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ARTICLE

Importance of Stability Analysis When Using Nonlinear 
Semimechanistic Models to Describe Drug-Induced 
Hematotoxicity

Chiara Fornari1,4,*, Carmen Pin1,*, James W.T. Yates2, Jerome T. Mettetal3 and Teresa A. Collins1

Stability analysis, often overlooked in pharmacometrics, is essential to explore dynamical systems. The model developed by 
Friberg et al.1 to describe drug-induced hematotoxicity is widely used to support decisions across drug development, and 
parameter values are often identified from observed blood counts. We use stability analysis to study the parametric depend-
ence of stable and unstable solutions of several Friberg-type models and highlight the risks associated with system instabil-
ity in the context of nonlinear mixed effects modeling. We emphasize the consequences of unstable solutions on prediction 
performance by demonstrating nonbiological system behaviors in a real case study of drug-induced thrombocytopenia. 
Ultimately, we provide simple criteria for identifying parameters associated with stable solutions of Friberg-type models. For 
instance, in the original Friberg model, we find that stability depends only on the parameter that governs the feedback from 
peripheral cells to progenitors and provide the exact range of values that results in stable solutions.

Stability analysis, the theory that characterizes the stability 
of the equilibria of a dynamical system,2,3 is a key princi-
ple in fields such as mathematical biology and engineering 
and systems control, where analytical methods are regu-
larly used to study the properties of dynamical systems.4,5 
In pharmacometrics, however, although differential equa-
tions are routinely used to describe pharmacokinetics and 
pharmacodynamics relationships,6,7 stability analysis is 
often overlooked, and rather exploratory computational 
methods (e.g., sensitivity analysis, simulations), which are 
not exhaustive,8 represent the main approach to investigate 

model behaviors.9 In the pharmacometrics field, parameter 
values are thereby optimized by fitting models to physiolog-
ical and rich data sets, which are in some cases sufficient to 
avoid the appearance of unstable solutions. However, the 
high quality of these data sets does not guarantee the iden-
tification of stable solutions in models that are often highly 
empirical, with only some mechanistic elements. In fact, 
nonlinear models can exhibit various and counterintuitive 
behaviors, which are difficult to reveal through simulations 
alone.9 In this context, applying standard techniques for 
stability analysis provides a deep understanding of the 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Stability analysis is an established tool for the analysis of 
complex mathematical models, which is widely used in fields 
such as mathematical and systems biology, but it is often 
overlooked in pharmacometrics, where system behaviors are 
mainly explored with computational methods (e.g., simulations).
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  This study identifies the parameter region associated 
with the stability of the classical Friberg model1 and four 
additional drug-induced hematotoxicity models.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  We demonstrate that the feedback parameter γ con-
trols the stability of the homeostatic equilibrium in the 

Friberg model,1 and it can cause instability issues above 
a critical value (γ* = 0.5685…). This results in unreliable 
model predictions, as we highlight in the analysis of a real 
case study of drug-induced thrombocytopenia.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DE-
VELOPMENT, AND/OR THERAPEUTICS?
✔  Prediction performance can be highly affected by 
model instability, which does not guarantee a correct 
application of a model when describing hematopoie-
sis during homeostasis and subjected to perturba-
tions. Therefore, we highly recommend incorporating 
the results of this analysis when modeling drug-induce 
hematotoxicity.
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system dynamics, such as the spectrum of behaviors within 
the parameter space.9 Ultimately, this is essential to provide 
reliable predictions.9

In stability analysis, a critical point defines the conditions 
for a dynamical system to be in equilibrium, which can be 
stable or unstable.3 From a mathematical point of view, blood 
homeostasis can be seen as a stable equilibrium point. We 
remark that for homeostasis to prevail, the model parameter 
values must ensure the stability of this equilibrium.2,3 In this 
regard, in a recent publication,10 MacLean et al.11 showed 
that a niche-mediated signaling feedback governs hema-
topoietic stem cell niche dynamics and regulates stability. 
The disruption of these controling mechanisms leads to 
system instability and dysfunction of the hematopoiesis pro-
cess, which may result in disease development. Moreover, 
stability analysis techniques can be applied to reveal novel 
insights into the hematopoietic process.12 In this respect, 
Weston et al.13 used stability analysis to explore the con-
centration-dependent behavior of granulocyte-colony and 
macrophage-colony stimulating factor-induced differentia-
tions, and showed that the granulocyte-colony stimulating 
factor may encourage monopoiesis under some conditions, 
whereas the macrophage-colony stimulating factor always 
inhibits granulopoiesis.

The model by Friberg et al.1 is widely used to describe 
drug-induced hematotoxicity. For the full comprehension 
of the application of this model to describe hematopoiesis 
during homeostasis and subjected to perturbations, we per-
formed a formal stability analysis. We have identified one 
critical point and characterized how the stability of the hema-
topoietic cell populations depends on the model parameter 
values. In this way, we can reliably predict the long-term 
effects of drug-induced perturbations. For instance, if this 
equilibrium point is stable, blood cell counts return to ho-
meostatic values after drug-induced perturbations, whereas 
perturbations grow bigger and bring the counts away from 
baseline values if unstable.

Here, we use these techniques from dynamical system 
analysis to gain new insights into the relationship between 
the parameters of the Friberg model and its temporal be-
havior. We derive the stability region of the system and 
we emphasize the risks associated with model instability 
through the analysis of a real case study of drug-induced 

thrombocytopenia. In addition, we present four variations 
of the classical Friberg model,1 where we change some of 
the assumptions on model parameter values. We derive 
the stability regions of these four additional drug-induced 
hematotoxicity Friberg-type models, and we discuss these 
results in the context of nonlinear mixed effects modeling, 
highlighting the consequences in prediction performance, 
and providing recommendations for future analyses.

METHODS
Model description
Friberg et al.1 characterized the effects of oncology drugs 
on hematopoiesis using the following set of differential 
equations, which comprise the proliferation of progenitors 
in the bone marrow, cell maturation through a set of transit 
compartments, release of mature cells into circulation, and 
a regulatory feedback loop from peripheral blood cells to 
proliferative progenitors (Figure 1):

Prol, Transit1, Transit2, Transit3, and Circ are state variables 
representing bone marrow proliferating cells, three transit 
cell compartments, and circulating cells, respectively. kprol, 
ktr, and kcirc are the rates of cell proliferation, maturation, and 
clearance from blood, and they are defined in terms of the 
mean transient time (MTT):

Circ* is the size of the compartments in homeostatic equi-
librium, or baseline values, which are also assumed to be 

(1)

dProl

dt
=kprolProl

(
Circ∗

Circ

)�

(1−Edrug)−ktrProl,

dTransit1

dt
=ktrProl−ktrTransit1,

dTransit2

dt
=ktrTransit1−ktrTransit2,

dTransit3

dt
=ktrTransit2−ktrTransit3

dCirc

dt
=ktrTransit3−kcircCirc.

(2)kprol=ktr=kcirc=
4

MTT
.

Figure 1  Schematic representation of the semimechanistic model of drug-induced bone marrow toxicity developed by Friberg et al.1 
The rat and the human symbols that are superimposed to the variable representing the circulating cells in the blood show that the 
model can be applied to both clinical and preclinical data sets where drug-induced myelosuppression is quantified by peripheral cell 
counts. Circ, circulating cells in the blood; fdbk, feedback; kcirc, rate of clearance from blood; kprol, proliferation rate; ktr, maturation 
rate; Prol, proliferative cells; Prolif, proliferative; T1, Transit_1 cells; T2, Transit_2 cells; T3, Transit_3 cells.
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equal, and they are quantified by the number of observed 
circulating cells in the blood in homeostasis, as follows:

Edrug is a function of the drug concentration in the 
plasma over time that characterizes the drug effects on 
proliferative bone marrow progenitors, and from a math-
ematical point of view, this corresponds to introducing 
perturbations into the system. Perturbations activate the 
feedback loop mechanism described in Eq. 1 by the fol-
lowing term:

which increases/decreases the proliferation of progeni-
tors accordingly to the difference between the number of 
circulating cells and their baseline value to repristinate the 
homeostatic equilibrium (X*).

The initial values to solve Eq. 1 are assumed to be equal 
to the baseline values for each cell population when we 
assumed that the hematopoietic system is initially in equilib-
rium, exhibiting homeostatic cell counts:

Linear stability analysis
Stability, or bifurcation, analysis is usually carried out by 
linearizing the system of differential equations (Eq.  1) 
around the critical point of interest (X*) and characterizing 
the long-term system behavior in the neighborhood of the 
critical point (X*).2,3,4 Practically, this corresponds to inves-
tigating the system eigenvalues (λs), which are the roots of 
the characteristic equations associated with the linearized 
system.2,3,4

In the absence of drug, the Friberg model (Eq. 1) has 
only one point of equilibrium (X*), defined in Eq. 3, which 
corresponds to baseline values for all cell populations, 
i.e., X* is the homeostatic equilibrium. Depending on the 
dose schedule and duration of treatments, almost sta-
ble drug concentrations in tissues over time may emerge 
and lead to the appearance of other equilibrium points. 
However, we focused our analysis on the common sce-
nario of the loss and recovery of homeostasis as a drug 
is added and cleared from the body, which implies that 
only one equilibrium point emerges in the absence of 
drug. Therefore, we analyzed the model in Eq. 1 in the 
absence of drugs (i.e., Edrug = 0) and simulated the ef-
fects of drug-induced perturbations by initializing model 
simulations from values of cell counts different from the 
homeostatic equilibrium X* (Eq. 3).

The characteristic equation corresponding to the Friberg 
model (Eq. 1) is

where I is the identity matrix, and J is the Jacobian matrix, 
about the equilibrium point X*, associated with Eq. 1:

From bifurcation theory,2,3 we know that the stability of an 
equilibrium X* is characterized by the sign of the real parts 
of the solutions of Eq. 5 (i.e., the system eigenvalues λs). In 
particular, X* is stable if all these real parts (Re(λ)) are nega-
tive, unstable if Re(λ) > 0, and further analyses are required 
to assess stability when eigenvalues λs are pure imaginary 
numbers.

To investigate the signs of Re(λ) we solved the Routh-
Hurwitz conditions4 using Mathematica (version 11.0; 
Wolfram Research, Inc., Champaign, IL). Bifurcation anal-
ysis was performed using the bifurcation software Oscill8 
Dynamical Systems Toolset14 (Supplementary Materials).

Modifications of the Friberg model
The classical Friberg model can be expanded and/or up-
dated to include additional features based on the type of 
data measurements and the prior knowledge available.15 
Four examples of variations of the Friberg model are  
detailed in the following sections, and these new sys-
tems (Table  1) are presented using their associated 
Jacobian matrixes about the homeostatic equilibrium 
point X*.
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Table 1  Comparison between the classical Friberg model1 and some 
of its variations

Model Feature Data
Stability 
region

Friberg Model parameters: Three
Circ0, γ, MTT

Transit compartments: 
Three

Blood cell 
counts

� ≤0.568542

A Model parameters: Three
Circ0, γ, MTT

Transit compartments: 
Variable

Blood cell 
counts

� ≤ f (n)∼
1.9

n

B Model parameters: Four
Circ0, Prol0, γ, MTT

Transit compartments: 
Three 

BM progenitor 
and blood 
cell count

� ≤ f

(
Pr ol

∗

Circ
∗

)

C model parameters: Three
Circ0, γ, MTT

Transit compartments: 
Three

Blood cell 
counts

� ≤ f (MTT)

D Model parameters: Four
Circ0, Prol0, γ, MTT

Transit compartments: 
Three

BM progenitor 
and blood 
cell counts

� ≤ f

(
Prol

∗

Circ
∗ ,MTT

)

Model A: Variable number of transit compartments. Model B: The number of 
proliferative progenitor cells is estimated from data. Model C: Proliferation 
rate is independent of maturation time. Model D: Hypotheses from models 
B and C together. More details on these models and their stability regions 
are reported in Figure 3.
BM, bone marrow; Circ, circulating cells in the blood; MTT, mean transit 
time; Prol, proliferative cells.
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Model A: Variable number of transit compartments. 
The number of transit compartments is set equal to three 
in most applications of the Friberg model,15,16 but the 
length of this maturation chain can be modified if prior 
knowledge is available or to improve the characterization 
of the data.16,17

Assuming that the number of transit compartments is 
equal to n ≥ 1, the Jacobian (about the homeostatic equilib-
rium) associated with the system becomes:

Model B: The number of proliferative progenitor cells 
is estimated from data. When the number of proliferating 
progenitor cells in the bone marrow is available,18 Prol* is 
estimated directly from the data, and the homeostasis con-
ditions expressed in Eqs. 2 and 3 become:

and

respectively.
The Jacobian (about the homeostatic equilibrium) associ-

ated with this new system is:

Also, as in Eq. 2, kcirc is defined in terms of the MTT.

Model C: Proliferation rate is independent of maturation 
time. As previously reported,19 the cell production rate 
is independent of cell maturation time; therefore a new 
parameter

can be used to describe the maturation rate within the 
chain of transit compartments in Eq. 1.19 The homeostasis 
conditions expressed in Eqs. 2 and 3 become:

and the elimination rate of mature cells from blood (kcirc)  
is fixed using the literature value of the cell half-life.17,19

The Jacobian (about the homeostatic equilibrium) associ-
ated with this new system is:

Model D: (i) The number of proliferative progenitor cells 
is estimated from data, and (ii) the proliferation rate is 
independent of maturation time. The last case study 
comprises a system made with three transit compartments 
for which the number of progenitor cells Prol* is known from 
data (i.e., hypothesis used in model B), and where the pro-
liferation rate (kprol) is independent of the maturation time 
(MTT) (i.e., hypothesis in model C).

The Jacobian (about the homeostatic equilibrium) associ-
ated with this new system is:

The stability regions of these new four systems (Eqs. 7, 
10, 14, and 15) were identified using the method previously 
described for the stability analysis of the Friberg model.

RESULTS
The stability of the Friberg model depends on 
the parameter (γ) that governs the strength of the 
feedback mechanism from peripheral cells to bone 
marrow progenitors
As described in the Methods section, the equilibrium of a 
system in a critical point (X*) is asymptotically stable when 
the eigenvalues of the linearized equations have negative real 
parts (i.e., Re(λ) < 0). For the classical Friberg model (Eq. 1), 
we found that the stability of the homeostatic equilibrium 
X* (Eq.  3) depends only on the parameter that describes 
the strength of the feedback from circulating cells to bone 
marrow proliferative progenitors, γ. The range of values for 
γ that ensures the stability of the homeostatic equilibrium 
(i.e., model solutions will converge to baseline values) is as 
follows:

From bifurcation analysis we know that γ* is a supercriti-
cal Hopf bifurcation point2,3 that represents the emergence 
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of a family of stable periodic solutions (known as stable 
limit cycles) from the stable equilibrium (X*), which loses its 
stability for values of γ greater than γ*. Precisely, γ* is asso-
ciated to a pair of complex conjugate eigenvalues that cross 
the imaginary axis (i.e., Re(λ) = 0), leading to a positive real 
component. When the real part changes sign, the stable 
homeostatic equilibrium becomes unstable and trajecto-
ries start to wind away from it, growing in time until they are 
captured by a (small amplitude) stable limit cycle.2,3 In this 
respect, the bifurcation plot in Figure 2a shows the region 
of stability of the system and how the equilibrium X* loses its 
stability when γ crosses the critical point γ*, exhibiting grow-
ing oscillations (red and green lines). Simulations generated 
using a value of γ within the stability region, and challenged 
with a perturbation (i.e., starting in a neighborhood of the 
equilibrium), converge to the homeostatic equilibrium X*, 
and they represent the physiological response of hema-
topoiesis to a perturbation, e.g., drug-induced cytopenia 
(Figure 2b1,c1). Conversely, when γ takes the value of the 
bifurcation point γ*, a periodic limit cycle solution appears 
(Figure 2b2,c2) with amplitude zero at γ = γ*, and for any 
initial conditions Eq. 1 evolves into this oscillatory solution. 
As we know from the Hopf bifurcation theorem,2,3 whenever 
a stable equilibrium loses its stability through a supercritical 
Hopf bifurcation point, there is always born a family of stable 
limit cycles, whose amplitude increases when γ moves away 
from the Hopf bifurcation point γ* (Figure  2b3,c3). Stable 
limit cycles attract model trajectories, and they have been 
used to describe the dynamics of periodic hematological 
diseases, such as cyclic neutropenia,20,21 cyclic thrombo-
cytopenia,22 or periodic chronic myelogenous leukemia.21,23 
However, when γ is far away from the stability threshold γ*, 
the disruption of the homeostatic equilibrium (X*) results in 
growing oscillations that are attracted by a limit cycle whose 
big oscillations do not describe a physiological response of 
hematopoiesis to a challenge (Figure 2b3,c3).

Singular modifications of the Friberg model largely 
impact the stability region
The stability condition on the parameter γ that governs the 
feedback mechanism (Eq. 16) derives from the model struc-
ture itself and its homeostasis conditions, and it is therefore 
independent of the other parameter values, and of the type 
of hematological toxicity or perturbation under analysis.

If we alter the model structure in Eq. 1 to introduce new 
features (e.g., an increased/decreased number of transit 

compartments), new stability conditions will arise for the 
system, but the behaviors will be similar, with the model los-
ing its stability and starting to exhibit growing oscillations 
when parameter values exit the stability region.

Model A: Increasing the number of transit 
compartments shrinks the stability region. Model 
A (Eq.  7) provides a generalization of the classical 
Friberg model,1 which comprehends a number n  ≥  1 of 
transit compartments. Under this setting, the stability 
region does not depend solely on the parameter γ that 
governs the feedback mechanism, as per the Friberg 
model (γ ≤ 0.56…), but it is determined by both γ and the 
number of transit compartments (n ≥ 1) (Figure 3, model 
A). In other words, the stability region is defined by the 
following monotonically decreasing function of n ≥ 1 (with 
n the natural number):

This means that the value γ* decreases for the increas-
ing number of transit compartments (Figure  3, model A). 
Also, at least one compartment is required to have bifur-
cation, and if the system was reduced to only proliferative 
and mature cells (i.e., Prol and Circ), then the homeostatic 
equilibrium would be always stable.

Model B: Increasing the ratio between the number 
of proliferative and circulating cells enlarges the 
stability threshold γ*. The usage of model B (Eq.  10) 
may require knowledge about peripheral blood cells and 
bone marrow progenitor populations.18 In this model, 
the parameter Prol*, which describes the homeostatic 
number of progenitor cells, is not assumed to take the 
same value as the number of mature cells (Circ*). This 
feature is reflected in the stability region of model B, 
which depends on γ and on the ratio between the size 
of the proliferative compartment (Prol*) and the number 
of circulating cells (Circ*) (Figure 3, model B). Moreover, 
similarly to model A, the stability region of Eq. 10 is 
expressed by the following monotonically increasing 
function of Prol*/Circ*:

Therefore, increasing the ratio between the size of the 
proliferative compartment and mature cell number results 
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in increasing values of the stability value γ* (Figure  3,  
model B).

Model C: Increasing the maturation time shrinks the 
stability region. In model C (Eq. 14) the cell production rate 

is not assumed to depend on the cell maturation time. Under 
this setting, the stability region depends on the parameter γ 
that governs the feedback mechanism and on the maturation 
time (MTT) (Figure 3, model C). The stability region is defined 
by the following monotonically decreasing function of MTT:
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Figure 2  The stability of the homeostatic equilibrium X* (Eq. 3) of the Friberg model1 changes according to the values of the parameter 
γ that governs the feedback from the peripheral blood cells to the bone marrow progenitors values. Bifurcation diagram: on crossing 
the bifurcation point γ*, the homeostatic steady state (solid black line) becomes unstable (dotted black line), and a family of periodic 
limit cycle solutions appears (solid red and green lines show the maximum and minimum of the oscillations, respectively, in the log 
scale) (a). γ* is called a supercritical Hopf bifurcation point, and it is characterized by a change in stability of the steady state X* as γ 
crosses the bifurcation line. This bifurcation plot was generated with the Oscill8 Dynamical Systems Toolset.14 Circulating cells over 
time (b). Phase plane showing circulating cells vs. proliferative cells (c). Each number (1–3) corresponds to a different value of the 
parameter γ, and plots can be grouped in the following three scenarios: b1–c1 γ < γ*, stable homeostatic equilibrium: Oscillations 
from the steady state decay quickly over time and an open trajectory converging to the equilibrium point appears in the phase plane. 
b2–c2 γ ~ γ*: A small amplitude limit cycle solution is born in the vicinity of the stable homeostatic equilibrium. b3–c3 γ > γ*, unstable 
homeostatic equilibrium: Growing oscillations wind away from the steady state, but they are attracted by stable limit cycles, resulting 
in periodic oscillations over time, which correspond to a close trajectory in the phase plane. The values of the model parameters used 
to generate trajectories are the following: baseline of 1 × 109 cells/L (Circ*), mean transit time of 125 hours, no drug effect, and γ values 
are reported above each plot. Initial conditions for the number of circulating cells (Circ): 0.2 × 109 cells/L while all the other variables 
were set equal to Circ* (1 × 109 cells/L) at time 0. Initial conditions are illustrated by the blue point in each phase plane plot, and they 
correspond to small perturbations of the steady state. Circ, circulating cells in the blood.
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Figure 3  Stability regions of drug-induced cytopenia models that were built on the original Friberg model.1 The first column shows 
model diagrams, and the stability regions are on the right. Within each diagram, modifications from the classical Friberg model1 
are highlighted in green. Also, the data required to parameterize each model are identified by the rat or human symbol, and they 
are superimposed to the corresponding type of cells. Model A: Variable number of transit compartments. Model B: The number 
of proliferative progenitor cells is estimated from the data. Model C: Proliferation rate is independent of maturation time. Model D: 
Hypotheses from models B and C together. More details on these models and their stability regions are reported in Table 1. Circ, 
circulating cells in the blood; fdbk, feedback; kcirc, rate of clearance from blood; kprol, proliferation rate; ktr, maturation rate; MTT, mean 
transit time; Prol, proliferative cells; Prolif, proliferative; Ti, Transit_i cells; TN, Transit_N cells; T1, Transit_1 cells; T2, Transit_2 cells; T3, 
Transit_3 cells.
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Similarly to what showed for model A, the value γ* decreases 
for increasing values of the mean transit time (Figure  3, 
model C).

Model D: The stability region depends on both maturation 
time and size of compartments. Model D is built combining 
models B and C, and this is therefore reflected in its stability 
region, which depends on (i) the parameter γ that governs the 
feedback mechanism, (ii) the ratio between the size of the 
proliferative compartment (Prol*) and the number of circulating 
cells (Circ*), and (iii) on the maturation time (MTT) (Figure 3, 
model D). Consequently, the stability region is defined by the 
following function of Prol*/Circ* and MTT:

Figure 3, model D depicts the contour plot that represents 
the surface defined in Eq. 20, and it shows how the region 
of stability changes under the effect of increasing maturation 
times and compartment sizes.

Impact of stability analysis on a case study where  
the Friberg model was used to describe the  
thrombocytopenia effects induced by a 
bromodomain-containing protein 4 (BRD4) inhibitor 
(AZD5153)
Collins et al.24 modeled the thrombocytopenia risk asso-
ciated with AZD5153, a selective bromodomain-containing 
protein 4 (BRD4) inhibitor, using the myelosuppression 
model described in Eq. 1 (classical Friberg framework). The 
model was first fitted to platelet counts from preclinical 
studies in rat and then used to make clinical predictions at 
anticipated therapeutic doses and schedules.

As discussed in the original publication,24 the data set 
generated in the preclinical studies was small, with nine 
rats across three dosing groups and 54 observations in 
total. Samples were collected from each rat prior to the 
start of dosing (to establish platelet baseline values) on 
3 days during dosing (to evaluate the nadir) and on an-
other 3 days postdosing (to assess recovery). Therefore, 
because of the reduced size of this study, some uncer-
tainty was expected in the identification of parameter 
values.24 Fitting the thrombocytopenia model (Eq.  1) to 
the AZD5153 rat data presented in ref. 24 (Figure 4a) re-
sulted in a value of the parameter γ outside the stability 
region (γ = 0.7; Table 2), which therefore generated solu-
tions characterized by sustained oscillations that do not 
converge to the homeostatic equilibrium (but to a sta-
ble limit cycle), consequently unreliable for extrapolation 
purposes (Figure  4b,c). Note that oscillatory solutions 
were also obtained when using the nonlinear mixed ef-
fect approach to estimate parameter values (data not 

shown). The stable drug-induced oscillations resulted in 
platelet counts never returning to physiological values 
(Figure 4b). In essence, after the drug treatment, hema-
topoiesis homeostasis was no longer achievable by the 
model, although in reality, in the treated animals, we ob-
served that drug-induced myelosuppression is reversed 
after suspending the treatment. Furthermore, using the 
oscillatory solutions of the model to simulate the effects 
of new and untested regimens (e.g., repeated dosing 
cycles) resulted in predictions where drug effects exacer-
bate after each cycle as a consequence of the unstable 
nature of the homeostatic equilibrium and not because 
platelet progenitors had become more sensitive to the 

drug (Figure  4c). Therefore, because in the absence of 
drug-induced perturbations the healthy biological hema-
topoietic system does not exhibit sustained oscillations, 
any simulation run using a value of γ outside the sta-
bility region (e.g., γ  =  0.7) would result in an unreliable 
prediction.

On the contrary, fitting the thrombocytopenia model 
(Eq.  1) to AZD5153 data24 while bounding the parame-
ter space within the stability region of the homeostatic 
equilibrium (Eq.  16) guarantees physiologically meaning-
ful predictions without penalizing the accuracy of the fit 
(Figure 4a, Table 2). Platelets recovered homeostasis when 
the treatment was suspended (Figure  4b), and the model 
showed a consistent response over time when challenged 
with AZD5153 for repeated cycles (Figure 4c).

DISCUSSION

Stability analysis is a fundamental tool to shed light into 
the relationship between parameters and system behav-
iors.19,8,25 We discussed concrete and practical results 
associated with specific regions within the parameter 
space, and we provided rules to identify those regions 
that correspond to a normal physiological hematopoi-
esis, as typically assumed in hematotoxicity models. 
Precisely, in the context of the classical Friberg model1 
(Eq.  1; Figure  1), we showed that the parameter γ that 
governs the feedback mechanism is critical for the ho-
meostatic equilibrium, which becomes unstable, with 
model solutions that exhibit growing oscillations, which 
converge to stable limit cycles, for values of γ greater 
than the bifurcation threshold (γ*, supercritical Hopf bi-
furcation point2–4) (Figure 2a). Ultimately, asymptotically 
stable solutions can mimic the loss and recovery of ho-
meostasis when hematopoiesis is challenged with drugs 
(Figure 2b1,2). Stable oscillatory solutions may represent 
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Figure 4  Simulations of AZD5153-induced thrombocytopenia with an unstable model result in unreliable predictions. Two AZD5153 
dosing regimens were simulated: 1.5 mg/kg daily for 10 days (first column) and 1 mg/kg twice daily, 3 days on, 4 days off (second 
column). Blue points represent AZD5153 data,24 whereas black lines show model simulations converging to the homeostatic equilibrium 
(continuous line, γ = 0.4) and to the limit cycle (dotted line, γ = 0.72), respectively. Predictions are shown for the same doses and time 
points as in the observed data (a). Predictions are shown for the same doses tested in the preclinical studies but over a longer time 
period than the one sampled in the data (b). Simulations generated with γ = 0.72 do not converge to the homeostatic equilibrium, 
i.e., system homeostasis is lost. Predictions are shown of repeated cycles of treatments that represent new and untested regimens 
(c). Simulations generated with γ = 0.72 predicted exacerbated toxicity, but this is only a consequence of the oscillatory nature of 
the trajectories, which are attracted by a stable limit cycle and therefore do not converge to the homeostatic equilibrium. Parameter 
values used in the simulations are reported in Table 2. All simulations started with baseline values for all cell populations (i.e., at the 
homeostatic equilibrium). b.i.d., twice a day; Plt, platelets; q.d., one a day.
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cyclic cytopenia,20,22 or periodic leukemias,23 when the 
trajectories oscillate between physiological values. On 
the contrary, solutions that grow in too big oscillations 
do not describe physiological hematopoiesis responses 
(Figure 2b3).

The behavior of a model is a consequence of its ar-
chitecture and network topology,9 i.e., how the different 
components of the system are organized and interact to-
gether.13 In fact, the stability region of a model derives from 
the system structure itself, and it should be assessed every 
time a new framework is developed (Table 1, Figure 3). For 
instance, the classical Friberg model has a single equilibrium 
point (the homeostatic equilibrium) whose stability solely 
depends on the value of the parameter γ that governs the 
feedback mechanism (γ  ≤  0.56). This stability condition is 
independent of other parameter values, such as the size of 
compartments or the maturation time, and of the type of tox-
icity or perturbation.

The analysis presented in this work has two main conse-
quences. The first consequence concerns the identification 
of the model parameter values. Precisely, modelers should 
always restrict the parameter optimization within the 
stability region of the Friberg model1 (or similar) using con-
strained-optimization algorithms, even though high-quality 
hematotoxicity data, which capture the treatment effects 
and subsequent recovery, are likely to avoid the appearance 
of unstable solutions (Table 1, Figure 3). This will guarantee 
solutions converging to the homeostatic equilibrium, which 
ensure system homeostasis. On this regard, we presented a 
real case study of thrombocytopenia induced by a BRD4 in-
hibitor (AZD5153),24 where constraining the feedback power 
parameter (γ ≤ 0.56) of the Friberg model was necessary to 
avoid unreliable predictions characterized by sustained os-
cillations (Figure 4). In fact, homeostasis was lost and never 
recovered with these oscillatory solutions, where the plate-
lets did not go back to their physiological baseline value 
even when the treatment ended (Figure  4b). Importantly, 
using the oscillatory solutions of the model to simulate new 
untested regimens (e.g., repeated cycles) resulted in an ex-
acerbated toxicity over time, whose cause was the technical 

loss of stability rather than bone marrow physiological fail-
ure (Figure 4c). On the contrary, homeostasis was always 
restored in simulations generated with values of γ within 
the stability region, and predictions showed a consistent 
response across repeated cycles (Figure  4). Although our 
case study refers to the preclinical space, instability can 
equally emerge when modeling drug-induced hematotoxic-
ity in patients.

The second consequence relates to the application of 
nonlinear mixed effects modeling. The incorporation of be-
tween-individual variability, or any other source of variability, 
does not affect the stability condition (γ ≤ 0.56). Although 
it is physiologically reasonable to assume between-individ-
ual variability for the parameter γ that governs the feedback 
mechanism, a recently published meta-analysis of Friberg 
model parameter estimates26 showed that this variability is, 
in many studies, not accounted for. The reason is perhaps 
that even when the population average value for γ satisfies 
the stability condition (Eq.  16), individual γi values might 
exceed the stability threshold (γ* = 0.5685…) leading to simu-
lations with sustained oscillations, which generate unreliable 
predictions (Figure  4). Therefore, the stability analysis we 
performed provides modelers with the subregion of the pa-
rameter space to perform nonlinear mixed effects analyses 
without jeopardizing the stability of the homeostatic equilib-
rium and, hence, model predictivity.

Given the broad usage in the pharmacometrics and sys-
tems pharmacology fields15,16 of the classical Friberg model,1 
or similar systems, we believe that the results presented 
here are essential to have full control and comprehension of 
the predictions generated with these frameworks. Precisely, 
when applying the classical Friberg model (or similar), it is 
fundamental to constrain the optimization process within 
the stability region to guarantee mathematical stability, 
avoid nonphysiological behaviors of the system, and void 
predictions.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).
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