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Purpose of review

Hepatitis B virus (HBV) causes a large proportion of chronic liver disease worldwide. The limited efficiency
of current treatments based on the use of nucleotide/nucleoside analogues or interferon-alpha requires the
development of new therapeutic tools for the treatment of chronic HBV. We summarize the most recent
therapeutic strategies designed fo directly target HBV-infected hepatocytes or fo restore antiviral immunity

during chronic HBV infection.

Recent findings

Novel therapies directly target HBV-infected hepatocytes by inducing covalently closed circular DNA
degradation or by inhibiting HBV entry or the expression of viral proteins. In addition, immunotherapeutic
approaches may boost HBV-specific T-cell responses or stimulate the intrahepatic innate response.

Summary

These new therapeutic approaches have mainly been tested in animal models. In humans, therapeutic
strategies could be tailored to different chronic HBV patients in relation to their clinical and virological

disease profile.
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INTRODUCTION

Hepatitis B virus infection (HBV) is a major public
health threat with 350 million people infected
worldwide, who are at risk of developing liver
cirrhosis and hepatocellular carcinoma (HCC). A
prophylactic vaccine for HBV has been available for
over 30 years, but the number of infections remains
dramatically high, mostly due to perinatal/postnatal
mother-to-child transmission of the virus.

HBV is a small, enveloped DNA virus that infects
hepatocytes by interacting with the recently ident-
ified sodium-taurocholate cotransporting polypep-
tide present on the surface of these cells [1,2]. Upon
hepatocyte infection, the HBV genome is converted
to a covalently closed circular DNA (cccDNA) that
serves as a template for transcription of all the viral
proteins. These are precore [serologically known as
HBeAg) (HBV e antigen)], core, polymerase, enve-
lope and X protein. Persistence of the cccDNA in
the nucleus of infected cells is believed to be the
central mechanism of HBV chronicity. Virus infec-
tion results in the production of HBV infectious
particles (Dane particles) and of enveloped nonin-
fectious particles devoid of viral DNA [HBV surface
antigen (HBsAg)] that are secreted in large excess
as compared with the Dane particles [3"]. HBsAg
is believed to be important for immune evasion
of HBV through sequestration of HBsAg-specific
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neutralizing antibody particles and possibly by
inducing HBV-specific T-cells tolerance through
repetitive stimulation by high-dose antigen [4].
HBV infection during adulthood generally
results in an acute self-limited infection, which
triggers an effective and broad immune response
capable of controlling, but not completely eradicat-
ing HBV infection. In contrast, chronic hepatitis B
(CHB) patients fail to mount an efficient innate and
adaptive immune response to the virus, leading to
the onset of chronic liver inflammatory events that
lead to cirrhosis and HCC [4]. A strong and broad
HBV-specific CD8"T-cell response is essential to
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KEY POINTS

e The limited efficacy of the currently available antiviral
treatments requires the development of new therapeutic
tools for the treatment of CHB.

e Promising therapies have recently been developed that
directly target HBV-infected hepatocytes by inducing
cccDNA degradation or by inhibiting HBV entry or the
expression of viral proteins. The efficacy and feasibility
of these compounds will, however, need to be carefully
evaluated in humans.

o HBV-infected hepatocytes may also be targeted by
immunotherapeutic approaches designed to either
boost the HBV-specific Tcell component of the immune
response or to directly stimulate the intrahepatic innate
response.

o A different perspective for the treatment of CHB is to
view CHB as an inflammatory rather than a viral
infection and, thus, design novel therapeutic
approaches aimed at reducing intrahepatic
inflammation.

clear HBV infection. CD8"T-cell depletion in chim-
panzees during acute infection results in persistence
of viremia [5]. In contrast, persistence of infection is
associated with functional exhaustion of HBV-
specific CD8'T cells [6]. As HBV is a noncytopathic
virus, HBV-specific T-cell recognition of infected hep-
atocytes is believed to mediate both virus control and
liver damage [7]. However, studies have shown that
the number of HBV-specific T cells in the blood and
liver compartments is not proportional to liver dam-
age but rather to virus control [8,9]. Instead, inflam-
mation in the liver, which correlates with elevated
blood alanine aminotransferase levels, is always
associated with liver infiltrates of inflammatory cells,
such as granulocytes, monocytes and nonantigen-
specific T cells [§,10-12].

In this review, we will describe the recent thera-
peutic strategies and their potential to be employed
as curative strategies for HBV. These therapeutic
approaches can be broadly divided into two
categories as follows: antiviral therapies that directly
target the virus-infected cells and immunotherapeu-
tic strategies that target HBV-infected cells indirectly
by boosting the HBV-specific adaptive immune
response (vaccination and T-cell engineering) or by
directly activating innate intrahepatic immunity
(toll-like receptor agonists and cytokine delivery).

ANTIVIRAL THERAPIES TARGETING
HEPATITIS B VIRUS-INFECTED
HEPATOCYTES

Current antiviral therapies for HBV include nucleo-
tide/nucleoside analogues that inhibit the HBV
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reverse transcriptase. Antiviral treatment can
achieve strong inhibition of HBV replication, but
it is unable to cure HBV infection due to the per-
sistence of cccDNA in the infected hepatocytes. In
contrast, interferon (IFN)-a or pegylated-IFN-a treat-
ment can result in virus clearance, but its efficacy is
limited to a proportion of patients and is accom-
panied by systemic side-effects [13].

In the last few years, new strategies aimed at
improving cccDNA clearance have been developed
(Fig. 1a). A recent study proposed lymphotoxin-B-
receptor (LTBR) activation of HBV-infected cells as
a therapeutic alternative capable of mediating
degradation of cccDNA in infected hepatocytes
without hepatotoxicity [14™]. Similarly to IFN-q,
LTBR (lymphotoxin beta receptor) signalling was
shown to induce the upregulation of cytidine
deaminases of the APOBEC (apolipoprotein BmRNA
editing enzyme, catalytic polypeptide-like) family
of proteins that can specifically target the cccDNA
for deamination and degradation. These findings
highlight the potential use of nuclear deaminases
for eradication of cccDNA expression. However,
therapeutic LTBR activation needs to be carefully
evaluated in patients as LTBR agonists could poten-
tially trigger apoptosis, inflammation and HCC [15].

Degradation of cccDNA can also be achieved by
utilizing enzymes termed transcription activator-
like effector nucleases (TALENs) that can cleave
sequence-specific DNA targets. cccDNA-specific
TALENs were shown to significantly reduce cccDNA
levels without apparent cytotoxic effect when intro-
duced in HCC cell lines [16%]. In vivo, in mice hydro-
dynamically injected with monomeric full length
HBV DNA, introduction of TALENSs resulted in a
significant reduction of serum HBsAg, HBeAg and
liver pregenomic RNA and enhanced the antiviral
effects induced by IFN-a when used in combination
therapy [16"].

An alternative approach is to modulate the
expression of viral proteins, such as HBsAg and
HBeAg, which are believed to play a role in induc-
tion of T-cell exhaustion [4,17]. This could poten-
tially be achieved by using RNA interference-based
therapeutics that target expression of specific viral
RNAs. In a transient and transgenic mouse model of
HBV infection, it was recently shown that hepato-
cyte-targeted interference RNA specific for con-
served HBV sequences resulted in repression of
HBsAg, HBeAg and viral DNA load [18"].

An  attractive therapeutic alternative is
represented by the use of acylated peptides derived
from the large HBV envelope protein to block HBV
entry in hepatocytes [3"]. These peptides were
shown to block virus entry both in vitro and in vivo
in mice repopulated with primary human or Tupaia

www.co-infectiousdiseases.com 529



Antimicrobials

(a) Direct inhibition (b) Boosting HBV-specific (c) Boosting innate
(DNA/RNA /protein) adaptive immunity immunity
HBY Blocking Inhibition inhibitory Intrahepatic cytokine
o * HBYV entry signals (i.e. anti-PD-1) delivery
virions *
-
i Gal-9
NTCP * m Peptide @ Tim3
* Blocking IFN-o
Entry of HBV HBV entry TCR mm
PD-1 W
* v s e
* > TCR-like Ab ~
6
CTLA-4 Hepatocytes
| Vaccine therapy |
Intrahepatic cytokine
(@ production
SiRNA| - TLR-agonist
(TLR-7/8)
* »* Intrahepatic
DC cells L L immune cells
Hepatocytes
APOBEC Viral . #*
0 proteins Engineering HBV-T cells | *
/ TCR
K / or o © o Cytokines
TALEN ’ CAR mm  _mm  mm  mm
LTBR ;
B Suppression of s - s
cccDNA HBV ol o @ ®
clearance DNA/RNA /proteins
T cells Hepatocytes

FIGURE 1. Schematic representation of new hepatitis B virus therapeutic strategies. (a) Direct inhibition (DNA/RNA/Protein).
(b) Boosting HBV-specific adaptive immunity. (c) Boosting innate immunity. Ab, antibody; APC, antigen-presenting cell; CAR,
chimeric antigen receptors; cccDNA, covalently closed circular DNA; DC, dendritic cell; HBV, hepatitis B virus; IFN,
interferon; LT, lymphotoxin-; NTCP, sodium-taurocholate cotransporting polypeptide; TALEN, transcription activator-like

effector nucleases; TLR, toll-like receptor.

belangeri hepatocytes. These data suggest that
inhibition of HBV entry constitutes a therapeutic
approach to prevent primary HBV infection, such as
after liver transplantation, and it may also control
virus infection in chronically infected patients [19].

These novel antiviral strategies represent attrac-
tive therapeutic alternatives to the current antiviral
therapies. However, the delivery mode of these
compounds and safety concerns related to their
expression in humans are a complex issue that needs
to be carefully evaluated.

IMMUNOTHERAPEUTIC APPROACHES:
RESTORATION OF ADAPTIVE IMMUNITY

Elimination of cccDNA from infected cells
represents an attractive endpoint for HBV therapy,
but it may not be necessary for the cure of CHB. In
fact, individuals with resolved acute HBV infection
do not achieve complete viral eradication, but they
are able to control the virus indefinitely [20] without
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any signs of liver damage. It may, therefore, be more
feasible to restore HBV-specific immunity to mimic
the immunological events that occur during acute
infection (Fig. 1b).

During CHB infection, HBV-specific T cells
are deleted or functionally exhausted most likely
due to the repeated exposure of these cells to large
quantities of HBsAg and HBeAg. Exhausted virus-
specific T cells express inhibitory molecules, such as
PD-1 (programmed cell death protein 1), CTLA-4
(cytotoxic T-lymphocyte-associated protein 4),
SLAM (signalling lymphocyte activation molecule),
TIM-3 (T-cell immunoglobulin domain and mucin
domain 3), and acquire a progressive and step-wise
loss of their effector functions [21]. Blocking inhibi-
tory receptors was shown to partially recover the
exhausted T cells of CHB patients in vitro [6,22,23],
but the in-vivo efficacy of this approach is still
uncharacterized.

Therapeutic vaccination aimed at eliciting the
patient’s immune system represents an attractive
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alternative therapy for HBV [24,25]. The early
clinical trials based on the use of the conventional
prophylactic HBV vaccine (HBsAg) were unable to
show any clinical benefit either when tested alone
[26] or in combination with direct antiviral therapy
[27]. Failure was believed to be attributable to the
use of a single HBV antigen and to the type of
adjuvant that was not efficient in generating
CD8"T-cell responses [25]. However, new vaccine
formulations (HBV envelope-expressing DNA
vaccine or peptide-based vaccines) that elicit HBV-
specific CD8*T-cell responses in healthy volunteers
or in CHB patients [28] were unable to achieve
therapeutic effects in patients [29,30%,31"].

The clinical failure of these vaccine therapies
was attributed to the single targeting of the envelope
antigen, produced in high quantity in CHB patients.
HBV therapeutic vaccines targeting different HBV
proteins with more limited exhaustion potential
[32] have been, therefore, developed [33-35]. A
therapeutic vaccine comprising particulate HBsSAg
and HBcAg and a saponin-based adjuvant was able
to restore potent multifunctional HBV-specific
CD8"T-cell responses in HBV transgenic mice with-
out causing liver disease [34]. Furthermore, a yeast-
based vaccine candidate containing X, S and core
antigen showed immunogenicity not only in mice
but also in peripheral blood of CHB patients [35].

Recently, more structured methods have
improved the immunogenicity of different vaccine
preparations in animal models of HBV infection.
DNA prime-adenovirus boost immunization against
woodchuck hepatitis virus (WHV) core antigen
(WHCcAg) elicited a strong CD8*T-cell response
against WHYV in mice and naive woodchucks [36].
DNA prime-adenovirus boost immunization using
WHYV surface antigen (WHsAg) and WHcAg com-
bined with direct antiviral treatment resulted in the
induction of a virus-specific CD4" and CD8"T-cell
response and a reduction in WHsAg and viral DNA
in chronically WHV-infected woodchucks. Impor-
tantly, two of four animals remained WHV-negative
after interruption of the antiviral treatment and
developed anti-WHV antibodies [37]. The immune
therapeutic efficacy of this approach was further
improved in a small trial of triple-combination
therapy with DNA vaccination encoding the
WHcAg and WHsAg, programmed death-ligand 1
blockage and antiviral treatment. This treatment
resulted in sustained immunological control of viral
infection, generation of specific antibodies and
complete viral clearance (with undetectable levels
of cccDNA in the liver) in one out of three animals
tested [38™".

So far, CHB patients have been refractory to
many therapies that were effective in animal models
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[25]. Therefore, these data obtained in the wood-
chuck model, which closely mimics human HBV
chronic infection, are promising and could provide
a valuable approach for the treatment of CHB
patients.

A single, phase III clinical trial of a therapeutic
vaccine based on immunogenic complexes com-
posed of HBsAg and antihuman HBsAg antibodies
has shown some level of efficacy in vaccine therapy.
However, a virological response (HBeAg seroconver-
sion) was not only observed in 20% of individuals
treated with the vaccine but also in the control
group treated with alum adjuvant alone [39]. The
mechanisms causing this clinical response and the
immunological perturbations induced by vaccina-
tion were not directly investigated in this trial. A
possible explanation could be provided by the abil-
ity of alum to mediate activation of inflammatory
monocyte-derived dendritic cells in a MyD88-
dependant mechanism [40]. Recently, a number
of reports in different HBV-mouse models have
shown that TLR-mediated or anti CD40-mediated
stimulation of intrahepatic monocytes or dendritic
cells resulted in reversion of immune tolerance
and efficient HBV-specific CD8"T-cell expansion
[41%,42%,43,44]. These data support our recent
demonstration that monocytes from CHB patients
internalize HBV antigens and after inflammatory
activation can activate autologous HBV-specific T
cells [45™]. Collectively, these studies suggest that
the repetitive injection of adjuvants alone can
induce an inflammatory environment that enables
the patient’s antigen-presenting cells to exploit
their endogenous antigen to expand their exhausted
HBV-specific T cells. However, this is still a hypo-
thetical scenario, and it will be extremely important
to decipher in which CHB patients such a person-
alized antigenic depot can be effectively used as a
therapeutic vaccine.

Currently, the inability to expand an efficient
HBV-specific immunity in a large proportion of
adult CHB patients (particularly those with high
HBYV replication levels) [9] might suggest that more
radical approaches are necessary to reconstitute a
functional efficient HBV-specific T-cell repertoire.

Engineering HBV-specific T cells through transfer
of HBV-specific T cell receptor (TCR) or HBV-specific
chimeric antigen receptors (CARs) represents a prom-
ising alternative strategy to construct an HBV-specific
T-cell immunity in many CHB patients [46%,47]. The
two different strategies present different strengths
and weaknesses. CARs, which bind HBV antigen in
a similar fashion as antibodies [independently
of human leukocyte antigen (HLA) restriction], can
be easily applied to large CHB patient populations.
In contrast, the classical HBV-specific TCR is
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HLA-restricted and will, thus, need to be tailored to
the HLA setup of each patient. On the other hand,
circulating HBsAg present in high doses in CHB
patients could potentially sequester T cells engin-
eered with CARs and limit their in-vivo therapeutic
potential.

Encouraging data for the feasibility of T-cell
therapies emerge from studies in CHB patients
who were able to control viral replication after
receiving bone marrow transplants from HBV-
immune donors [48]. Furthermore, HBV-infected
livers transplanted in HBV-immune donors resulted
in viral control without signs of overt liver disease
[49]. Although these data strongly support the use of
T cells for gene therapy in CHB patients, restoring
HBV-specific T-cell immunity may potentially medi-
ate liver damage through the triggering of an intra-
hepatic inflammatory response. Ongoing studies in
our laboratory are aimed at generating TCR-redir-
ected T cells that transiently express the recombi-
nant TCR and are, thus, safer to control once infused
in the patient [50]. We also recently tested HBsAg-
specific TCR-redirected T cells in an HCC patient for
the treatment of HBsAg+ chemoresistant extrahe-
patic metastases. This clinical trial demonstrates
that TCR-engineered T cells are able to expand
in vivo and recognize HCC lesions with a significant
reduction in HBsAg levels without exacerbation of
liver inflammation and supports the idea that
TCR-redirected T cells represent a new therapeutic
opportunity for hepatitis B treatment (Wasim et al.,
in preparation).

IMMUNOTHERAPEUTIC APPROACHES:
DIRECT STIMULATION OF INNATE
INTRAHEPATIC IMMUNITY

Therapeutic strategies aimed at increasing innate
immunity (Fig. 1c¢) exploit the robust antiviral effi-
cacy demonstrated by distinct cytokines (tumour
necrosis factor-a, IFN-a, IFN-y and interleukin-1pB)
[51-54], mimic the activation of innate immunity
during the early phase of acute HBV infection [55]
and induce a correct maturation of the adaptive
immunity [56",57]. Amongst the strategies devel-
oped to boost intrahepatic IFN-a levels, we have
recently developed TCR-like antibodies conjugated
with IFN-a that specifically target HBV-infected hep-
atocytes, thus increasing the intrahepatic levels of
IFN-a [58]. TLR7 agonists have been used to induce
[FN-a production in pDCs (plasmacytoid dendritic
cells). However, in chronically HBV-infected chim-
panzees, TLR7 stimulation triggered only a transient
production of IFN-a, and suppression of HBV corre-
lated mostly with IFN-y production by intrahepatic
natural killer cells, natural killer T (NKT) cells, and
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T cells [59*]. NK and NKT cells, particularly
mucosal-associated invariant T cells that constitute
a large proportion of T cells-expressing NK markers
in human liver [60], can be activated by IL-12 and
IL-18. These cytokines are able to mediate not only
the robust inhibition of HBV replication [61] but
also the partial recovery of exhausted HBV-specific
T cells [62%]. A recent study [63"] from our group
showed that TLRS8 stimulation of cells from healthy
and HBV or HCV-infected livers can trigger a robust
production of IFN-y by liver-resident NKT mucosal-
associated invariant T and CD56""8"* NK cells, and
this was mediated by the production of IL-12 and
IL-18 by intrahepatic monocytes. These data suggest
that TLR-8 agonists might be ideal candidates to
activate intrahepatic immunity in CHB patients.

CONCLUSION

The strategies that we briefly reviewed seek to cure
the HBV-related liver disease of CHB patients by
controlling HBV infection through direct viral sup-
pression or by restoring antiviral host immunity.
Their therapeutic efficiency in animal models sup-
ports their translation to clinical practice.

However, as discussed recently [56%], we propose
a radically different perspective according to which
CHB is considered an inflammatory rather than a
viral disease. This paradigm change has acquired
further strength after the demonstration than an
anti-inflammatory treatment can suppress the
development of HCC in HBV transgenic mice [64].

The balance between a protective antiviral host
response and an inflammatory immune reaction is
likely to differ within the heterogeneous population
of patients with CHB infection that are character-
ized by different clinical and virological profiles.
Thus, therapies designed to control HBV infection
or liver inflammation should be tailored to selected
population of patients.

We have, for example, recently shown that ado-
lescent and young CHB patients display a less com-
promised HBV-specific antiviral immune response
than their adult counterparts [65]. We hypothesize
that the higher proportion of liver inflammatory
events detected in adults as compared to adoles-
cent/young CHB patients (Bertoletti and Kennedy,
in preparation) might be related to the increased
propensity of adults to develop an inflammatory
response rather than to the level of their anti-
HBV-specific immunity. If further analysis of the
inflammatory events, which characterize the differ-
ent phases of CHB infection, will confirm this hypo-
thesis, it is plausible to think that young CHB
patients may be more responsive to immuno-
therapeutic strategies, whereas adult CHB patients
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should receive major benefits from therapies aimed
at controlling inflammation. The challenge of
future HBV research might not only reside in the
development of new therapeutic tools but also in
the more precise understanding of the population of
patients on which these strategies should be applied.
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