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Abstract: Neurodegenerative diseases are a major burden for our society, affecting millions of people
worldwide. A main goal of past and current research is to enhance our understanding of the
mechanisms underlying proteotoxicity, a common theme among these incurable and debilitating
conditions. Cell proteome alteration is considered to be one of the main driving forces that
triggers neurodegeneration, and unraveling the biological complexity behind the affected molecular
pathways constitutes a daunting challenge. This review summarizes the current state on key
processes that lead to cellular proteotoxicity in Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease, and amyotrophic lateral sclerosis, providing a comprehensive landscape of recent literature.
A foundational understanding of how proteotoxicity affects disease etiology and progression may
provide essential insight towards potential targets amenable of therapeutic intervention.

Keywords: proteotoxicity; Alzheimer’s disease; Parkinson’s disease; Amyotrophic Lateral Sclerosis;
Huntington disease

1. Introduction

Proteotoxicity, meaning impairment of cellular function as a result of protein misfolding or
aggregation, is a major hallmark of a broad range of neurodegenerative diseases, including Alzheimer’s
disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia
(FTD), and Huntington’s disease (HD), among others. A common denominator in the etiology of these
diseases is that neuronal damage is frequently caused by abnormal aggregation and deposition of
proteins in which altered specific molecular mechanisms lead to cell toxicity and degeneration.

Aging constitutes the main risk factor for neurodegenerative diseases [1] and proteotoxicity is an
enhanced occurrence during the aging process. As we age, the ability of our organism to maintain
protein homeostasis substantially decreases. Several studies have proven that the aging process
actively suppresses our capacity to clear toxic protein aggregates, promoting the accumulation of these
aggregates and initiating neurodegeneration late in life [2]. In general, aggregates of toxic proteins
originate when soluble proteins gradually become insoluble filamentary polymers. These filamentous
structures accumulate in the form of fibrils and end up depositing and aggregating in the nucleus,
cytoplasm, or extracellular space of affected brain cells [3]. Eukaryotic cells have essential protein
quality control (PQC) systems, including chaperones that safeguard proteins against aggregation,
the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system that act in the degradation
of misfolded proteins. A decrease activity or saturation of these proteolytic systems results in neuronal
impairment and cell death.

The fact that proteotoxicity is a shared emergent pattern among these diseases raises the question
of whether common therapeutic interventions aimed at targeting dysregulated proteins by either
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blocking over aggregation or accelerating degradation may be applicable. Although it is widely known
that similar molecular pathways altering cell viability through protein deposition cause these disorders
(Table 1), the reality is that elimination of proteins in a way that toxicity can be mitigated is more
complex than expected.

In this review, we explore underlying mechanisms that lead to proteotoxicity in four main
neurodegenerative diseases in which this molecular signature plays a major role including HD, ALS,
PD, and AD. In the current scenario, we summarize insights on the relationship between proteotoxicity
and disease pathogenesis gained along the way, focusing on the distinct mechanisms underlying
proteotoxicity in these diseases that have enhanced our needed understanding for the development of
future and indispensable disease-modifying therapies. Uncovering how these biological processes
trigger and promote disease progression certainly constitutes one of the main challenges in deciphering
the pathophysiology of these debilitating conditions.
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Table 1. Proteotoxicity hallmarks across neurodegenerative diseases.

Neurodegenerative
Disease

Protein
Aggregates

IDR Protein
Structure Species Location Toxicity References

Huntington’s disease Huntingtin PolyQ Intracellular (cytosolic
and nuclear)

Plasma-membrane integrity disruption
Transcriptional dysregulation
Reduced levels of neurotrophic factors as BDNF
Impairment of protein degradation systems
Mitochondrial dysfunction
Reactive gliosis
Neuroinflammation
Cell death

[4]
[5]
[6]

[7,8]
[9,10]
[11]
[12]
[13]

Amyotrophic Lateral
Sclerosis

TPD-43 C-Terminal Domain

Cytoplasmic aggregate

Affected mRNA splicing and RNA metabolism proteins
Global protein synthesis inhibition
Mitochondrial impairment
Defective autophagy lysosomal pathway
Endocytosis impairment
Dysregulated metal ions (as zinc and manganese)
Alteration in chromatin dynamics

[14,15]
[16]

[17,18]
[19–21]
[22,23]
[24,25]

[26]

FUS N-Terminal domain Affected mRNA metabolism and DNA reparation
Defects in Protein Quality Control (PQC) system

[27]
[28]

SOD-1 22–30,55–95 region
121–143 region

Excitotoxity linked to glutamate transporter EAAT2
Excessive calcium influx
Mitochondrial dysfunction
Compromised axonal transport
ROS cytotoxicity
RNA species damaged

[29,30]
[29,30]
[31–33]
[34–36]

[37]
[38]

Ataxin-2 PolyQ tract Stress response dysfunction
Affected RNA metabolism

[39]
[40]

TBK-1 TBK-1 Autophagy dysfunction [41]
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Table 1. Cont.

Neurodegenerative
Disease

Protein
Aggregates

IDR Protein
Structure Species Location Toxicity References

Parkinson’s disease α-Synuclein C-terminal domain
Intracellular LBs

formation, extracellular
and membrane

Plasma-membrane integrity disruption
Synapse alteration
Perturbation in calcium homeostasis
Cytoskeleton dynamics altered
Protein degradation system dysfunction
Lysosomal impact
Mitochondrial dysfunction and ROS induction
Endoplasmic reticulum stress
Golgi transmission affected
Modified histone acetylation procedures
Apoptosis

[42–45]
[46,47]
[48,49]
[50–52]
[53–55]
[55–57]
[58,59]
[59,60]
[61,62]
[63–65]
[66,67]

Alzheimer’s disease

Amyloid-β Amyloid-β Extracellular plaques

Plasma-membrane alteration
Perturbed synaptic function and structure
Glial cells perturbation via mGluR5 receptor
Altered calcium homeostasis
LTP inhibition in the CA1 region of the hippocampus
Oxidative stress disfunction

[68,69]
[70–72]

[73]
[74]

[75,76]
[77,78]

Tau N-terminal domain Intracellular
neurofibrillary tangles

Telomerase dysfunction
Mitochondrial damage and ROS
Lipid peroxidation
Activated microglia leading to neuronal phagocytosis
Apoptosis

[79,80]
[81,82]

[83]
[84,85]

[86]
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2. Proteotoxicity in Huntington Disease

Huntington disease (HD) is a devastating neurodegenerative disorder caused by the expansion of
a CAG trinucleotide repeat within the first exon of the HTT gene, which encodes huntingtin. The CAG
repeat generates an expanded polyglutamine (polyQ) tract in the terminal region of the protein that
misfolds to adopt a pathogenic conformation [87].

2.1. Structure of the Huntingtin Protein

Huntingtin is a large well-conserved protein of 3144 amino acids whose structure consists of many
helical repeat units. The N-terminal region has been extensively studied, as it contains the expandable
polyQ tract. The polyQ tract is followed by a proline-rich domain that is thought to be critical for
stabilizing the structure of the polyQ stretch as well as taking part in protein–protein interaction
mechanisms [88]. The rest of the protein includes other functional motifs such as the elongation factor
3, protein phosphatase 2A, and TOR1, which although they have been less well-characterized may act
regulating the huntingtin function or localization [89]. In the population not affected by HD, the CAG
sequence is repeated between 9 and 35 times, with an average median that ranges between 17 and
20 repeats [90]. When the CAG expansion exceeds 35 repeats proteotoxicity arises originating HD.
Proteotoxicity is inversely proportional to the length of the CAG expansion, with juvenile onset being
associated with about 75 or more repeats.

2.2. Physiological Role of the Huntingtin Protein

The huntingtin protein has long been considered having no clearly defined cellular function.
Recent studies aimed at elucidating its role on disease have revealed that the protein acts controlling the
anterograde and retrograde transport of organelles. Huntingtin mediates endocytosis, vesicle recycling,
and endosomal trafficking. It acts regulating transport efficacy and directionality, including trafficking
of precursor vesicles [91], endosomes and lysosomes [92,93], autophagosomes [94], and neurotrophic
and neurotransmitter factors-containing vesicles [95,96]. The protein is also thought to coordinate
cell division [97] and influence organogenesis and tissue maintenance by regulating metabolism. It is
essential for embryonic development and the formation of the nervous system [98].

2.3. Pathological Mechanisms of Huntingtin Aggregation

An increase in the size of the CAG segment leads to the production of an abnormally long
version of the huntingtin protein. The elongated protein is cut into smaller, toxic fragments that bind
together and accumulate in neurons, disrupting their biological functions. It is still highly controversial
whether the proteotoxicity process underlying HD is due to a gain of toxic function or a loss of
function mechanism, or both. The fact that HD is an autosomal dominant disorder argues in favor of
a gain of function of the protein. Mutant huntingtin is cleaved by proteases generating N-terminal
fragments containing the abnormal polyQ tract, and it has been proven that longer polyQ stretches
can promote their self-cleavage [99]. The shorter the fragments are the more toxicity is inferred in
the cell where they may cause neuronal cell death by interfering with the transcription process in
the nucleus [100]. Although a loss of function effect is also plausible, HD is unlikely to be caused by
a straightforward loss-of-function mechanism. It was long thought that inactivation of one of the
two wild-type huntingtin alleles was not a cause for HD phenotype [101]. However, animal models
suggest that a loss-of-function of the wild-type huntingtin protein may contribute significantly to
several components of disease pathology. Homozygous and heterozygous knockout models in mice
and drosophila have shown neurodevelopmental defects and behavioral changes [102,103]. A loss
of normal huntingtin function may have wider ranging impacts on cell physiology than previously
thought, but this may be more observed in the aging process. Lower levels of wild-type huntingtin
have been linked to proteasome and autophagy inhibition as well as vesicle transport impairment and
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signaling altered mechanisms related to the production and transport of the brain-derived neurotrophic
factor (BDNF) [100].

2.4. Therapeutic Insights

Although there is currently no cure for HD, recent advances in genetic therapies hold great
promise. Lowering the levels of the toxic mutant huntingtin by targeting either DNA or RNA and
preventing protein expression while leaving the wild type copy untouched is currently the most
prominent area of research in HD therapies. Recent research conducted in mice, patient-derived
fibroblasts, and neurons revealed encouraging results using an engineered, synthetic transcription
factor that achieved robust allele-selective targeting of endogenous mutant huntingtin. This approach
provided a new method for the field to investigate the role of huntingtin in vivo [104]. Since huntingtin
is involved in a wide range of biological functions, and a full knockdown of the gene is lethal in
mice, maintaining some expression of the HTT gene is critical. Targeting gene regulation has gained
a lot of attention in the last years since it is designed to enable precise and long-term repression of
the selected gene following a single administration of an adeno-associate virus (AAV) that does not
cut or modify the target DNA. This intervention is currently considered as one of the top potential
therapeutic avenues since it prevents transcription of toxic huntingtin targeting all the potentially toxic
downstream forms of the mutant protein. Another state of the art approach that has garnered a lot
of attention recently is using antisense oligonucleotides (ASOs). A recent study showed promising
results using ASO mediated suppression of the huntingtin (HTT) protein in the brains of adults with
HD [105]. Using this approach, the first human safety trial was completed in 2017 and consisted of a
drug developed to reduce the levels of the huntingtin protein in the nervous system, which successfully
lowered levels of the toxic protein in participants. This therapy is currently under a major global phase
3 clinical trial in order to test the long-term safety and clinical efficacy as well as whether it slows
disease progression or not. The final goal of these therapies is to delay or prevent neurodegeneration
while function is still intact, giving gene carriers quality of life without impairment.

3. Proteotoxicity in Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is a fatal, neurodegenerative disease characterized by the
death of both the upper and lower neurons of the spinal cord, responsible for controlling voluntary
muscles [106].

A considerable number of proteins play a major role in ALS etiology, including Superoxide
Dismutase 1 (SOD1), Fused in Sarcoma (FUS), Ataxin-2, and TANK-binding kinase 1 (TBK-1). In the
current review we focus on the most relevant pathological hallmark: TAR DNA-binding protein
43 (TPD-43) [107]. TDP-43 is a highly conserved protein which belongs to the nuclear ribonucleoprotein
family (hnRNP). It binds RNA and regulates mRNAs involved in the development of neurons [108].

3.1. Structure of the TDP-43 Protein

TDP-43 is a 414 amino acid protein predominantly localized in the nucleus but also in the
cytoplasm and mitochondria. In ALS there is an increase in the cytoplasmic concentration via
aggregation. The N-Terminal Domain (NTD) of the protein is responsible of TDP-43 dimerization.
Research has pointed that this domain plays a major role on its physiological functions, being responsible
for its aggregation [109]. TDP-43 also possesses two RNA Recognition Motifs (RRMs) with high
specificity towards UG/TG-rich sequences of RNA/DNA molecules, given its role in several RNA
processes. Since it has multiple locations, TDP-43 has different localization signals, such as: Nuclear
Export Signal (NES), Nuclear Localization Signal (NLS), and Mitochondrial Localization Motifs (M1,
M3, and M5). The C-Terminal Domain (CTD) is crucial for TDP-43 pathological behavior. This domain
is aggregation-prone and contains phosphorylation targets as well as enzymatic caspase activity,
which can produce highly cytotoxic C-terminal fragments [107].
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3.2. Physiological Functions of TDP-43

TDP-43 takes part in plenty of molecular processes, such as RNA metabolism by regulating splicing,
RNA maturation, stability and trafficking, transcriptional regulation by repressing transcription of some
genes like SP-10, translational regulation by associating with 3′UTR mRNA targets, protein stability
and location, and response to stress. Regarding the former, TDP-43 can be recruited into stress granules
so it stops specific mRNAs from being translated during the cellular stress response [110].

3.3. Pathological Mechanisms of TDP-43 Aggregation

TDP-43 has been identified in 97% of ALS patients as aggregated protein in both the form of
phosphorylated and ubiquitinated cytoplasmic inclusions. Albeit to a lesser extent, aggregates of
acetylated and sumoylated TDP-43 have been also identified. Among all factors that influence its
aggregation, post-translational modifications, C-terminal fragments and its prion-like behavior should
be highlighted [111].

Post-translational modifications of TDP-43 change protein structure, localization, function,
and therefore propensity to aggregate. Ubiquitination of TDP-43 has been shown to increase its
nuclear depletion as a result of an incorrect degradation. Hence, its nuclear functions are affected
by increased cytoplasmic accumulation which is highly toxic for the cell. Phosphorylation can also
enhance its propensity to aggregate and being split into C-terminal fragments (CTF), which in turn
leads to increased proteotoxicity [112]. These CTFs have a length between 25—35 kDa, some of them
being more toxic than intact TDP-43. These motifs can also co-aggregate with other CTFs and TDP-43,
thus increasing its toxic potential. The fact that different CTFs can have variable levels of toxicity and
aggregation makes future studies necessary in order to elucidate the relationship between its structure
and the cellular damage.

Symptoms of ALS are thought as a combination of several factors triggered by proteotoxicity.
Loss of TDP-43 native functions causes failure in energy metabolism leading to protein metabolism,
mitochondrial dysfunction, aggravated oxidative stress, alterations in several autophagy lysosomal
processes, dysregulation of metal ion homeostasis (mainly zinc, copper, and manganese),
impaired axonal outgrowth, or alteration in chromatin dynamics [107]. Additionally, it is thought that
these events can be due to a toxic gain of function of aggregated TDP-43, since it is not an inert product.
For example, aggregated cytoplasmic TDP-43 can sequester nuclear TDP-43 and other mRNAs proteins
involved in transcriptional regulation [113].

3.4. Prion-like Behavior of TDP-43 Aggregates

Prions are misfolded proteins with toxic activity which can transmit their misfolded shape onto
normal variants of the same protein. Prions are responsible of multiple degenerative diseases, such as
Creutzfeldt-Jakob disease or kuru [107]. There are several studies suggesting that ALS might be a
‘prion-like’ disease because of the ability of the C-terminal region of TDP-43 to form stable β-sheets
resembling amyloid-like fibrils. It seems that this structure is able to start a seeding mechanism
similar to prions [113]. Despite this hypothesis, the mechanisms by which TDP-43 spreads into nearby
cells remain unclear. Studies suggest that TDP-43 is transported through the axons, affecting nearby
oligodendrocytes and neurons. This theory supports the idea of ALS spreading to neurons, just like
prion diseases [112].

3.5. Other Proteins Involved in Amyotrophic Lateral Sclerosis

Besides TDP-43, it should be pointed out that FUS is a key proteotoxicity driver. Like TDP-43,
FUS is an RNA binding protein (RBP) that regulates RNA metabolism, splicing, transcription,
and transportation, and contributes to repair DNA damage. Its pathogenic properties are related to
a mislocalization in the cytoplasm and a loss of function mechanism [114]. The structural domains
exerting a major effect on ALS pathology seem to be located at the N-terminal prion-like domain,
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a portion of the glycine-rich region and the C-terminal nuclear localization signal (NLS), which are
crucial for FUS mislocalization [27]. Just like TDP-43, such mislocalization leads to an aggregate that is
able to sequester proteins and RNA gaining a toxic ability. Nevertheless, there is much controversy
about the mechanisms driving this aggregation with some research suggesting that FUS loss of nuclear
function is enough to develop toxicity [115]. Approximately 35% of FUS-ALS patients develop the
disease before the age of 40 years, and this aggressiveness is thought to be due to the synergy existing
between FUS and other RBPs. In 2019, Marrone et al. demonstrated that FUS-ALS is linked to
defects in the PQC system, and also that an inhibition of autophagy increases cytoplasmic FUS levels,
leading to proteotoxicity. Inducing autophagy restored protein homeostasis showed improvement in
FUS levels and cell survival. These autophagy inducer molecules could open a promising scenario in
ALS disease-modifying therapies [28].

Another major contributor to proteotoxicity in ALS is SOD1. This enzyme is responsible of
catalyzing the inactivation of superoxide into oxygen and hydrogen peroxide, being an indispensable
antioxidant defense mechanism present in most of the cells. SOD1 is associated with an autosomal
dominant form of ALS. Mutations in SOD1 destabilize its structure, which may lead to misfolding,
oligomerization and formation of aggregates. Due to its ability to decrease chaperone and proteasome
activity, these toxic aggregates are responsible for an insufficient clearance of intracellular proteins,
which can bring aberrant protein–protein interactions. A lack of native structure cause aberrant redox
chemistry which is toxic for the cells, leading to an increased amount of reactive oxygen species
(ROS), capable of damaging other macromolecules [116]. Additional toxic features caused by SOD1
pathology include glutamate excitotoxicity due to a reduction in the astroglial glutamate transporter
EAAT2 which leads to an excessive calcium influx, thus triggering destructive processes responsible
for ALS pathology.

Furthermore, misfolded SOD1 can be localized to the outer membrane and matrix of the
mitochondria, leading to malfunction and disruption of ATP production and energy homeostasis.
Additionally, mutant SOD1 has been seen to be involved in loss of neurotrophic signaling and defective
axonal transport in motor neurons [117]. Misfolded SOD1 can be secreted into the extracellular space
and then sequestered by nearby cells where misfolded SOD1 is able to recruit additional misfolded
proteins to enlarge itself [118].

Ataxin-2 is a member of the Lsm (Like-Sm) protein family. It is involved in a large number of
functions including cellular stress responses and mRNA stability and translation. Ataxin-2 has a
polyglutamine tract comprising 22–23 glutamines (Q) in the healthy population. An expansion of
27–33 Qs has been demonstrated to be linked to ALS [119]. Ataxin-2 links TDP-43 and its upregulation
increases TDP-43 toxicity. Ataxin-2 is normally located in the cytoplasm of spinal cord neurons, but in
ALS patients, its localization is altered, enhancing accumulation that eventually influences TDP-43
mislocalization under stress situations [40].

Finally, TANK-binding kinase 1 is composed of 4 domains: a kinase domain (KD), a ubiquitin-like
domain (ULD) and two coiled-coil domains (CCD1 and CCD2). CCD1 is responsible for
homodimerization of TBK-1, while CCD2 can bind and phosphorylate optineurin and p62,
proteins known to be implicated in autophagy [120]. Several mutations in TBK1 cause protein
truncation and loss of function, leading to a decrease in the protein ability to phosphorylate and bind
optineurin and p62. Furthermore, other mutations can drop mRNA and protein levels, resulting in a
lower activation of autophagy adaptors, leading to accumulation of toxic protein aggregates in motor
neurons [41].

3.6. Therapeutic Insights

ALS is a complex and devastating disease with no diagnostic biomarkers or effective treatments
to slow down its progression. Current strategies for intervention include preventing TDP-43 from
aggregating or improving its clearance through a PQC system via a TDP-43 aggregation inhibitor
molecule, such as acridine-imidazole derivative (AIM4) [121], 4-aminoquinoline derivatives [122],
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or a treatment with several copper complexes which has shown to inhibit TDP-43 accumulation and
C-terminal fragment aggregation.

The use of a mutant chaperone Hsp104 has been shown to decrease TDP-43 toxicity, aggregation,
and promote nuclear localization [123]. Furthermore, nuclear import receptors as karyopherin-β2
have been proven to prevent aggregation of TDP-43 and other RNA-binding proteins, restoring their
localization and functions [124].

Additionally, other ways of treating this disease include molecules targeting mechanisms leading
to cellular dysfunction. Some examples are mexiletine that reduces neuronal hyperexcitability [125],
edaravone, a free-radical scavenger which decreases oxidative stress [46], or rapamycin, an autophagy
inducer that forms autophagosomes enhancing protein degradation, currently in a phase II clinical
trial [126].

In the last years, several clinical trials have been carried out in order to test potential novel
drugs for this terrible disease. Some examples are ropinirole hydrochloride, a molecule which targets
abnormal TDP-43/FUS aggregation. It is a phase I/IIa randomized, double-blind, placebo-controlled,
single-centre, open-label continuation trial with expected results by March 2021 [127]; tamoxifen,
that showed ability to enhance autophagy and decrease TDP-43 aggregation in a small randomized
double-blind trial whose results revealed a slight effect on attenuating disease progression for six
months [128]; or arimoclomol, a heat shock protein co-inducer with neuroprotective properties in
SOD1 related ALS, which was tested in a randomized, double-blind, placebo-controlled trial and
lacked an important therapeutic benefit [129].

4. Proteotoxicity in Parkinson’s Disease

Major advancements in genetics and neuropathology led to the identification of α-synuclein as
the major pathological hallmark of PD [130,131]. The SNCA gene encodes for a presynaptic protein
called α-synuclein, identified as the main component of amyloidogenic protein deposits known as
Lewy bodies (LB) and Lewy neurites (LN) in PD [132]. Deleterious genetic variation in SNCA results in
the accumulation and aggregation of misfolded α-synuclein [133]. Although pathological mechanisms
of PD are numerous and diverse, α-synuclein proteotoxicity has been hypothesized to be one of
the main contributors to the neurodegenerative process, spreading the pathological condition to
neighboring cells like a prion-like disease [134]. In turn, these α-synuclein aggregates can interact to
promote disruption of protein homeostasis and thus interfere cell normal topography and physiology
including stress formation on the endoplasmic reticulum (ER), mitochondrial dysfunction and defective
neurotransmission, which if prolonged, could lead to neuronal death [58,135].

4.1. Structure and Physiological Function of α-Synuclein

α-synuclein is a small soluble protein (140 amino acid) highly expressed in the presynaptic zone
of neuronal cells [136]. Unlike its pathological behavior, the normal function of this protein remains
elusive. Some studies link it with synaptic transmission and vesicle trafficking, mitochondrial
homeostasis, gene expression, protein phosphorylation, or even fatty acid binding [137,138].
α-synuclein is differentiated into three main domains: the N-terminal domain (amino acids 1–60);
an hydrophobic central domain known as non-amyloid β-component domain or NAC (amino
acids 61–95), which is associated to α-synuclein aggregation in humans when β-sheet structure
is acquired [139]; and the C-terminal region (amino acids 96–140) suggested to be involved in
multiple functions, including self-protection of α-synuclein from aggregation [140,141]. Except for
some cases [142], native α-synuclein is commonly found unfolded in a monomeric state, [143,144].
In contrast, there is no controversy under pathological conditions where α-synuclein adopts a β-sheet
amyloid conformation, promoting proteotoxic deposits.
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4.2. Pathologic Mechanisms of α-Synuclein Aggregation

The aggregation process of α-synuclein in vitro follows a similar pattern to other amyloid diseases.
The oligomerization follows a nucleation-dependent pathway divided in three phases: the lag phase
where the monomers form the aggregation nuclei; the elongation phase in which fibrils tend to grow
exponentially, and finally the stationary phase where monomers leakage result in a decrease of growing
rate [145–147]. Oligomers grow faster into the elongation phase, converted into protofibrils due to the
monomer addition which conforms the amyloidogenic mature form. However, although the protein
has mechanisms to protect itself from aggregation [140,141], the reason why that occurs has not been
identified yet. Thus, potential risk factors have been proposed to initiate/potentiate this procedure,
such as genetic mutations [148,149], environmental factors as iron exposure and pesticides and dietary
aspects [150].

α-synuclein toxicity follows the prion-like hypothesis where the misfolded protein spreads cell
to cell via endocytosis transmission. Subsequent to α-synuclein aggregation, anomalous oligomers
are released from cells. Exogenous α-synuclein fibrils can invade inside cells, seeding them into
recipient cells, and induce its propagation cell to cell by originating a new cycle of endocytosis.
This event would finally end inducing new LB-like inclusions [67]. The presence of α-synuclein
deposits, according to similar mechanisms in other neurodegenerative diseases, suggests that the
main link between α-synuclein and PD pathology is the gain of function hypothesis. In this direction,
we briefly recap the main proteotoxicity effects of α-synuclein in PD pathogenesis.

Post-translational modification including phosphorylation, ubiquitination, and glycosylation,
plays an essential role in protein structure, modification, and function. Disruption of these processes
has been linked to an intricate cellular proteostasis state within the cell. Accordingly, altered hyper
phosphorylation was found in α-synuclein site Ser129 in LBs. Therefore, phosphorylation of Ser129
has evidenced to facilitate cytotoxic transport to the nucleus, being capable of interacting with histones
inducing neurotoxicity [45].

In addition, α-synuclein toxicity within the nucleus may implicate the inhibition of histone
acetylation, promoting neuronal disruption and cell death [65,151]. Furthermore, amyloidogenic
α-synuclein can modify lipid permeabilization, thus altering the structural components of the cell.
One potential hypothesis suggests that these oligomers penetrate the cell membranes and reorganize
lipid environment, stimulating the flux of surrounding molecules [152]. An alternative theory supports
that oligomers could be fused with the membranes acting as an amyloid pore or channel [153,154].
These events have been suggested to enhance extracellular calcium flux within cells so that could be
responsible for the cell death of dopaminergic neurons in PD. In a similar way, α-synuclein aggregates
disrupt the main protein clearance systems within the cell and therefore mitochondrial function [155].
The autophagy lysosomal pathway (ALP) and the UPS have been associated with PD pathology. In the
last decade, genetic perturbation in several genes including LRRK2, SNCA, LAMP3, GBA, and ATP13A2
affecting lysosomal activity have been elucidated [156,157]. In vitro models showed that pathologic
α-synuclein blocks macroautophagy by binding key proteins, such as the lysosomal LAMP2 receptor
in ALP or the 20S component in UPS [54,55]. Although further studies are needed, these events suggest
that α-synuclein drives proteotoxicity by disrupting protein clearance of substrates. Consequently,
accumulation of several substrates in addition to toxic oligomers within the cytosol, rise mitochondrial
dysregulation associated with complex I activity, which is impaired in the brain tissue of PD patients
and in vitro [158].

Despite SNCA being the major genetic contributor to PD etiology, genetic mutations in PINK1
or DJ1 in mendelian forms of PD result in a mitochondrial perturbation due to a toxic gain of
function in the mutated proteins [59]. PINK1 is a kinase protein involved in several events within
the mitochondria, including oxidative phosphorylation or mitophagy. According to the proposed
mechanisms above mentioned, α-synuclein toxic effects may lead to disrupted mitochondrial dynamics
altering electronic potential and facilitating mitochondrial fragmentation, dysfunctional mitophagy or
increased mitochondrial ROS levels. Multiple other cellular pathways are affected by α-synuclein, as ER
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stress promotion which in turn promotes ER-Golgi transport dysfunction and Golgi fragmentation [60,61].
Taking this together, α-synuclein toxicity drives the main pathologic events in PD. However,
how α-synuclein triggers those pathological events in PD, being either cause or consequence of it,
remains unclear.

4.3. Therapeutic Insights

Since protein aggregation is responsible for neurodegeneration, there is now emerging research
towards restoring proteostasis through stimulation of the PQC system. Within the wide range of
experimental studies, one of the most promising treatments is ambroxol, a small molecule chaperone
that crosses the blood–brain barrier and helps defective GBA protein refold and traffic correctly
to lysosomes. In a recent open-label clinical trial of 17 PD patients both with and without GBA
mutations, ambroxol increased GBA activity and modulated α-synuclein levels in cerebrospinal
fluid [159]. Although a larger study is required, ambroxol therapy seems to bring hopeful results.
Regarding immunotherapy, there are several studies in preliminary stages of clinical investigation [160].
The monoclonal antibody PRX002, designed to preferentially target soluble and insoluble aggregated
forms of a-synuclein, significantly reduced free serum α-synuclein levels in humans, [161] being
safe and well tolerated by participants after intravenous infusions of multiple ascending doses [162].
BIIB054, another anti a-synuclein antibody, has demonstrated an acceptable safety among participants,
and has been currently enrolled in novel trials to examine its capacity of a-synuclein clearance to
cerebrospinal fluid [163].

5. Proteotoxicity in Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the accumulation of
extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles of hyperphosphorylated
tau proteins leading to neuronal loss and cerebral atrophy. AD is the main cause of dementia and
accounts for up to 60–80% of all dementia diagnoses [164]. Moreover, the number of new cases with AD
increases with age, doubling in prevalence every 5 years after age 65 [165]. Although the vast majority
of AD cases are considered sporadic (>90%), they are thought to be influenced by a combination of
genetic and environmental factors. Mendelian forms linked to an autosomal dominant pattern of
inheritance, are caused by mutations in three genes- amyloid precursor protein (APP), presenilin 1
(PSEN1), and presenilin 2 (PSEN2), representing less than 1% of AD cases [166]. Clinically, AD is
defined by progressive cognitive decline enough to affect abilities to work and/or to complete basic
daily activities. Behavioral change, impaired mobility, hallucinations and seizures also may emerge
with the disease progression. Death is on average 8.5 years from symptoms presentation [167].

5.1. Structure of the Amyloid-β Peptide

Amyloid-β (Aβ) peptide is a 39–42 residue protein generated from the sequential processing of
the transmembrane amyloid precursor protein (APP) by β- and γ-secretases. First, APP is cleaved by
β -secretase producing the membrane-bound fragment C99, which then is subjected to a secondary
cleavage by γ-secretase leading to the release of soluble Aβ peptides [168]. The most prevalent forms
are peptides with 40 (Aβ1–40) and 42 (Aβ1–42) amino acid residues, the latter being considered as the
more toxic species that contributes to the amyloid fibril formation. These species seem to play a key
role in amyloid nucleation. A large number of experimental studies have focused on identifying the
on-pathway intermediaries responsible for fibril formation. Structural analyses by atomic resolution of
Aβ1–42 amyloid fibrils show that the fibril core would be composed of a dimer of Aβ42 molecules.
They seem to be arranged resulting in two hydrophobic clusters sited at the end of the chain by a
salt bridge [169]. Furthermore, it is likely that a hydrophobic environment favors the formation of
prefibrillar aggregates based in intermolecular β-sheet structures, acting as precursors for the amyloid
nucleation [170,171]. Apart from these arrangements, the presence of charged residues in the Aβ

N-terminal region influences directly the amyloidogenesis process through their interactions and
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binding with the membrane lipid bilayer. The accumulation of Aβ peptides on membranes would
trigger a loss of biophysical properties and subsequently fragmentation [172,173].

5.2. Physiological Role of the Amyloid Precursor Protein (APP) and Aβ Peptide

Despite that APP has been largely studied as a precursor of Aβ and a key peptide in the
pathogenesis of AD, its physiological functions are not still completely understood. Within the cell,
APP is mainly located in the somatodendritic and axonal compartments, and highly abundant in the
synaptic terminals. Once it is synthesized in the endoplasmic reticulum, APP matures through the
secretory pathway until it reaches the cell surface [174]. Here, it can be cleaved by secretases following
two canonical processing pathways, including the amyloidogenic and non-amyloidogenic pathways.
The way in which APP is finally processed seems to be linked to its cell localization, thus APP
accumulated in the cell surface promotes non-amyloidogenic processing whereas APP stored in
intracellular compartments does amyloidogenic processing [175]. Even so, the APP catalytic processing
is highly regulated in the cell, and under physiological conditions the non-amyloidogenic pathway is
the predominant route. Based on recent investigations, APP is considered as a multimodal protein
that can regulate biological processes ranging from transcriptional regulation to synaptic functions.
This variety of functions is mediated by cell surface APP or by one its proteolytic fragments [176].
The structural features of APP, which mainly include two heparin-binding domains within the E1
and E2 domains in the extracellular region, strengthens the idea that APP may act as a cell surface
receptor. These two domains, with different binding affinities for ligands, would allow the receptor
to initiate more rapid and selective intracellular signaling cascade. Moreover, its transmembrane
domain could serve as guide signals to carry out the protein transport from endoplasmic reticulum
to plasma membrane [177]. As mentioned above, the high expression of APP in synaptic terminals
also suggests a role for this protein in synaptic plasticity, learning, and memory. Secreted APP (sAPP)
has been proposed to facilitate long-term potentiation and to increase memory in rats and transgenic
models of AD [178]. sAPP induces several intracellular signaling cascades that support synaptic
plasticity, however, its main receptor target remains unclear. Recently, the gamma-aminobutyric
acid type B receptor subunit 1a (GABABR1a) has been identified as synaptic receptor for sAPP.
sAPP-GABABR1a binding suppresses synaptic vesicle release and thus modulates synaptic plasticity
and neurotransmission [179]. Furthermore, Aβ peptides can exert an opposite effect on synaptic
plasticity and memory depending on its concentration. It has been reported that high levels of
oligomeric Aβ42 in mouse hippocampal neurons induce synaptic dysfunction leading to memory
impairment in AD. However, when picomolar concentrations are used, they promote long-term
potentiation (LTP) and memory [180,181].

5.3. Pathological Mechanisms of β-Amyloid Peptide Aggregation

Although the pathogenesis of AD is quite complex, there is solid evidence to support that Aβ

plays a central role. Aβ42 underlies aggregation when monomer concentration exceeds a critical
concentration. This process would act as primary nucleation pathway for the formation of oligomers,
and these, in turn, might serve as basis for a slow aggregation into fibrils [182]. Recent studies
show a correlation between soluble Aβ oligomer levels and disease severity, highlighting them
as the main toxic species [75,183]. Extracellular Aβ oligomers can be formed in the presence of
GM1 ganglioside on the cell membrane. These seem to induce neuronal cell death mediated by
nerve growth factor (NGF) receptors. Binding of Aβ oligomers to other receptors, such as cellular
prion protein and NMDA-type glutamate receptor, causes failure of the neuron signal-transduction
pathways related to synaptic function and abnormal calcium homeostasis, respectively. Moreover,
Aβ oligomers can induce the loss of insulin receptor from the neuronal surface and impair kinase
activity related to long-term potentiation [184]. At the intracellular level, Aβ oligomers inhibit
proteasome function resulting in pathological accumulation of Aβ and Tau proteins and subsequently
in cell death. The autophagy-lysosome pathway is also impaired. Aβ can accumulate in lysosome and
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alter its membrane permeability, occasioning the Aβ release to the cytosolic compartment [185,186].
Aβ-induced mitochondrial dysfunction has been extensively associated to AD pathology. This toxic
effect would be mediated by a reduction in the electron transport chain enzymatic activities [186,187].

5.4. Tau and Phosphorylated Tau

Tau is clearly a determinant protein in the neurodegenerative process of AD [188]. The close
association that exists between disease severity and tau load which is higher than those found in
Aβ, encourages us to think in a primary role for Tau within the pathological events that occur
in AD. Emerging investigations support the idea that Aβ initiates the onset of AD while Tau
mediates the subsequent functional deficits at an early stage of the disease. Tau comprises of
four domains: N-terminal domain; proline-rich domain, which is located in the central region
of the protein; microtubule-binding domain (MBD), which is the region responsible for binding
of Tau with microtubules (MTs); and C-terminal domain. The MBD includes four repeats (4R
isoform) or three repeats (3R isoform) of approximately a sequence of 32 amino acid residues, as a
consequence of alternative splicing in the molecule [189]. These two isoforms are maintained in
equilibrium in adult human brains, being essential for a normal function of the protein. One of the
widely known roles for Tau is to promote MTs assembly and stability. Interaction of Tau with MTs
depends on its phosphorylation/dephosphorylation state by activity of kinases and phosphatases,
respectively, binding to MTs when it is dephosphorylated, and separating from them when it is
phosphorylated [190]. The interplay between Tau and motor proteins allows the correct axonal
transport in the brain, and regulates the development of axonal neurites [191]. Moreover, Tau is also
distributed in dendrites at the postsynaptic compartment, suggesting an important role in regulating
normal synaptic function [192]. Other recent studies describe a protective role for Tau in the damage
of neuronal DNA and RNA by oxidative stress [193], as well as its ability to regulate brain insulin
signaling [194]. Despite its low tendency to accumulation, certain post-translational modifications in
Tau such as hyperphosphorylation, promote a progressive self-assembly into soluble oligomeric forms
and insoluble tangles of filaments [195]. Although the identification of Tau species responsible for
neurotoxicity is still under investigation, it is known that pathological aggregation of this protein acts
endangering the physiological functions above mentioned and subsequently cell survival [70,196].

5.5. Therapeutic Insights

Despite its high prevalence, there is currently no cure or available treatment to significantly modify
the progress of the disease. A substantial part of treatments under clinical trial investigation is based on
immunotherapy, in which most strategies are directed to Aβ targeting. Whilst it has shown promising
results in animal models of AD, human trials are producing disappointing outcomes. There are more
than forty immunotherapies (comprising active and passive) registered in the database Alzforum.org
(https://www.alzforum.org/therapeutics). However, many of them are not making progress due to
unsuccessful clinical efficacy and major safety problems. At present only four have reached Phase 3 of
clinical research. Preliminary results after treatment with aducanumab (monoclonal antibody that
selectively reacts with Aβ aggregates) have showed a reduction of brain Aβ plaques together with a
slowing of clinical decline in patients with prodromal or mild AD [197]. Likewise, administration of
gantenerumab (another monoclonal antibody that binds with high affinity to aggregates Aβ species)
has resulted in significant Aβ plaques removal at 104 weeks of treatment in patients with prodromal
to moderate AD dementia [198]. The ongoing analyses augur to provide valuable information about
clinical benefits. Apart from immunotherapy, other anti-amyloid drugs such as β-/γ-secretase inhibitors
and γ-secretase modulators are being evaluated. For instance, tarenflurbil has been reported to be a
selective Aβ42-lowering agent and also seems to protect from cytotoxicity associated with exposure
to Aβ42 in cultured neuronal cells [199,200]. Furthermore, there are therapeutic approaches that are
focused on other pathological events, such as synaptic loss, autophagy impairment, mitochondrial
dysfunction, and neuroinflammation [201]. However, with the exception of the acetylcholinesterase
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inhibitors already approved (Donepezil, Rivastigmine, or Galantamine, among others) the majority of
treatments are not showing significant clinical benefits or are still in preclinical stages. The complex
nature of this disease possibly determines the failure of many therapies directed to one single target.
The development of therapies focused on multiple targets might be the base of future strategies.

6. Concluding Remarks and Future Directions

Neurodegenerative diseases are a great burden for our health system. This review has examined
the advances that have been made in understanding how molecular mechanisms get disrupted by
proteotoxicity causing cell death in these diseases. We have discussed how disease arises as a result of
neural cells not being capable of maintaining the stability of its proteome through adequate folding
and degradation of aberrant proteins. Despite efforts, our knowledge of disease aetiology is still
limited and so far it is unknown whether aggregation is a cause or a protective consequence for
disease. This review supports the notion that although shared features driving proteotoxicity are
implicated in these four neurodegenerative diseases including protein misfolding and aggregation,
protein propagation, and proteostasis impairment, the current literature suggests that the proteins and
aggregates implicated in each of these diseases as well as the genetic basis driving their pathology are
not shared but disease specific. Additional evidence to unravel the coexistence of proteins and their
interactions among these neurodegenerative diseases is required. Along the way we have learnt that
therapeutic strategies designed to prevent or stop disease progression will not be possible without
critically re-establishing perturbations in protein quality control. Increasing proteasome activity,
enhancing cellular PQC mechanisms by upregulation of chaperones and clearance cascade pathways,
as well as controlling the capability of misfolded proteins to propagate to nearby cells, are key to avoid
progressive neuronal degeneration. As highlighted in this review, successful treatment opportunities
will not be sufficient with single-target approaches aimed to specifically tag toxic protein species.
The new era for the treatment of proteinopathies holds promise while we continue unraveling the
pathological processes underlying these complex diseases.
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Abbreviations

AD Alzheimer’s disease
PD Parkinson’s disease
ALS Amyotrophic lateral sclerosis
FTD Frontotemporal dementia
HD Huntington’s disease
PQC Protein quality control
UPS Ubiquitin-proteasome system
polyQ Polyglutamine
BDNF Brain-derived neurotrophic factor
AAV Adeno-associate virus
ASOs. Antisense oligonucleotides
SOD1 Superoxide Dismutase 1
FUS Fused in Sarcoma
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TBK-1 TANK-binding kinase 1
hnRNP Ribonucleoprotein family
TPD-43 TAR DNA-binding protein 43
NTD N-Terminal Domain
RRMs RNA Recognition Motifs
NES Nuclear Export Signal
NLS Nuclear Localization Signal
CTD C-Terminal Domain
CTF C-terminal fragments
RBP RNA binding protein
ROS Reactive oxygen species
Q Glutamines
NLS C-terminal nuclear localization signal
CTF C-terminal fragments
RBP RNA binding protein
KD Kinase domain
ULD Ubiquitin-like domain
CCD1 and CCD2 Two coiled-coil domains
AIM4 Acridine-imidazole derivative
LB Lewy bodies
LN Lewy neurites
ER Endoplasmic reticulum
ALP Autophagy lysosomal pathway
AB Amyloid-beta
APP Amyloid precursor protein
PSEN1 Presenilin 1
PSEN2 Presenilin 2
APP Amyloid precursor protein
sAPP Secreted APP
GABABR1a Gamma-aminobutyric acid type B receptor subunit 1a
LTP Promote long-term potentiation
NGF Nerve growth factor
MDR Microtubule-binding domain
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