, 1F, S2E), and with apicomplexans

(e.g. Figure S1D) or the diatoms (e.g. Figure S2D) in others, often

with weak or no bootstrap support in these cases, indicating an

unstable phylogenetic affinity. In contrast, NJ trees based on the

12 conserved protein sequences (actin, b-tubulin, GAPDH, a-

tubulin, centrin, HSP90, EF1-a, ADP ribosylation factor, TIF5A,

SmD1, cytochrome C and 14-3-3) produced similar tree topology,

with P. marinus clustering with dinoflagellates in most of the cases

(Figures S5, S6). For mt genes, Perkinsus spp. clustered with ciliates

in COB tree, while allied with dinoflagellate/apicomplexan cluster

in COX1 tree (Figure 6). When the concatenated RP sequence

data (3,142 aa) was used, analyses using NJ, ML, and MB

produced trees of similar topologies in which P. marinus branched

at the base of the dinoflagellate clade (Figure 7). This was true for

the analyses both without (Figure 7A) and with (Figure 7B) the

ancient dinoflagellate lineage Oxyrrhis marina. The only exception

was the MB tree in which P. marinus was allied with the clade of

apicomplexans (Figure 7A). Similarly, when the other 12 protein

sequences were concatenated (3,879 aa) the consensus tree in-

ferred from the three algorithms showed the close relationship

between P. marinus and dinoflagellates (Figure 7C). In most of these

concatenated trees, the alliance of P. marinus and dinoflagellates

was supported.

Multiple sequences were obtained for each of the P. marinus

histones; in most of the phylogenetic trees, these sequences

clustered together and allied with apicomplexans except for

the H3 tree, in which one P. marinus H3 grouped with the

apicomplexan Toxoplasma gondii, the other with dinoflagellate/

ciliate clade (Figures 8, 9). Histone 2A in many organisms has

acquired an isoform referred to as H2A.X. In both dinoflagellates

and P. marinus, H2A.X seems to be the dominant, if not the only,

form. The homolog retrieved from the P. marinus genome was

clustered with H2A.X in the clade of apicomplexans (Figure 8).

Discussion

To understand the evolution of parasitism in the Alveolata, the

phylogenetic relationship among the major lineages in this crown

group must be resolved accurately. No consensus exists for the

relationship between the Perkinsus genus with other alveolates,

particularly the partition between apicomplexans and dinoflagel-

lates. Taking advantage of SL RNA, mt gene characteristics, gene

structure (e.g. intron density), and the increasing availability of

Figure 3. Perkinsus marinus SL RNA secondary structure similar to DinoSL RNA. Predicted structures of SL RNA for P. marinus L-type (A) and
S-type (B) based on the most abundant cDNAs obtained. Model simulation was run using MFOLD: Prediction of RNA secondary structure modeling
program (http://bioweb.pasteur.fr/seqanal/interfaces/mfold-simple.html) under default settings except that the folding temperature was set at 27uC,
the culture temperature.
doi:10.1371/journal.pone.0019933.g003
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functional protein sequences, robust evidence is provided in

support of a relatively close relationship between Perkinsus spp. and

dinoflagellates, in addition to a distinct non-dinoflagellate position

of this alveolate pathogen.

Perkinsus SL RNAs mark earlier emergence and more
complex evolution of trans-splicing in alveolates

PmaSLRNA sequences are similar to those of dinoflagellate SL

RNAs, including the location of an apparent Sm-binding domain

in the exon rather than in the intron, as is the case typically in

other SL trans-splicing eukaryotes (see [8], [9] for review). The SL

has left its footprints in other parts of the dinoflagellate genome in

the form of single and tandem exon repeats located adjacent to

the 59 UTRs of protein coding genes [28]. This apparently

unproductive phenomenon is postulated to occur when SL-

containing mRNA are reverse-transcribed and integrated to the

genome [28] but could also be a result of chromosome cross-over

recombination [16]. Likewise, SL exons in single or multiple units

were found in some P. marinus genes. The S-type SL with L-type

intron was also suggested to exist based on PCR-amplified cDNA

sequences of P. marinus SL RNA [29], although it requires

verification by further genomic analysis.

PmaSLRNAs are distinct from dinoflagellate SL RNAs. In the

apparent Sm-binding site, instead of a ‘‘TTTT’’ motif conserved in

dinoflagellates, PmaSL has ‘‘TCTT’’ or ‘‘TCT’’. The intron region

of the SL RNA in dinoflagellates is conserved, but the similarities

diminish in Amoebophrya, a parasitic lineage currently considered to

represent the most ancient dinoflagellate [30]. SL RNAs in P.

marinus display similar divergence from dinoflagellates, with a

substantially longer intron relative to the core dinoflagellates and

Amoebophrya, suggestive of an earlier divergence for P. marinus. The

SL RNAs in other SL trans-splicing eukaryotes range from 46 nt in

the urochordate Ciona intestinalis to 142 nt in Trypanosoma brucei. The

SL RNA transcripts in P. marinus range from 80–83 nt, and are

,83 nt in P. chesapeaki. Thus, Perkinsus SL RNAs have unique

features in comparison to dinoflagellates, and Perkinsus spp. may

represent the earliest trans-splicing lineage within Alveolata,

separated from the non-trans-splicing Ciliophora and Apicomplexa

[8], yet distinct from the Dinoflagellata. Given the high diversity of

the parasitic Syndiniales class of dinoflagellates [31], the unchar-

acterized marine alveolate group I that lies between Perkinsus and the

core dinoflagellates ([7] and references therein) should be examined

for the presence of additional types of SL RNA.

Perkinsus is a distinct pre-dinoflagellate taxon
As SL trans-splicing occurs in both basal (e.g. Amoebophrya and

Oxyrrhis) and advanced (e.g. Alexandrium) lineages of dinoflagellates

but not in apicomplexans and ciliates [8], the two closest relatives

Figure 4. Perkinsus spp. cob and the predicted aa sequences. Sequences of P. marinus, and for P. chesapeaki only the sites with different nt/aa
sequences, are shown. Four invariant His residues that are ligands for heme b are highlighted in blue. ‘-’ indicates missing sequence; the potential
quadruplet codons ‘aggy’ for glycine are marked in grey, and quintuplet codons ‘uaggc’ and ‘ucggu’ for glycine are boxed.
doi:10.1371/journal.pone.0019933.g004
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Figure 5. Perkinsus spp. cox1 and the predicted aa sequences. Sequences of P. marinus, and for P. chesapeaki only the sites with different nt/aa
sequences, are shown. Six invariant His residues that are ligands for heme a, CuB and heme a3 are highlighted in blue. ‘-’ indicates missing sequence;
the potential quadruplet codons ‘aggy’ for glycine and ‘ccccu’ quintuplet codons for proline are marked in grey, and a standard ‘ggu’ codon for
glycine in P. chesapeaki cox1 is marked in red.
doi:10.1371/journal.pone.0019933.g005
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Figure 6. Phylogenetic affiliation of P. marinus with apicomplexans based on mitochondrial COB and COX1. The consensus trees with
support from NJ (bootstrap, only .84% are shown), ML (aLRT), and MB (posterior probability). Brackets indicate clades of apicomplexans (AP),
dinoflagellates (DI) and ciliates (CI).
doi:10.1371/journal.pone.0019933.g006
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Figure 7. Phylogenetic affiliation of P. marinus with dinoflagellates and apicomplexans based on 30 conserved protein sequences.
The consensus trees of concatenated genes of 19 ribosomal proteins (RPs) for 17 taxa (A), 8 RPs for 18 taxa including Oxyrrhis (B) and 11 non-RP
proteins (C). Supports of nodes are from NJ (bootstrap), ML (aLRT), and MB (posterior probability). Brackets indicate clades of apicomplexans (AP),
dinoflagellates (DI) and ciliates (CI).
doi:10.1371/journal.pone.0019933.g007
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Figure 8. Phylogenetic affiliation of P. marinus with apicomplexans based on histone H2A. The canonical H2A and the isoform H2A.X
consensus tree with support from NJ (bootstrap), ML (aLRT), and MB (posterior probability). Brackets indicate clades of apicomplexans (AP),
dinoflagellates (DI) and ciliates (CI).
doi:10.1371/journal.pone.0019933.g008
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of dinoflagellates, the occurrence of this distinct mRNA processing

mechanism is considered a defining indicator for dinoflagellates

[12]. The presence of SL RNA trans-splicing in Perkinsus spp.

indicates its inclusion in or alliance with the phylum of

dinoflagellates, in accord with previous molecular phylogenetic

studies (e.g. [2]–[4], [30]). Likewise, our multi-protein phylogenies

consistently show that P. marinus is related to dinoflagellates among

other representative eukaryotes with moderate-to-strong bootstrap

support. Among the many single-gene phylogenetic trees, the

majority is in agreement with the concatenated protein trees. In all

trees, P. marinus was positioned as the earliest divergent even when

Oxyrrhis, a genus hypothesized to be a pre-dinoflagellate [32] or an

ancient lineage [12], was included. In addition, P. marinus was

always placed basal to Amoebophrya, another ancient lineage of

dinoflagellates.

Yet some degree of uncertainty exists in the phylogenetic

position of Perkinsus. Contrary to the long-held notion that

dinoflagellates did not possess nucleosomes and canonical histones,

genes of all four major histones have recently been found in

dinoflagellates (for review see [21]); however, dinoflagellate

histones usually have unique sequences with insertions/deletions

in several places, resulting long branches in the phylogenetic trees

(Figures 8, 9). Comparing to dinoflagellates, P. marinus histones

have typical eukaryotic sequences and group with apicomplexans

in the phylogenetic trees. Besides histone trees, some other

individual protein trees (Figures S1D, S2A, 2B, 2C, S3B, S5C) also

show an alliance of Perkinsus spp. with apicomplexans, in

agreement with earlier morphological and cytological studies [2].

In rare cases, P. marinus is clustered with diatoms, apparently

because the protein sequence was too short to provide strong

support of any topology.

The current analysis is limited in that only the sequences from

one or two species of Perkinsus were available. Perkinsus appears

more distant from apicomplexans than from dinoflagellates;

however its generally close relationship with the clade of

dinoflagellates could be due to the absence of taxa from

intermediate lineages such as marine alveolate group I, additional

taxa from the Perkinsozoa (e.g. Parvilucifera spp.), and dinoflagel-

lates of the class Syndiniales.

Cis-splicing is thought to be uncommon in dinoflagellates [2];

however, only a few dinoflagellates have been examined for the

presence of introns (e.g. form II Rubisco in Symbiodinium [33],

luciferase C in Pyrocystis lunula [34]). We have examined more than

30 genes such as pcna, form II Rubisco, 14-3-3, and centrin for

several dinoflagellates ([35], [36] and our unpubl. results), and did

not find introns. A relatively high intron density for a dinoflagellate

is found in Amphidinium carterae, in which a survey of 31 genes yields

a 48% cis-splicing rate [37]. Our analysis of 104 Perkinsus genes

yielded a 69.2% cis-splicing rate, a level contrasting those found in

most dinoflagellates, and closer to the .50% level found in

apicomplexans [38], [39].

The unique reading frame shifting and the lack of mRNA

editing for mt genes again mark P. marinus as distinct from typical

dinoflagellates. Both P. marinus cob and cox1 mRNAs are identical

to their genomic DNAs, indicating that no mRNA editing occurs

to correct the frameshifts in these mt genes. Masuda et al. [20]

reported the full-length mt cox1 mRNA from P. marinus, showing

that this mRNA was not translatable with standard codon usage,

due to a reading frame that had to be shifted a total of 10 times at

every AGG and CCC codon to yield a consensus COX1 protein.

One or two sites of +1 frameshifting have been documented in

animal mt genes (for review, see [40]), but such extensive +1 and

+2 frameshifts are unique. In retroviruses, a –1 frameshift is

corrected by tRNA back-slippage over homopolymeric codons

adjacent to a local secondary structure that may include a

pseudoknot (for review, see [41]). Masuda et al. [20] suggest two

feasible mechanisms for the translational frameshifts in Perkinsus: a

ribosomal frameshift in which stalled ribosomes skip the first bases

of these codons (similar to the model hypothesized by Beckenbach

et al. [42]), or specialized tRNAs recognizing non-triplet codons

AGGY and CCCCU to code for glycine and proline, respectively.

In this study, we add cox1 for P. chesapeaki and cob sequences for P.

marinus and P. chesapeaki, which share the unusual AGGY codon

with cox1 and use other unusual codons (UAGGC and UCGGU)

to encode glycine as well. Specialized tRNAs in the Perkinsus

mitochondrial system recognizing non-triplet AGGY and

CCCCU codons, and likely UMGGY as well, may be more likely

than the ribosomal frameshifting scenario, as naturally occurring

tRNA mutants suppress +1 frameshifts via an extended anticodon

loop in Escherichia coli (e.g. [43]), and quadruplet codons are used in

protein mutagenesis [44].

The Perkinsus lineage is remarkably distinct from, while close to,

dinoflagellates, and is most likely an independent lineage,

supporting the postulate that Perkinsus spp., along with Parvilucifera

spp., constitutes an independent phylum dubbed Perkinsozoa, the

fourth phylum in Alveolata [6]. Although not addressed directly, a

number of recent phylogenetic trees containing taxa from marine

alveolate group I and Perkinsus-related parasitic alveolates such as

Parvilucifera spp. reinforce grouping of Perkinsus spp. as an

independent phylum [7], [45], [46]. Future phylogenies with

broader taxon sampling that include species from Parvilucifera spp.,

Syndiniales in addition to Amoebophrya, and marine alveolate group

I representatives will refine the phylogenetic relationships among

Perkinsus, dinoflagellates, and other alveolates.

Supporting Information

Figure S1 ML phylogenetic trees of six of the 22 ribosomal

proteins. A, RPL11; B, RPL17; C, RPL18A; D, RPL18; E, RPL21;

F, RPL22. Groupings of major clades are labeled on the right. DI,

dinoflagellates; AP, apicomplexans; CI, ciliates; PE, Perkinsus.

(TIF)

Figure S2 ML phylogenetic trees of six of the 22 ribosomal

proteins. A, RPL26; B, RPL32; C, RPL34; D, RPL35A; E, RPL44;

F, RP_P1. Groupings of major clades are labeled on the right. DI,

dinoflagellates; AP, apicomplexans; CI, ciliates; PE, Perkinsus.

(TIF)

Figure S3 ML phylogenetic trees of six of the 22 ribosomal

proteins. A, RPS3a; B, RPS5; C, RPS7; D, RPS10; E, RPS11; F,

RPS13. Groupings of major clades are labeled on the right. DI,

dinoflagellates; AP, apicomplexans; CI, ciliates; PE, Perkinsus.

(TIF)

Figure S4 ML phylogenetic trees of four of the 22 ribosomal

proteins. A, RPS17; B, RPS25; C, RPS26; D, RPS27a. Groupings

of major clades are labeled on the right. DI, dinoflagellates; AP,

apicomplexans; CI, ciliates; PE, Perkinsus.

(TIF)

Figure 9. Phylogenetic affiliation of Perkinsus marinus with apicomplexan based on three histone proteins. Histone H2B(A), H3 (B), and
H4 (C) consensus trees with support from NJ (bootstrap, only .70% are shown), ML (aLRT), and MB (posterior probability). Brackets indicate clades of
apicomplexans (AP), dinoflagellates (DI) and ciliates (CI).
doi:10.1371/journal.pone.0019933.g009
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Figure S5 NJ phylogenetic trees of six of the 12 non-RP proteins.

A, actin; B, b-tubulin; C, GAPDH; D, a-tubulin; E, centrin; F,

HSP90. Groupings of major clades are labeled on the right. DI,

dinoflagellates; AP, apicomplexans; CI, ciliates; PE, Perkinsus.

(TIF)

Figure S6 NJ phylogenetic trees of six of the 12 non-RP proteins. A,

EF1-a; B, ADP ribosylation factor; C, TIF5A; D, SmD1; E, cytoch-

rome C; F, 14-3-3. Groupings of major clades are labeled on the right.

DI, dinoflagellates; AP, apicomplexans; CI, ciliates; PE, Perkinsus.

(TIF)

Table S1 cis-introns in Perkinsus marinus.

(XLS)
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