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The role of the coherence in 
the cross-correlation analysis of 
diffraction patterns from two-
dimensional dense mono-disperse 
systems
T. Latychevskaia1, G. F. Mancini2 & F. Carbone2

The investigation of the static and dynamic structural properties of colloidal systems relies on 
techniques capable of atomic resolution in real space and femtosecond resolution in time. Recently, 
the cross-correlation function (CCF) analysis of both X-rays and electron diffraction patterns from 
dilute and dense aggregates has demonstrated the ability to retrieve information on the sample’s 
local order and symmetry. Open questions remain regarding the role of the beam coherence in the 
formation of the diffraction pattern and the properties of the CCF, especially in dense systems. Here, 
we simulate the diffraction patterns of dense two-dimensional monodisperse systems of different 
symmetries, varying the transverse coherence of the probing wave, and analyze their CCF. We study 
samples with different symmetries at different size scale, as for example, pentamers arranged 
into a four-fold lattice where each pentamer is surrounded by triangular lattices, both ordered 
and disordered. In such systems, different symmetry modulations are arising in the CCF at specific 
scattering vectors. We demonstrate that the amplitude of the CCF is a fingerprint of the degree 
of the ordering in the sample and that at partial transverse coherence, the CCF of a dense sample 
corresponds to that of an individual scattering object.

The X-ray or electron diffraction pattern of a single crystal exhibits distinct peaks whose intensities and 
positions can be used to deduce the crystal symmetry and structure. For such a crystallographic experi-
ment, the transverse coherence of the probing wave needs to be just larger than the interatomic distances. 
This allows the coherent addition of the waves scattered from adjacent atoms which in turn, depending 
on the phase difference, results in either constructive or destructive interference in the far-field. The 
large number of atoms in a crystal ensures the high intensity of the peaks created by the constructive 
interference. On the other hand, the diffraction from a non-crystalline disordered system gives a dif-
fraction pattern that exhibits concentric rings at characteristic scattering vectors which are attributed 
to the geometrical parameters of the unit cell. The recovery of the sample distribution or even its basic 
parameters, such as the symmetry, from such a diffraction pattern is a more complex task than in the 
case of a single crystal.

In 2009, Wochner et al. demonstrated that the analysis of the angular cross-correlation functions in 
a diffraction pattern can reveal hidden symmetries in a non-crystalline sample1. They studied a colloidal 
suspension of polymethylmethacrylate (PMMA) spheres of 117 nm in radius by recording its diffraction 
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pattern with partially coherent X-ray radiation of 0.154 nm wavelength. The diffraction pattern exhib-
ited rings typical of a disordered system. However, the cross-correlation of the intensities along the 
azimuthal angle revealed pronounced modulations at certain scattering vectors that corresponded to 
characteristic periodicities in the sample. With their work Wochner et al. triggered the application of 
X-ray Cross-Correlation Analysis (XCCA) for revealing local symmetries in disordered systems2–6.

The idea of using the angular cross-correlation functions (below we refer to it as cross-correlation 
function (CCF)) for the determination of the structure of single particles in dilute solutions was origi-
nally proposed by Kam in 19777. In Kam’s approach, a spherical harmonics expansion of the scattered 
amplitudes was employed to recover the structure of an individual particle in solution. However, this 
approach was not fully explored until recently when it has been revised both theoretically4–5,8–12 and 
experimentally10,13–16. It has been shown that the diffraction pattern of an individual particle can be 
extracted from the average over many diffraction patterns of a diluted ensemble of randomly oriented 
particles. This method uses the assumption that the interference between the waves scattered from differ-
ent particles is negligible. To achieve this condition, thousands of coherent diffraction patterns with just 
a few particles in the scene (diluted sample) are summed up. Thus, the effect of the interference between 
the waves scattered from the particles is averaged out in the limit of an infinite number of images. 
The method of single-particle structure retrieval by the calculation of the cross-correlation functions is 
considered to be an alternative approach to a crystallographic experiment without the need of having a 
crystal10.

In general, structure retrieval methods using the cross-correlation analysis of a diffraction pattern 
require partial transverse (spatial) coherence of the probing beam. In practice electron and X-ray sources 
have partial coherence. Here, and throughout in the text, we refer to transverse coherence as coher-
ence. The effect of infinite and partial coherence on the XCCA and single particle retrieval methods for 
two-dimensional dilute samples have been studied by Kurta et. al.3. They have shown that the diffraction 
pattern of a sample consisting of 121 randomly distributed and randomly rotated pentagons (300 nm in 
size) exhibits no distinct peaks but only rings when it is acquired at infinite coherence. The effect of the 
partial coherence was studied on a sample consisting of 11 pentagons preferably oriented and therefore 
exhibiting peaks in the diffraction pattern. The coherence length was selected to be 1200 nm, 600 nm 
and 300 nm. As the coherence decreased, the contribution from the interference between the particles 
decreased, and as a result, peaks associated with the local structure got higher contrast. However, the 
effects of partial coherence have not been studied on dense samples of many particles, which is a prac-
tically interesting situation.

In our work we study dense and dilute samples of relatively large number of identical particles. As 
previously defined in the literature2–3, we call dilute sample a sample where the distance between the local 
structures is much larger than their size, and dense sample a sample where the distance between the local 
structures is of the order of their size. We consider spherical particles of 5 nm in diameter arranged into 
domains and into an ordered lattice. We also consider the same spherical particles but assembled into 
pentamers that are randomly distributed and rotated thorough the dense sample. Pentamers are interest-
ing five-fold symmetry object of investigation, which have been of particular interest since Wochner et al. 
reported odd symmetries in the CCF1. We provide a detailed numerical study of the diffraction patterns 
and of the related CCFs for dense two-dimensional systems at different coherence of the probing wave, 
from infinite coherence to the coherence length comparable to the size of single particle.

Methods
CCF definition, properties and amplitude.  An example of a dense system is shown in Fig.  1(a), 
which is an experimental image of an alkanethiol-capped gold nanoparticles supracrystal deposited on a 
copper grid covered with an amorphous carbon substrate, taken with Trasmission Electron Microscopy 
(TEM). Figure 1(b) exhibits a cartoon model of a selected fragment of the gold nanoparticles arrange-
ment with their interdigitated ligands. In this disordered sample, both nanoparticles and ligand atoms 
can be arranged into sub-ordered structures, see for example Fig.  1(c). Though a Debye-Scherrer dif-
fraction pattern is expected from such a disordered sample, the cross-correlation analysis can reveal 
the symmetries present in the sample, as for example, the periodical arrangement of the atoms. The 
cross-correlation analysis requires partial coherence of the probing beam. For this reason, we study 
the diffraction patterns of this supracrystal at the partial coherence of the probing wave Lcoh =  5, 10, 
20 nm and infinity. The relative sizes of the examined coherence lengths are color coded in Fig. 1(d). An 
intensity distribution in the diffraction pattern at a certain scattering vector s is extracted and shown in 
Fig. 1(e). It is worth pointing out that already the intensity distribution contains a modulation specific 
to the sample symmetry, but this information is often buried under the noise and can only be revealed 
by calculating the CCF from the azimuthal intensity distribution, see Fig. 1(f).

We define the CCF as proposed by Wochner et al.1:
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where s is the component of the scattering vector 
s  that is perpendicular to the direction of the incident 

beam, ϕ is the azimuthal angle at a certain s, as illustrated in Fig. 1(e), and ...  means averaging over ϕ:

∫ϕ
π

ϕ ϕ( , ) = ( , ) . ( )ϕ π

π

−
I s I s1

2
d 2

All CCFs shown in this manuscript are simulated using equation (1) and the related MATLAB code 
is provided in the Supplementary Note.

Some of the properties of ( , ∆)C s  include:

(1)	 ( , ∆)C s  has always maximum at ( , )C s 0 .
(2)	 ( , ∆)C s  is always symmetrical at ∆ = 0 and π∆ = :

π π
( , ∆) = ( , −∆)
( , + ∆) = ( , − ∆). ( )

C s C s
C s C s 3

These equations hold also for an experimental intensity function ϕ( , )I s  contaminated by noise as illus-
trated in Fig. 1(f).
(3)	 If the function ϕ( , )I s  is centro-symmetric, meaning that ϕ π ϕ( , ) = ( , + )I s I s , its ( , ∆)C s  always 

has maximum at π : π( , ) = ( , ).C s C s 0
(4)	 If the function ϕ( , )I s  is not centro-symmetric so that ϕ π ϕ( , ) ≠ ( , + )I s I s , its ( , ∆)C s  does not 

have maximum at π , and can have minimum at π .

Figure 1.  Illustration to the definition of the cross-correlation function. (a) TEM image of the 
functionalized gold nanoparticles supracrystal on an amorphous carbon substrate20. (b) A model of a selected 
fragment of the gold nanoparticles arrangement shown in the cyan square in panel (a,c) Arrangement of the 
atoms in the ligands attached to the gold nanoparticle surface, obtained as a magnification of the green square 
in panel (b,d) Simulated sample composed of spheres of 5 nm in diameter and arranged into randomly 
rotated domains of 40 nm size. The sample fragment is 100 nm ×  100 nm in size and the coloured spots 
indicate coherence area: Lcoh =  20 nm (magenta), Lcoh =  10 nm (blue) and Lcoh =  5 nm (red). The green lines 
show the crystallographic planes separated by a distance d1. The orange lines show the crystallographic planes 
separated by the distance d2. (e) Illustration to the definitions of the symbols for the CCF calculation. The 
diffraction pattern shown here is a simulated diffraction pattern at partial coherence Lcoh =  10 nm of the 
sample of 5 nm diameter spheres arranged into randomly rotated 40 nm in diameter domains. The intensity is 
measured in counts per pixels (CPP). (f) Azimuthal intensity distribution ϕ( , )I s  and its cross-correlation 
function ( , ∆)C s . Note the symmetry: ( , ∆) = ( , −∆)C s C s  and π π( , + ∆) = ( , − ∆).C s C s
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The amplitude of the CCF can be a critical parameter when the CCF is extracted from noisy experi-
mental data. The total intensity in the far-field can be represented as following:

= + + ... ( )I U U U 4Ptotal 1 2
2

where Up is the complex-valued scattered wave by particle p, where p =  1..P. The total number of particles 
is P. Equation (4) can be re-written in expanded form:
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where the intensity distributions are re-written in (s, ϕ) coordinates. In equation (5), the second term is 
the result of the interference between the waves scattered off the different particles. For very short coher-
ence length, in an extreme case- comparable to the size of the particle, the second sum “Interference term” 
can be neglected and only the first sum remains. We use this approximation (“Interference term” =  0) in 
the following formulas.

Next, we assume that the particles are identical but randomly rotated. The intensity of the wave scat-
tered from a single particle is given by I0(s, ϕ) and the intensity of that from a rotated particle is given 
by I0(s, ϕ + α ). The total intensity is then:
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The Fourier expansion of the diffraction pattern of single particle is given by:
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By substituting equation (7) into equation (6) we obtain16:
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To calculate the CCF of the particles ensemble, given by equation (1), we write its components:
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Thus, the result of equation (10) can be written as:
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We substitute the results of equation (9) and equation (13) into equation (1) and obtain the CCF:
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Thus, according to equation (14), the CCF of the particles ensemble is proportional to the CCF of the 
single particle and inversely proportional to the number of particles P. This, however, is only true when 
the coherence effects can be neglected or when the coherence length is comparable to the particle size. 
In a dense sample that approximation holds if the coherence length is shorter than the particle-particle 
distance. When the sample is dense and the probing beam is partially coherent, higher values of the CCF 
amplitude are expected.

Simulations at partial coherence.  The coherence properties of the probing beam are conventionally 
characterized by the mutual coherence function, or the complex coherence factor:

µ ( , ) =
( , )

( ) ( )
.

( )

 
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r r
J r r

I r I r 15
1 2
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In equation (15), ( , ) J r r1 2  is the mutual intensity function ( , ) = ( , ) ( , )
   J r r E r t E r t T1 2 1 2 , where 

the averaging is performed over a time T which is much longer than the fluctuation time of ( , )E r t1 , 
( )
I r1  and ( )I r 2  are the intensity values of the incoming beam at points r1 and r 2. Though the exact 

mutual coherence function is often complicated, it can be assumed in the form of a Gaussian 
distribution17,18,19:

µ ( − ) = −( − ) / , ( )
   r r r r Lexp[ 2 ] 161 2 1 2

2
coh
2

where Lcoh is the coherence length. The diffraction pattern obtained with a partial coherence can be 
directly simulated as the convolution3,18–19:

µ( ) = ( ) ⊗ ( ), ( )
  I s I s s 17coh

where ( )
I scoh is the diffraction pattern obtained at infinite coherence, and µ ( )s  is the Fourier transform 

of the mutual coherence.
Using equations (16) and (17), Vartanyants et al.18 have simulated the partial coherent diffraction 

pattern of a diluted sample consisting of particles arranged into a two-dimensional array. The diffraction 
pattern obtained at an infinite coherence length exhibited Bragg peaks, and at a coherence length com-
parable to the size of the single particle, the diffraction pattern turned into the diffraction pattern of a 
single particle. Those simulations thus relate well to the typical experimental observations. However, in 
the case of a dense sample, equations (16) and (17) fail to correctly simulate the diffraction pattern at 
partial coherence, as illustrated below. Therefore, for the simulations of the diffraction patterns at limited 
coherence length, we avoid the convolution and apply the particle-by-particle algorithm also explained 
below.

Diffraction pattern of a monodisperse sample.  The diffraction pattern of the entire sample is 
given by:
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where ( )o rp  is the distribution of the particle p and P is the total number of particles. Assuming that all 
particles are identical, from which ( ) = ( )

 o r o rp , we can re-write equation (18):
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where r p are the coordinates of the particle p. By substitution − = ′
  r r rp , we obtain:
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which simplifies to
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Equation (21) describes the diffraction pattern of a sample consisting of identical particles. The first 
factor in equation (21) is the diffraction pattern of an individual particle |U1|2. The second factor in equa-
tion (21) in the case of a coherence length Lcoh comparable to the size of one particle is just the number 
of particles P. In the case of an infinite coherence, the diffraction pattern can be calculated simply by 
Fourier transform of the sample distribution.

Simulation of diffraction patterns at partial coherence.  In the case of a dense sample, the con-
volution approach given by equations (16) and (17) fails to correctly simulate the diffraction pattern at 
partial coherence, as illustrated in Fig.  2. The reason is that the Fourier transform of ( )

I scoh  is the 
auto-correlation of the object distribution, which in turn is also a dense distribution. For example, for a 
dense lattice of spheres, its autocorrelation distribution is also a dense lattice of spherical spots, and the 
spots are so close that even the central spot contains signal from adjacent spots. In the convolution 
approach, the auto-correlation distribution is multiplied by the Fourier transform of µ ( ),s  which is the 
mutual coherence function given by equation (16) and has Gaussian distribution shape. When Lcoh is so 
short that it is just limited to the size of single particle, the product of the Fourier transform of ( )

I scoh  
with the Fourier transform of µ ( )s  should be limited to just the central spot. However, there will be a 
contribution from adjacent spots and, due to the finite sampling, the symmetry of the arrangement of 
those spots will show up in the resulting convolution. An example is illustrated below in Fig. 2. The test 
sample, consisting of spheres of 5 nm in diameter organized into a perfect lattice, is shown in Fig. 2(a,b), 
and its diffraction pattern at infinite coherence length of the probing wave is shown in Fig. 2(c). When 
the coherence length is equal to the size of the particle, the expected diffraction pattern is the diffraction 
pattern of a single particle multiplied by the number of particles in the sample, as follows from equation 
(21). Thus, for the sample consisting of 5 nm spheres, when Lcoh =  5 nm, the diffraction pattern should 
exhibit concentric rings. This situation is correctly simulated by the particle-by-particle algorithm 
(explained below), as shown in Fig.  2(d) and it is not correctly simulated by applying the convolution 
given by equations (16) and (17), as shown in Fig.  2(f,h). At Lcoh =  5 nm, the distinct peaks are still 
observed in the simulated diffraction pattern, see Fig. 2(f). At Lcoh =  2.5 nm, the peaks are blurred out, 
however no concentric rings but some six-fold structure is emerging, see Fig. 2(h). To validate the cor-
rectness of the convolution routine given by equations (16) and (17), we simulated diffraction pattern of 
the same sample as in the work by Vartanyants and Robinson18 at infinite and partial coherence and 
verified that the diffraction pattern indeed turned into the diffraction pattern of a single particle when 
the coherence is decreased. Thus we concluded that the method of simulating the diffraction patterns at 
partial coherence by convolution gives correct results only in the case of diluted samples. Therefore, for 
the dense samples investigated in this work we applied the particle-by-particle algorithm as explained 
below.

Particle-by-particle simulation of diffraction patterns in the case of partial coherence.  Each 
particle p is assigned its (xp, yp) coordinates. The sum given by equation (21) is calculated over all the 
particles as following.

1.	 For the first particle, p =  1, the self-interference term is calculated:



www.nature.com/scientificreports/

7Scientific Reports | 5:16573 | DOI: 10.1038/srep16573

⋅ (− ) = . ( )
U i sr Uexp 221

2
1

2
1
2

2.	 The coordinates of the first particle (x1, y1) are compared with the coordinates of every other particle 
in the array, p =  2, 3.
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Only the particles whose coordinates are within L4 coh distance from the particle p are considered. L4 coh
is selected as the cut-off distance, as according to the mutual coherence distribution given by equation 
(16), at this distance the degree of coherence is µ = −( ) / = . ⋅ −L Lexp[ 4 2 ] 3 35 10coh
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input of the interference term is negligible. For those particles, whose coordinates satisfy equation (23), 
the interference term is calculated:
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Each particle p is assigned its coordinates in pixels: = ∆ ,x xp p px0  and = ∆ ,y yp p px0 , where ( , ), ,x yp px p px
 

are the coordinates in pixels, where ∆0 is the pixels size in the object domain ∆ = S
N0

0 , ×S S0 0 is the 
object area and N ×  N is the number of pixels. The far-field distribution in s-domain is also sampled 
with N ×  N pixels. The coordinates in s-domain are thus = ∆ ,s sx S x px and = ∆ ,s sy S y px where ( , ), ,s sx px y px  
are coordinates in pixels, the pixel size is ∆ = ,S

S
N

S  and ×S SS S is the size of the area in s-domain. 
Equation (25) re-written in pixel coordinates:

Figure 2.  Simulated diffraction pattern of spheres with 5 nm diameter with a partial coherence of 
Lcoh = 5 nm. (a) Entire sample (500 nm × 500 nm in size) used for calculations. (b) Magnified sample 
fragment of 100 nm ×  100 nm in size. (c) Diffraction pattern of the sample simulated at infinite coherence. 
(d) Diffraction pattern of the sample simulated at partial coherence Lcoh =  5 nm by the particle-by-particle 
algorithm. (e) Mutual coherence simulated with equation (16) with Lcoh =  5 nm; an area of 25 nm ×  25 nm is 
shown. (f) Diffraction pattern simulated with equation (17) using the mutual coherence with Lcoh =  5 nm. (g) 
Mutual coherence simulated with equation (16) at Lcoh =  2.5 nm, the area of 25 nm ×  25 nm is shown.  
(h) Diffraction pattern simulated with equation (17) using mutual coherence with Lcoh =  2.5 nm.
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π
+ = ⋅ ( − ) + ( − ) ,

( ), , , , , ,
⁎ ⁎ { }U U U U U

N
s x x s x x2 cos 2 [ ] 26p p x px p px px y px p px px1 1 1

2
1 1

where we accounted for the relation between the pixels in the object and s-domain given by Fourier 
transform: ∆ ∆ = π

s N0
2 . The result of equation (26) is a two-dimensional distribution in ( , ), ,s sx px y px  

coordinates.The results obtained in (i) and (ii) are added.
3.	 The coordinates of the particle p =  1 are eliminated from the array xp and yp, and thus the previously 

second particle becomes the first particle. The loop returns to step (i).

The related MATLAB code is provided in Supplementary Note.

Results
Sample consisting of spheres of 5 nm in diameter.  Spheres arranged into randomly rotated 
domains.  The sample simulated here is mimicking the two-dimensional supracrystal of gold nanopar-
ticles of about 5.7 nm in diameter separated by 7.63 nm studied experimentally by Mancini et al.20. The 
dense sample simulated here consists of P =  13404 spheres of 5 nm in diameter arranged into perfect 
triangular lattice with sphere-to-sphere distance of d0 =  7 nm. The sample size is 1000 nm ×  1000 nm 
and its distribution is sampled with 4000 ×  4000 pixels. Within the sample, round domains of 40 nm in 
diameter are created (326 domains in total); the position of each domain is randomly generated. Within 
each domain, the particle distribution is rotated and the rotation angle is also randomly generated. In 
addition, each particle is randomly shifted from its position by up to 1 nm. The distribution of a portion 
of the sample is shown in Fig. 1(d), which also gives an idea about the compatibility between the parti-
cles, domain sizes and the coherence length.

The diffraction patterns of the sample simulated at different coherence length are shown in Fig. 3(a–c), 
and in Fig. 1(e) for Lcoh =  10 nm. The intensity is obtained in counts per pixel (CPP) units. In the simu-
lations we assumed that 1 electron scattering event results in 1 count per pixel, which in a real experi-
ment depends on the efficiency of the detecting system. At any coherence length, no distinct peaks are 
observed. In the case of a coherence length larger than the sample area dimension, which we call an 
infinite coherence length Lcoh =  ∞, the diffraction pattern is simulated simply by the Fourier transform 
of the transmission function of the sample (electron density of the sample in the case of X-ray imaging), 
as shown in Fig. 3(a). At infinite coherence length, no modulations are observed in the CCF, as shown 
in Fig.  3(d). The two spikes at Δ  =  0° and Δ  =  180° are numerical artefacts as the azimuthal intensity 
distribution is matching itself when shifted by 0° and 180°. At partial coherence, six-fold modulations 
are clearly observed in the CCF at low s, see Fig. 3(e–g). These modulations are caused by the arrange-
ment of the spheres. Spheres within one domain are arranged as triangular lattice with the distance 
between the spheres cores of d0 =  7 nm, which contains crystallographic planes that are apart from each 
other by = ⋅ / = .d 7 3 2nm 6 06nm1  and by = / = .d 7 2nm 3 5nm2 ; the crystallographic planes are 
shown in Fig.  1(d). This gives the related s values s1 =  2π /d1 =  1.03 nm−1 and s2 =  2π /d1 =  1.8 nm−1, at 
which the modulations are observed. Even at low coherence of Lcoh =  5 nm, where the diffraction pattern 
resembles that of a single particle, the characteristic six-fold modulations are still observed in CCF, see 
Fig. 3(c,g). This is because a probing wave with Lcoh =  5 nm still provides sufficient coherence to cause 
interference effects between neighbouring particles.

The amplitude of the CCF, as it can be seen from Fig.  3(h), is about 2·10−7 a. u. According to the 
theoretical prediction for the amplitude of the CCF given by equation (14), the expected maximum is 
given by the CCF of the single particle/P and equals to 2·10−7/13404 =  1.5·10−11. However, the CCF of a 
single particle, shown in Fig. 3(h) exhibits a very low amplitude. This is because the diffraction pattern 
of a perfect sphere consists of perfect rings without any modulations and as a consequence there are no 
modulations in the CCF. The signal in the CCF of a single particle is just numerical noise due to the finite 
sampling. However, we can assume that the amplitude of the CCF of a single particle, shown in Fig. 3(h), 
is around 1 and with this approximation the expected amplitude of the CCF, according to equation (14), 
is about 1/P =  7.53·10−5. Thus, the theory predicts the CCF values to be in the range: 7.53·10−5–1.5·10−11. 
However, from the graphs we see the following amplitudes of the CCF:

Lcoh =  20 nm: amplitude of CCF 4.0·10−3 a.u.,
Lcoh =  10 nm: amplitude of CCF ≈  1.7·10−3 a.u., and
Lcoh =  5 nm: amplitude of CCF ≈  3.5·10−4 a.u.
These values are orders of magnitude higher than expected. However, they can be explained if we 

consider each domain of ordered particles as a “particle” itself. This, according to equation (14), gives 
for the amplitude of the CCF approximately 1/number of domains =  1/326 =  0.003, which agrees better 
with the observed amplitudes of the CCFs. It is interesting to note that the scattering vector s1, where the 
modulations are observed, is related to the distance between the crystallographic planes within a domain 
or, in other words, to the distances between the particles. But the amplitude of the CCF is proportional 
to 1/number of domains.

Thus, our explanation for the large CCF values is the presence of local ordering throughout the entire 
sample. To verify this idea we provide another example of a completely ordered sample.
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Spheres arranged into a perfect triangular lattice.  The sample here consists of P =  4617 spheres 
arranged into a perfect triangular lattice with a sphere-to-sphere distance of d0 =  7 nm. The CCF plotted 
at the same s1 =  1.03 nm−1 are shown in Fig. 4.

The expected amplitude of the CCF, according to equation (14), amounts to approximately 
2·10−7/4617 =  4.3·10−11. And again, if the amplitude of the CCF calculated for a single sphere was around 
1, the expected amplitude of the CCF of the sample would be 1/P =  2.2·10−4. Thus, the amplitude of the 
CCF should be in the range: 2.2·10−4 – 4.3·10−11. However, from the graphs plotted in Fig. 4 we see the 
following amplitudes:

Lcoh =  20 nm: amplitude of CCF ≈  5,
Lcoh =  10 nm: amplitude of CCF ≈  2,
Lcoh =  5 nm: amplitude of CCF ≈  0.5, and
Lcoh =  2 nm: amplitude of CCF ≈  4·10−5.
These are very high values, which cannot be explained by equation (14). Equation (14) can only 

explain the result at Lcoh =  2 nm, where the interference effects are truly negligible, the very approxima-
tion employed in equation (14).

Thus, the amplitude of the CCF can have higher values than expected from the rule 1/P, and the 
reasons are:

(1)	 (amplitude of CCF ~ 1/P) only holds when the interference effect can be neglected. This is not the 
case when even weak coherence is present.

(2)	 Presence of ordered regions can also dramatically affect CCF amplitude. In this case, the amplitude 
of the CCF can be proportional to 1/number of ordered regions.

These observations can explain the relatively high values of the amplitude of CCF for dense sam-
ples reported previously1,20. Wochner et al. reported CCFs which are showing modulations in the range 
of − 0.02 to +  0.02. This would mean that the number of particles in the probing volume is about 
1/P =  1/0.02 ~ 50 particles. In their experiment, Wochner et al. had a probing beam of 10 microns in 
diameter and 100 nm in diameter spheres arranged into 12 spheres clusters (each cluster is approximately 
250 nm in diameter) distributed in a three-dimensional volume1. Thus, these experimental parameters 
provide a much larger number of particles in the probing volume than just 50 particles. This mismatch 
can be explained by our observations that the simple rule CCF ~ 1/P does not apply in the case of a 
dense system probed with a partially coherent beam.

Pentamers.  Next, we consider the same spherical particles of 5 nm in diameter assembled into pen-
tamers, as shown in Fig. 4(a). Five-fold symmetry is an interesting object of investigation, as it is forbid-
den in the long-range in crystals but can be found on the short-range scales within disordered systems21. 
Five-fold symmetries have also been of particular interest since Wochner et al. reported odd symmetries 
in the CCF1, which Wochner et al. explained by the fact that the Ewald sphere at high scattering vectors s 
cannot be approximated by a plane, and therefore deviations from the Friedel’s law are possible. However, 
the observed by Wochner et al. five-fold symmetry is found at relatively low s. Moreover, the symme-
tries of the CCF at adjacent s values are even-fold. This would imply that the Friedel’s law only fails at 

Figure 3.  Simulated diffraction patterns of spheres of 5 nm diameter arranged into randomly rotated 
40 nm domains. At (a) infinite coherence and at partial coherence (b) Lcoh = 20 nm and (c) Lcoh = 5 nm. (d–
g) Related distributions of CCF at s1 = 1.03 nm–1, at the coherence length Lcoh = ∞, 20 nm, 10 nm and 5 nm. 
(h) CCF calculated from the diffraction pattern of an individual sphere.
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some very specific scattering vectors. The remarkable observation of odd symmetry modulations in the 
CCF triggered further research on two-dimensional distributions of five-fold symmetrical objects2–6, 
reporting only even symmetries in CCFs extracted from their diffraction patterns. Altarelli et al. showed 
that for two-dimensional disordered systems only even Fourier components of the CCF give nonzero 
contributions2. The diffraction pattern of a three-dimensional distribution of odd-symmetrical objects 
(oxygen clusters) was simulated by Kurta et al.5, showing that odd symmetries can be observed when 
the curvature of the Ewald sphere is taken into account. In our simulations the pentamers are arranged 
with different distributions: (i) randomly distributed and rotated pentamers (ii) ordered pentamers sur-
rounded by a fine periodic lattice and (iii) randomly distributed and rotated pentamers surrounded by 
a fine periodic lattice.

Pentamers of spheres of 5 nm, randomly distributed.  In this subsection we consider a sam-
ple consisting of P =  843 pentamers. The pentamers are randomly distributed and randomly rotated 
throughout the sample of 500 nm ×  500 nm in size, see Fig.  5(a). The CCFs are calculated from the 
simulated diffraction patterns simulated at partial coherence Lcoh =  20 nm, 10 nm and 5 nm are shown 
in Fig. 5 (b–d).

No distinct peaks are observed in any of the simulated diffraction patterns. At infinite coherence 
length of the probing wave, also no modulations are observed in the CCF distribution, see Fig. 5(b–d). 
However, at partial coherence, the CCFs exhibit ten-fold modulations pronounced at low s values, as for 
example the maxima at s3 =  1.4 nm−1 and s4 =  2.4 nm−1 thus indicating the presence of five-fold symme-
try in the sample, see Fig.  5(b–d). The scattering vectors s3 =  1.4 nm−1 and s4 =  2.4 nm−1 are related to 

Figure 4.  Dense sample of spheres arranged into a perfect triangular lattice. (a) Sample fragment 
of 100 nm ×  100 nm in size, the coloured spots indicate the coherence area: Lcoh =  20 nm (magenta), 
Lcoh =  10 nm (blue), Lcoh =  5 nm (red) and Lcoh =  5 nm (green). (b) – (f) CCFs obtained from the diffraction 
patterns of the spheres of 5 nm diameter arranged into a perfect triangular lattice at s1 = 1.03 nm−1, at the 
coherence length (b) Lcoh =  ∞, (c) 20 nm, (d) 10 nm, (e) 5 nm and (f) 2 nm.
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the real-space length of 4.8 nm and 2.9 nm, respectively, which however do not match any length related 
to pentamers arrangement. However, the maxima of the intensity observed in the diffraction pattern at 
s3 =  1.4 nm−1 and s4 =  2.4 nm−1 relate well with the maxima of the intensity in the diffraction pattern 
from an aperture whose diameter equals to the outer diameter of the pentamer, in our case, 12 nm.

From the graphs plotted in Fig. 5 we see the following amplitudes at s1:
Lcoh =  20 nm: amplitude of CCF ≈  6·10−3,
Lcoh =  10 nm: amplitude of CCF ≈  1·10−3, and
Lcoh =  5 nm: amplitude of CCF ≈  1.5·10−4,
which agrees well with 1/number of pentamers =  1/843 =  1.12·10−3.
These results are in agreement with the observation by Kurta et al.3: as the coherence decreased, the 

peaks associated with the local structure become more pronounced. Though the pentamers are all ran-
domly oriented and no peaks are observed in the diffraction pattern at characteristic s, the CCF analysis 

Figure 5.  Simulated diffraction patterns of randomly distributed and rotated pentamers and related 
CCFs. (a) Sample fragment of 100 nm ×  100 nm in size, the coloured spots indicate coherence area: 
Lcoh =  20 nm (magenta), Lcoh =  10 nm (blue) and Lcoh =  5 nm (red). (b) Two-dimensional plots of the CCF 
as functions of s vectors (abscissa) and Δ  (ordinate) calculated from the diffraction patterns simulated 
at partial coherence Lcoh =  20 nm, Lcoh =  10 nm and Lcoh =  5 nm. (c) One-dimensional plots of the CCF at 
s3 =  1.4 nm−1 and (d) s4 =  2.4 nm−1 for related Lcoh.
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helps to extract modulations at characteristic s which are related to the symmetry (five-fold) of the local 
structure. It is remarkable that at partial coherence, the CCF of the entire sample resembles the CCF of 
an individual pentamer, compare Fig. 5(b–d), which has been previously discussed by Vartanyants and 
Robinson18. Therefore, it should be possible to extract a diffraction pattern of an individual pentamer 
from the diffraction pattern of a dense sample via XCCA analysis, as previously mentioned by Kurta  
et al.4.

Pentamers of spheres of 5 nm surrounded by regular lattices, ordered.  To study the appear-
ance of different symmetries under different coherence length conditions, we created a diluted sample 
organized as following. The pentamers (P =  206) are organized into a 4-fold lattice with the distance 
between pentamers being 30 nm. The total sample size is 500 nm ×  500 nm. Around each pentamer there 
is a triangular lattice of point scatterers, with the distance between two closest scatterers being 2 nm. The 
sample is shown in Fig. 6(a). The diffraction pattern at infinite coherence was simulated by the Fourier 
transform of the sample; the diffraction patterns at partial coherence were simulated by convolution with 
the mutual coherence function, as given by equations (16–17). At infinite coherence length, see Fig. 6(b), 
the peaks from all symmetries are observed in the CCF: the six-fold peaks at large s, ten-fold peaks at 
intermediate s and four-fold peaks at small s. As the coherence length decreases, the four-fold peaks 
disappear, but the six- and ten-fold peaks remain, see Fig. 6(b–d). The ten-fold modulations are observed 

Figure 6.  Simulated diffraction patterns of ordered pentamers surrounded by regular, ordered lattices 
and their CCFs. (a) Magnified sample fragment of 100 nm ×  100 nm in size, the coloured spots indicate 
coherence area: Lcoh =  20 nm (magenta), Lcoh =  10 nm (blue) and Lcoh =  5 nm (red). (b) Two-dimensional 
plots of the CCF as functions of s vectors (abscissa) and Δ  (ordinate) calculated from the diffraction 
patterns simulated at partial coherence Lcoh =  20 nm, Lcoh =  10 nm and Lcoh =  5 nm. (c) One-dimensional 
plots of the CCF at s3 =  1.4 nm−1 and (d) s5 =  3.63 nm−1 for related Lcoh.
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at the same s values at which they were observed in the case of the pentamers sample: s3 =  1.4 nm−1 and 
s4 =  2.4 nm−1, see Fig.  6(c). The fine lattice around each pentamer is a perfect triangular lattice which 
contains crystallographic planes that are apart from each other by = ⋅ / = .d 2 3 2 nm 1 73 nm5 , and 
= / = .d 2 2nm 1 0nm6 , where d5 and d6 are similar to d1 and d2 defined in Fig. 1(d). The related s values 

are thus: s5 =  2π /d5 =  3.63 nm−1 and s6 =  2π /d6 =  6.28 nm−1. Also, the second order of diffraction from 
the planes d5 is observed at s7 =  7.26 nm−1. At these s values, six-fold modulations are pronounced even 
at low coherence Lcoh =  5 nm, see Fig. 6(d).

Pentamers of spheres of 5 nm surrounded by regular lattices, disordered.  The results of study-
ing a sample with random positions and rotation of the pentamers distributed within a fine lattice struc-
ture (P =  133) are shown in Fig. 7. The sample here is mimicking the situation of atoms ordered around 
nanoparticles, as for example atoms ordered in ligands attached to the surface of gold nanoparticles20.

As the coherence decreases, the modulations caused by the symmetry in the local structure emerge, 
see Fig. 7(b–d). The ten-fold modulations related to the five-fold symmetry of the pentamers are found 
at the same s as in the case of ordered pentamers: s3 =  1.4 nm−1 and s4 =  2.4 nm−1, see Fig.  7(c). The 
twelve-fold modulations related to the six-fold symmetry of the fine lattices are found at the same s 
as in the previous example of ordered lattices: s5 =  2π /d5 =  3.63 nm−1, s6 =  2π /d6 =  6.28 nm−1 and 
s7 =  7.26 nm−1, see Fig. 7(d).

Figure 7.  Simulated diffraction patterns of disordered pentamers surrounded by regular, disordered 
lattices and their CCFs. (a) Magnified sample fragment of 100 nm ×  100 nm in size, the coloured spots 
indicate coherence area: Lcoh =  20 nm (magenta), Lcoh =  10 nm (blue) and Lcoh =  5 nm (red). (b) Two-
dimensional plots of the CCF as a function of s vector (abscissa) and Δ  (ordinate) calculated from the 
diffraction patterns simulated at partial coherence Lcoh =  20 nm, Lcoh =  10 nm and Lcoh =  5 nm. (c) One-
dimensional plots of the CCF at s3 =  1.4 nm−1 and (d) s5 =  3.63 nm−1 for the related Lcoh.
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It is therefore possible to detect the symmetry of the local structure by means of CCF analysis of the 
diffraction pattern, provided that the diffraction pattern is recorded at partial coherence. Despite the fact 
that sub-structures are randomly distributed and randomly rotated throughout the sample, their intrinsic 
ordering produces well-pronounced modulations in the CCF.

Discussion
We studied the diffraction patterns and their CCFs in dense samples under different coherence lengths 
of the probing wave. For dense samples we developed a particle-by-particle algorithm for the simulation 
of the diffraction patterns, which allows obtaining more accurate results than those obtained by conven-
tional approach by convolution with the mutual coherence function. For the studied dense samples, no 
peaks were observed in the diffraction patterns at any coherence length. However, at partial coherence, 
the characteristic symmetries of the sample were revealed by the cross-correlation analysis. We showed 
that as the coherence decreases, the modulation related to the ordering of local structure becomes more 
pronounced in the CCF. The sample with particles organized into domains (ordered subsystems), where 
each domain was randomly rotated, exhibited modulations in the CCF related to the ordering of the 
particles within a domain. We showed that the simple rule of the amplitude of the CCF~1/number of 
particles does not apply in the case of a dense system probed with partially coherent beam. In the case 
of such systems, the CCF has a much higher amplitude than predicted by the rule CCF~1/number of 
particles, and thus CCF can be easily measured for systems with a large number of particles. The modu-
lations in the CCF are observed at the scattering vectors related to the distances between the periodically 
arranged particles; however the intensity of those modulations is inversely proportional to the number of 
ordered subsystems. Thus, the amplitude of the CCF is a measure of the degree of ordering in the system.

The dense sample of randomly distributed and rotated pentamers exhibited ten-fold modulations in 
the CCF at characteristic s. Moreover, the CCF distribution at partial coherence resembles that of a single 
pentamer, which indicates the possibility to extract the diffraction pattern of a single pentamer from a 
single-shot diffraction pattern of a dense sample.

To conclude, our study confirms that the cross-correlation analysis can be applied to study the 
arrangement of sub-systems in a disordered sample, revealing for example the ordering of the atoms in 
ligands attached to nanoparticles in two-dimensional supracrystals, even though the nanoparticles them-
selves are not arranged in a perfect lattice. In a dense sample, unlike in the case of diluted ones, even at 
a very low coherence length comparable to the size of particle, the interference effects between particles 
are not negligible. At infinite coherence of the probing beam these effects lead to a complete smearing 
out of the diffraction peaks. We demonstrated that at low coherence these effects lead to the appearance 
of peaks in the CCF that are a signature of certain symmetries in the sample.
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