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Purpose: Segmentation and evaluation of in vivo confocal microscopy (IVCM)
images requires manual intervention, which is time consuming, laborious, and non-
reproducible. The aim of this researchwas to develop and validate deep learning–based
methods that could automatically segment andevaluate corneal nerve fibers (CNFs) and
dendritic cells (DCs) in IVCM images, thereby reducing processing time to analyze larger
volumes of clinical images.

Methods:CNF andDC segmentationmodelswere developed based onU-Net andMask
R-CNN architectures, respectively; 10-fold cross-validation was used to evaluate both
models. The CNF model was trained and tested using 1097 and 122 images, and the
DC model was trained and tested using 679 and 75 images, respectively, at each fold.
The CNF morphology, number of nerves, number of branching points, nerve length,
and tortuosity were analyzed; for DCs, number, size, and immature–mature cells were
analyzed. Python-based softwarewaswritten formodel training, testing, and automatic
morphometric parameters evaluation.

Results: The CNF model achieved on average 86.1% sensitivity and 90.1% specificity,
and the DC model achieved on average 89.37% precision, 94.43% recall, and 91.83%
F1 score. The interclass correlation coefficient (ICC) between manual annotation and
automatic segmentationwere 0.85, 0.87, 0.95, and 0.88 for CNF number, length, branch-
ing points, and tortuosity, respectively, and the ICC for DC number and size were 0.95
and 0.92, respectively.

Conclusions: Our proposed methods demonstrated reliable consistency between
manual annotation and automatic segmentation of CNF and DC with rapid speed. The
results showed that these approaches have thepotential to be implemented into clinical
practice in IVCM images.

Translational Relevance: The deep learning–based automatic segmentation and
quantification algorithm significantly increases the efficiency of evaluating IVCM
images, thereby supporting and potentially improving the diagnosis and treatment of
ocular surface disease associated with corneal nerves and dendritic cells.

Introduction

Dry eye disease (DED) is a multifactorial, immune-
based inflammatory disease of the ocular surface and

tears that includes ocular discomfort, dryness, pain,
and alteration of tear composition, resulting in distur-
bance of tear production and tear evaporation. DED
currently impacts 5% to 35% of the world’s population,
with variation in prevalence due to geographic location,
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age, and gender.1–3 Currently, DED is considered a
major health problem due to its significant impact on
the patient’s quality of vision and life, which leads to
socioeconomic burdens.4,5

Pain is defined as an unpleasant sensory and
emotional experience that might exist or occur over a
short or a prolonged period.6 A wide range of ocular
disorders can cause ocular pain; however, the most
common denominator of ocular pain is ocular surface
and corneal disorders,7–9 including dry eye.10–12 In
DED patients, this ocular pain not only is creating
irritation but also indicates the severity of DED.Moein
et al.7 and Galor et al.13 have shown that, compared
with patients without ocular pain, patients who suffer
from DED with ocular pain have more severe signs
(such as decreased corneal nerve fibers [CNFs] number
and density and increased DCs density) and symptoms
(such as burning, hypersensitivity to wind, and sensi-
tivity to light and temperature). Diabetic peripheral
neuropathy (DPN) affects roughly 50% of the patients
that suffer from diabetes and is the main driving factor
for painful diabetic neuropathy. A major challenge
is identifying early neuropathy, which predominantly
affects small nerve fibers first, rather than advanced
neuropathy, which later affects the large nerve fibers.
Furthermore, DPN showed a progressive reduction
in corneal nerve fiber density, length, and branching
points in patients with increasing severity of diabetic
neuropathy.14

In vivo confocal microscopy (IVCM) is a non-
invasive optical imaging modality that enables histo-
logical visualization of the CNFs and dendritic
cells (DCs). IVCM is clinically widely accepted and
commonly used in the diagnosis of various ocular
surface disorders because it provides high resolu-
tion and detailed morphometric information regard-
ing CNFs and DCs.15,16 Previous work has utilized
IVCM to demonstrate that the density of CNF is
significantly reduced and the number of DCs is signifi-
cantly higher in patients with dry eye.7,12,17–19 Further-
more, CNFs demonstrate early and progressive pathol-
ogy in a range of peripheral and central neurodegen-
erative conditions.20–23 Previous studies have demon-
strated analytical validation by showing that IVCM
reliably quantifies early axonal damage in diabetic
peripheral24,25 neuropathy with high sensitivity and
specificity.26,27

For accurate quantification of CNF morphology
and detection of DC, the nerves and DCs must be
accurately segmented in the IVCM images. Tradi-
tionally, the methods used to segment CNFs and
DCs have been manual or semi-automated techniques
that require experienced personnel and are labori-

ous, cost ineffective, and potentially subject to user
bias. To address these issues, several automatic CNF
segmentation and quantification software tools have
been developed.28–31 For example, Dabbah et al.28,32
developed a dual-model automated CNF detection
method that showed excellent correlation with manual
grading (r = 0.92); further extension of this method
used a dual-model property in a multi-scale frame-
work to generate feature vectors at every pixel. The
authors achieved high correlation with manual grading
(r = 0.95).

In contrast to traditional image processing
or machine learning–based image segmentation
techniques, a deep learning–based method offers
the advantage of learning useful features and represen-
tations from raw images automatically. This method is
preferable, as manually extracted features selected for a
specific corneal disease may not be generally transfer-
able to other corneal diseases.33,34 The implementation
of deep learning in the field of ophthalmology has
increased in recent years.35–37 Using a convolutional
neural network (CNN) and a large volume of image
data, a neural network can learn to segment and
detect specific objects from ophthalmic images such
as retinal blood vessels,38 retinal layers,39 optic disc,40
anterior chamber angle,41 and meibomian glands.42
Several CNN-based CNF segmentation models have
been proposed. Williams et al.43 demonstrated the
efficacy of deep learning models to identify DPN with
high interclass correlation with manual ground-truth
annotation. Wei et al.44 and Colonna et al.45 developed
a U-Net–based CNN model to segment CNF that
provides high sensitivity and specificity in the segmen-
tation task. Oakley et al.46 developed a U-Net–based
model to analyze macaque corneal sub-basal nerve
fibers which achieved high correlation between readers
and CNN segmentation. Yıldız et al.47 proposed CNF
segmentation using a generative adversarial network
(GAN), and they achieved correlation and Bland–
Altman analysis results similar to those for U-Net;
however, the GAN showed higher accuracy compared
to U-Net in receiver operating characteristic (ROC)
curves. Most of the previous studies, however, have
provided only nerve segmentation without further
quantification, with the exception of Williams et
al.,43 and all CNN-based models focus on CNFs, not
DCs. Therefore, there is a need for fully automatic
segmentation and quantification of both CNFs and
DCs.

The aim of this research study was to develop and
validate deep learningmethods for automatic CNF and
DC segmentation and the morphometric evaluation of
IVCM images.
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Materials and Methods

Datasets

Corneal Nerve Fiber Dataset
In total, 1578 images were acquired from both

normal (n = 90) and pathological (n = 105, including
52 patients with diabetes) subjects using the Heidelberg
Retina Tomograph 3 (HRT3) with Rostock Cornea
Module (RCM) (Heidelberg Engineering GmbH,
Heidelberg, Germany) at the Peking University Third
Hospital, Beijing, China. This dataset is available for
further research purposes on request.48,49 After remov-
ing the 359 duplicate images, the remaining 1219
images were used for our model training and testing.
All images cover an area of 400 × 400 μm (384 ×
384 pixels). On average, eight images were obtained per
subject. The images were from both central and inferior
whorl regions.

Dendritic Cells Dataset
A total of 754 clinical IVCM images of both males

and females from patients with dry eye and neuro-
pathic corneal pain (n = 54) were collected using the
HRT3-RCM at the Eye Hospital, University Hospi-
tal Cologne, Germany. These images have the same
dimensions as the cornea nerve dataset (400 × 400
μm; 384 × 384 pixels). On average, 14 images were
obtained per subject. The image collection adhered
to the tenets of the Declaration of Helsinki and was
approved by the ethics and institutional review board
(IRB) at the University of Cologne, Germany (#16-
405). As this study was conducted retrospectively using
completely anonymized non-biometric image data, the
ethics committee and IRB waived the need to obtain
informed consent from the participants.

Image Annotation

Corneal Nerve Fiber Annotation
The CNF dataset from Peking University Third

Hospital, Beijing, China, was manually annotated
using ImageJ (National Institutes of Health, Bethesda,
MD) with the NeuronJ (Biomedical Imaging Group,
Lausanne, Switzerland) plug-in. All ground-truth
images were verified and corrected by experienced
ophthalmologists, thus providing validated ground-
truth masks images along with raw IVCM images for
further research.48,49

Dendritic Cells Annotation
All collected DC images were manually annotated

using VGG Image Annotator (VIA),50 an open-source,

web-based, image annotation software. The user draws
a polygon region around the DC body and hyper-
reflective (dendrite) area. The VIA software tool saves
all polygons in a JSON file format, which forms the
ground-truth mask for the DC image dataset. One
author (MAKS) created all of the initial ground-
truth masks. The initial ground-truth masks were
then verified and corrected by an experienced senior
ophthalmologist (PS) from the University Hospital
Cologne, Germany, before they were used in deep
learning model training, validation, and testing.

Data Allocation

Corneal Nerve Fiber Data Allocation
The CNF image dataset, comprised of a total of

1219 images, was divided into training and testing
datasets. Among 1219 images, ∼1097 were used for
training, and ∼122 were used to test the model at each
fold during the cross-validation.

Dendritic Cells Data Allocation
Images of DCs were also divided into training,

and testing datasets. Among 754 images, ∼679 were
used for model training and ∼75 images were used
to test the model at each fold during cross-validation.
To increase the number of training images and reduce
the risk of model overfitting during the model train-
ing phase, data augmentation techniques were applied.
The applied augmentations were horizontal flip, verti-
cal flip, rotation (90°), gamma contrast (±30%), and
random crop (25%) with subsequent resizing to origi-
nal image size (Supplementary Fig. S1). Data augmen-
tation increased the total number of training images to
around 4753 (679 × 7).

Deep Learning Model Design and Training

Corneal Nerve Fiber Segmentation Model
The CNF segmentation model was based on the

U-Net architecture.51 A U-Net CNN architecture
establishes a pixel-wise segmentation map to attain
full-image resolution segmentation which makes it
an ideal choice for medical image segmentation.52–54
The detailed U-Net network architecture is shown
in Figure 1. The ability of U-Net to provide pixel-
level segmentation is a feature of the two sides of the
“U” shape which form an encoding and a decoding
path, respectively. The general pattern of encoding path
includes a repeating group of convolution, dropout,
convolution, batch normalization, and max pooling
layer; the pattern of decoding path includes a repeating
group of transpose convolution, concatenation, convo-
lution, dropout, convolution, and batch normalization.
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Figure 1. Detailed U-Net architecture. Each dark blue rectangular block represents a multi-channel feature map passing through 3 × 3
convolution followed by rectified linear unit (ReLU) operations. Dark gray and light blue blocks denote dropout with a rate of 0.2 and batch
normalization. Orange and dark yellow blocks denote 2× 2 max pooling and 3× 3 transpose convolution, respectively. Green blocks denote
the concatenation of feature maps. The light gray block denotes a 1× 1 convolution operation followed by sigmoid activation. The number
of convolution filters is indicated at the top of each column.

The direct connections between the encoding path and
the decoding path allow reuse of the extracted features
and strengthen feature propagation. At the end of the
network architecture, the fully connected layer used a
sigmoid activation function to produce the probabilis-
tic segmentation map. This probabilistic segmentation
map was converted into a binary image using a cut-off
threshold value of 0.1.

A topology-preserving loss function, clDice,55 was
used during the CNF segmentation model training.
Briefly, clDice preserves connectivity while segment-
ing tubular-like structures. One of the most efficient
gradient-based stochastic optimization algorithms,
Adam,56 was used to optimize the CNF segmentation
model during training. It optimizes individual learning
rates for individual parameters used in the model train-
ing. The CNF segmentation model was trained for 50
epochswith an initial learning rate of 0.0001, amomen-
tum of 0.9, and a batch size of 32 per fold during cross-
validation.

Dendritic Cells Detection Model
The DC detection model was adopted from the

Mask R-CNN architecture.57 Mask R-CNN is divided
into two stages: a Region Proposal Network (RPN),
which proposes bounding boxes and objects, followed

by a binary mask classifier to generate segmentation
masks for each detected object inside the bounding
box. The detailed Mask R-CNN network architecture
is presented in Figure 2. First, the CNN (light yellow
box in Fig. 2), based on theResNet10158 backbone that
was pretrainedwith theMSCOCOdataset,59 generates
a feature map (Fig. 2b) from the input image (Fig. 2a).
Then, the RPN network (denoted by the purple box
in Fig. 2) generates multiple regions of interest (ROIs)
(dotted bounding box in Fig. 2c) using predefined
bounding boxes referred to as anchors. Then, the ROI
align network (green box in Fig. 2) takes both the
proposed bounding boxes from the RPN network and
the feature maps from the ResNet101 CNN as inputs
and uses this information to find the best-fitting bound-
ing box (Fig. 2d) for each proposed dendritic cell.

These aligned bounding box maps are then fed into
fully connected layers (gray box in Fig. 2) to predict
object class and bounding boxes (Fig. 2f) using softmax
and regression models, respectively. Finally, the aligned
bounding box maps are also fed into another CNN
(light blue box in Fig. 2) consisting of four convo-
lutional layers, transpose convolution, and sigmoid
activation. This CNN is named the mask classifier, and
it generates binary masks (Fig. 2e) for every detected
DC. The completeMaskR-CNNuses amulti-task loss
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Figure 2. Mask R-CNN architecture. The pretrained ResNet101 (light yellow box) generates feature maps (b) from the input image (a). From
the feature maps, the RPN (purple box; 3 × 3 convolution with 512 filters, padding the same) generates multiple ROIs (dotted bounding box)
with the help of predefined bounding boxes referred to as anchors (c). The green box denotes the ROI Align network, which takes both the
proposed bounding boxes from the RPN network and the featuremaps as inputs and uses this information to find the best-fitting bounding
box (d) for each proposed DC. These aligned box maps are fed into fully connected layers (7 × 7 convolution with 1024 filters + 1 × 1
convolution with 1024 filters), denoted by the gray box, and then generates a class and bounding box for each object using softmax and
a regression model, respectively (f ). Finally, the aligned box maps are fed into the Mask classifier (4 3 × 3 convolution with 256 filters +
transpose convolution with 256 filters and stride = 2 + 1 × 1 convolution + sigmoid activation), denoted by the light blue box, to generate
binary masks for each object (e).

function that combines object class, bounding box, and
segmentation mask. The loss function is

Lloss = Lclass + Lbox + Lmask (1)

where Lloss is the total loss, and Lclass, Lbox, and
Lmask are the loss of object class, bounding box,
and segmented masks, respectively. The model train-
ing occurred in two steps with the Adam56 optimizer.
First, the model was trained for 25 epochs with a
learning rate of 0.0001 and a momentum of 0.9 and
without data augmentations. In the second stage, we
trained ourmodel for another 25 epochs with a reduced
initial learning rate of 0.00001, with momentum of 0.9,
and with data augmentations per fold during cross-
validation.We removed allDCdetectionswith less than
90% confidence.

Both deep learningmodels training and testing were
conducted on a laptop computer running Windows 10

Professional on a 64-bit Intel Core i7-9750H processor
at 2.6 GHz with 12 MB of cache memory; Samsung
970 PRO NVMe Series SSD 512 GB M.2; Samsung
970 PRO PCIe 3.0 × 4 NVMe, RAM 32 GB DDR4
at 2666 MHz; and NVIDIA GeForce RTX 2070 Max-
Q with 8 GB of GDDR6 memory. Data preparation,
deep learning model design, training, evaluation, and
testing were written in Python 3.6.6 using Keras 2.3.1
with TensorFlow 1.14.0 (CUDA 10.0, cuDNN 7.6.2)
as the backend.

Cross-Validation Study

To evaluate our deep learning models, k-fold cross-
validation was used. In this study, k = 10 was applied.
The entire dataset of images (1219 for CNFs and
754 for DCs) was randomly split into 10 subgroups,
and each time nine groups were selected as a training
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dataset and one group was selected as a test dataset. In
total ∼1097 and ∼122 images were randomly selected
as training and testing datasets, and ∼679 and ∼75
images were randomly selected as training and testing
datasets, respectively, for the CNF and DC segmen-
tation models on every fold for training. To improve
the accuracy of the CNF and DCmodels, an ensemble
network of 10 trained models obtained using 10-fold
cross-validation was used. The final segmentation was
computed by a majority vote over the segmentation of
the ensemble network.

Evaluation Metrics

For the CNF segmentation and DC detection tasks,
sensitivity (Sen) and specificity (Spe) were used for
CNFs, and precision (P), recall (R), and F1 score were
used for DC detection. The CNF or DC pixels (e.g.,
white pixels in the binary predicted masks) are consid-
ered as positive instances. Based on the combination
of the ground-truth masks and predicted masks, these
pixels are categorized into four categories: true positive
(TP), true negative (TN), false positive (FP), and false
negative (FN). Sensitivity, specificity, precision, and
recall are defined by the following equations, respec-
tively:

Sen = TP
TP + FN

(2)

Spe = TN
TN + FP

(3)

P = TP
TP + FP

(4)

R = TP
TP + FN

(5)

The F1 score is a weighted average of precision and
recall and is defined by the following equation:

F1 = 2 · P · R
P + R

(6)

Morphometric Parameter Assessment

To better analyze the CNFmorphology, the number
of nerves (number/frame), number of branching points
(number/frame), length (mm), and tortuosity were
measured; for the DC morphology, total cell number,
cell size (μm2), and mature–immature cell number were
determined. All of these morphometric parameters

were directly computed from the binary segmented
image.

Nerve Length

To compute the nerve length (mm), the binary
segmented image was first skeletonized. The branching
points were then found to break up the total nerve into
branches segments. Finally, the total CNF length was
calculated by summing up the distance between two
consecutive pixels in the nerve branch segments using
the following equation:

CNFlength =
N−1∑
i=1

√
(xi−1 − xi)2 + (yi−1 − yi)2 (7)

where N is the total number of pixels of a nerve
segment, and (xi, yi) is the coordinate of the corre-
sponding pixel; the inter-pixel distance is 1.0416 μm.

Nerve Tortuosity

For a curvilinear structure such as corneal nerves,
tortuosity is a useful metric to calculate the curvature
changes of the nerves. In this study, the average tortu-
osity of all detected CNFs in the image was calculated.
First, the nerve length was calculated for each nerve
segments. Then, the tortuosity60 τ was calculated for
each nerve segment (n) dividing the path length by the
straight distance (Euclidean distance) between the start
and end points of that nerve segment as follows:

τ (n) = Path length
Straight length

(8)

Finally, the average tortuosity was calculated for the
whole image by calculating the arithmetic average of
the tortuosity values derived from each nerve segment.
To calculate the average tortuosity, both main nerves
(red) and branch nerves (orange) (Fig. 3c) were consid-
ered.

Branching Points

To calculate the branching points, we first automat-
ically defined the start and end points for each nerve
segment. All of these points are stored and evaluated.
Then, if the same point is both a start and an end point
for one nerve segment and a start and en end point for a
different nerve segment, then this point is classified as a
branch point. For example, in cluster A (Fig. 3a), there
are three nerve segments (A1–A3, A2–A3, and A3–A4)
and four points. A1–A2 is the starting point, and A4 is
the end point. However, A3 is both an end point for
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Figure 3. Calculation of number of corneal nerves. First, the corneal nerves were divided into clusters (A, B, and C) and then each start and
end point was provided with a cluster point number (A1, A2, …, B1, B2, …, C1, C2, …). After that, an abstract graph was created for each
cluster using the associated nodes and edges. Then, all possible paths (if branch nerves exist in a cluster such as clusters A and C) within
the abstract graph were created, and the tortuosity was calculated for each path. The main nerve was selected with the lowest tortuosity
for all clusters (a). All nodes creating this main nerve were removed and the process was run again to find another main nerve if one exists
(cluster C); otherwise, the remaining nerve was considered the branch nerve (cluster A) (b). If there was no additional main nerve, then the
remaining nodes and edges were considered branch nerves (orange and green in cluster C) (c). Finally, the total number of corneal nerves
was calculated by summing the red and orange nerves while discarding the branch nerves (green) with length less than 20% (80 μm) of the
image.

the A1–A3 and the A2–A3 nerve segments and a start
point for the A3–A4 nerve segments. So, A3 is consid-
ered a branch point.

Number of Corneal Nerves

To calculate the total number of nerves presented
in a frame, we first created an abstract graph using
the nodes (corresponding to the start or end points of
nerve segments) and edges (corresponding to the nerve
segments between the start and end points) for each
separated CNF cluster. Then, we extracted all of the
possible paths in the graph between the isolated nodes
(the start/end points that are not branching points),
thus ensuring that all of the paths were “long”—
more specifically, that they extended through the entire
CNF cluster. Next, the tortuosities for each path were
calculated. The main nerve was selected as the path
with the lowest tortuosity (depicted as the red nerves
in Fig. 3a). We then removed the main nerve and
the branch nerves connected to it from the abstract
graph and iteratively re-ran the process to find other
main nerves on that CNF cluster, if existing (cluster
C in Fig. 3b), until there are only two nodes left.
Otherwise, the remaining edgeswere considered branch
nerves (cluster A in Fig. 3b). Finally, we calculated
the total number of nerves in a frame by summing
the number of main nerves (red) and branch nerves

(orange) that were longer than a predetermined thresh-
old length. Here, we discarded nerves whose length was
less than 20% (80 μm) of the image height (green).
However, these discarded nerves were still considered
for total nerve length, branching points, and tortuosity
calculations.

Comparison with ACCMetrics

We compared corneal nerve fiber length (CNFL)
using the widely used automated CNF analysis
software, ACCMetrics (Early Neuropathy Assessment
Group, University of Manchester, Manchester, UK).29

DC Size

TheDC size, representing the total area surrounding
the cell body and hyperreflective (dendrites) area,61,62
was measured by calculating the segmented polygon
area around the DC and reported as square microm-
eters.

Immature andMature DCs

Hamrah et al.63 differentiated immature DCs from
mature DCs by their location and the absence or
presence of dendrites; immature cells were located at
the center of the cornea and had no dendrites, and
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Figure 4. Immature andmature cell number calculation. (a) Original image, (b) binary segmented image with individual cell identification
number, and (c) skeletonize image. The green arrows indicate immature cells (<50 μm) without dendrites, yellow arrows indicate transition-
stage cells (<50 μm) with dendrites, and orange arrows indicate mature cells (>50 μm) with or without dendrites.

mature cells were located in the peripheral cornea and
had dendrites. Building on this classification system,
Zhivov et al.64 proposed three types of DCs: (1) individ-
ual cell without dendrites (immature cell), (2) cell with
small dendrites in the transition stage (starting dendrite
processes), and (3) cell with long dendrites (mature
cell). To differentiate among the three types of DCs, a
total cell length threshold and the presence of dendrites
were used as parameters. Mature cells were defined
as greater than 50 μm in length with or without the
presence of dendrites; immature cells were defined as
cells without the presence of dendrites and less than 50
μm in length.65,66 Finally, dendritic cells in the transi-
tion stage were defined as less than 50 μm in length
with the presence of dendrites (Fig. 4a). To calcu-
late the cell length and number of dendrites, first the
binary segmented image (Fig. 4b) was skeletonized
into one pixel width (Fig. 4c). Then, total cell length
including dendrites and the presence of dendrites
(branch numbers) were calculated for each individ-
ual cell presented in the skeletonized image using the
Python-based library FilFinder 1.7.

Statistics

Our proposed CNF andDCmodels were compared
with manual segmentation and detection. The perfor-
mance of both deep learning models was measured
using the Bland–Altman method.67 Interclass correla-
tion coefficient (ICC)68 was used to measure agreement
betweenmanual annotation and deep learning segmen-
tation. Python 3.6.6–based SciPy 1.5.2 and NumPy
1.18.1 libraries were used for the statistical analysis.

Results

CNF Segmentation

Training the CNF segmentation model for 50
epochs with a batch size of 32 per epoch on the full
training dataset took approximately 10 hours and 28
minutes to complete, and segmenting the 122 testing
images took around 9minutes per fold on the described
hardware and software. Figure 5 presents an example
of testing images, along with their respective manual
annotations, and automated segmentation obtained by
our developed model. In general, the CNF segmen-
tation model reliably segmented all testing images in
each fold. The model achieved on average 86.1% ±
0.008% sensitivity and 90.1% ± 0.005% specificity with
an average area under the ROC curve (AUC) value of
0.88 ± 0.01 (Supplementary Fig. S2) during 10-fold
cross-validation.

Morphometric Parameter Assessment

The morphometric parameters of CNF number,
CNF length (mm), number of branching points, and
tortuosity were computed from the binary segmented
image. These are important clinical parameters to
analyze the CNF health status. Our software provides
all of these morphometric parameters automatically
from the binary segmented image. Figure 6 shows an
example image where the total CNFs number (sum of
red and orange) is 11, total nerve length is 3.59 mm
(density, 22.43 mm/mm2), number of branching points
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Figure 5. Three examples of CNF segmentation. (a–c) Original image, (d–f ) manually segmented CNFs, and (g–i) predicted CNFs by the
deep learning model.White marked arrows in the predicted images indicate the thin CNFs that were predicted by the deep learning model
but were not annotated in the ground-truth images.

is 9, and average tortuosity of the nerves present in the
frame is 1.18.

Morphological parameters from the automatically
segmented images from the test dataset of 10-fold
cross-validation were compared with the parameters

from the manually annotated images with the P values
(paired t-test) presented in the Table. The ICC of
CNF number, length, branching points, and tortuos-
ity were compared between automatic segmentation
and manual annotation, and the values were 0.85, 0.87,
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Figure 6. Example of an automatic CNF quantification from the segmented binary image of the deep learning model. (a) Original image,
and (b) binary segmented image with automatic quantification.

Table. Morphometric Parameter Analysis of 10-Fold CNF Testing Dataset

Mean ± SD

Parameter Manual Annotation Automatic Segmentation P

CNF number 10.14 ± 3.37 9.97 ± 3.26 0.06
CNF length (mm) 4.29 ± 3.81 4.30 ± 3.85 0.97
Branching points, n 6.45 ± 5.99 6.36 ± 5.85 0.31
Tortuosity 2.05 ± 1.34 2.00 ± 1.32 0.40

P values are between manual annotation and automatic segmentation.

0.95, and 0.88, respectively, for 1219 (∼122 × 10)
testing images from 10-fold cross-validation.

To determine the consistency between automatic
and manual segmentation, Bland–Altman analysis was
performed for CNF number, length (mm), branch-
ing points, and tortuosity. The results are presented
in Figure 7. A total of 1219 (∼122 × 10) test images
from 10-fold cross-validation were used for this analy-
sis.

ComparisonWith ACCMetrics

The total mean CNFL of 1219 (∼122 × 10)
test images from 10-fold cross-validation were 26.81
mm/mm2, 26.87 mm/mm2, and 13.94 mm/mm2 for
segmentation of manual ground truth, our proposed
method, and ACCMetrics, respectively. The remaining
quantification parameters from ACCMetrics software
are tabulated in the Supplementary Table.

To better understand the difference between the
proposed method and ACCMetrics, we performed
further in-depth analyses by grouping the image dataset
of 1219 images according to image quality: (1) high-
/average-quality images (∼691), defined by uniform
illumination and high contrast; (2) low-quality images
(∼428), defined by non-uniform illumination, contrast
variations, and artifacts; and (3) images of the endothe-
lial layer, epithelial layer, and stromal keratocytes
(∼100). For the high-/average-quality images, there
was better concordance between ACCMetrics (20.03
mm/mm2) and the deep learning–based method (29.84
mm/mm2). Also, there was concordance between both
methods in images of the endothelial layer, epithe-
lial layer, and stromal keratocytes (where there were
no nerves present). However, there was clear discor-
dance between ACCMetrics (7.36 mm/mm2) and the
deep learning–based method (22.98 mm/mm2) for low-
quality images containing artifacts such as nerves
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Figure 7. Bland–Altman plots present the consistency of CNF number, CNF length (mm), number of branching points, and tortuosity
betweenmanual annotation and deep learning segmentation methods. Themiddle solid line indicates the mean value of the twomethods,
and the two dotted lines indicate the limits of agreement (±1.96 SD). The gray bands indicate a confidence interval of 95%.

slightly out of focus, strong specular reflection, faint
nerves, nerves that are not continuous (interrupted),
speckle noise, and low contrast. Comparisons between
the ACCMetrics and deep learning–based segmenta-
tion methods for low-quality images are presented in
Supplementary Figure S3.

Dendritic Cell Detection

Training the DC detection model for 50 epochs,
in two stages, on the full training dataset with data
augmentation took approximately 3 hours per fold,
and DC detection from 75 test images took around
3 minutes 45 seconds on the described hardware
and software. A comparison between manual and
automatedDC detection of the test images is presented
in Figure 8. The model achieved on average 89.37% ±
0.12% precision, 94.43% ± 0.07% recall, and 91.83%
± 0.09% F1 score. The means of the total number of
DCs and DC size were 9.74 ± 7.74 and 11.41 ± 7.75

(P = 0.38) and 1269.40 ± 939.65 μm2 and 1296.84 ±
832.37 μm2 (P = 0.11), respectively, for 754 (∼75 × 10)
testing images from 10-fold cross-validation of manual
annotation and automatic segmentation.

Morphometric Parameter Assessment

The morphometric parameters of DC number,
size (μm2), and number of immature, transition-stage,
and mature cells were computed directly from the
binary segmented image. These are important clini-
cal parameters for analyzing corneal health status.
Our software provides all of these morphomet-
ric parameters automatically from binary segmented
images. Figure 9 shows an example image of automatic
DC segmentationwithmorphometric evaluationwhere
the total number of DCs was 20, with seven immature
cells (cell identification numbers 2, 4, 8, 10, 16, 17, and
20), one transition-stage cell (cell identification number
13), and 12 mature cells (cell identification numbers 1,
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Figure 8. Three examples of DC prediction by the deep learning model. (a–c) Original image, d–f ) predicted DC regions, and (g–i) overlay
of manual annotation and predicted DCs.

3, 5, 6, 7, 9, 11, 12, 14, 15, 18, and 19); DC density was
125.0 cells/mm2, and total cell size was 7555.34 μm2.

The Bland–Altman analysis was also performed on
754 (∼75 × 10) images from 10-fold cross-validation
to determine the consistency of manual annotation

and automatic segmentation of total DC number and
size (μm2), and the results are shown in Figures 10a
and 10b. Furthermore, the total number of segmented
cells without branches (dendrites) is shown in a scatter-
box plot (Fig. 10c), and the immature, transition-stage,
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Figure 9. DC segmentation and quantification. (a) Original image, (b) segmentation overlay with quantification parameters, and (c) skele-
tonized binary segmented image with cell identification numbers. The immature cell identification numbers are 2, 4, 8, 10, 16, 17, and 20;
the transition-stage cell identification number is 13; and the mature cell identification numbers are 1, 3, 5, 6, 7, 9, 11, 12, 14, 15, 18, 19.

Figure 10. Bland–Altman plots indicate the consistency of the total DC number (a) and size (μm2) (b) between manual annotation and
automatic segmentation. Themiddle solid line indicates the mean value of the two methods, and the two dotted lines indicate the limits of
agreement (±1.96 SD). The gray bands indicate a confidence interval of 95%. (c) Scatterbox plot of all segmented cells from the test images,
and (d) scatterbox plot of the number of immature, transition-stage, and mature cells identified in the test images.
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and mature dendritic cells are shown in a scatter-
box plot (Fig. 10d) where the length of most of
the immature cells (n = 6405) was between 10 and
20 μm (dense data point cloud). The lengths of the
mature cells (n = 972) and transition-stage cells (n
= 168) were evenly distributed. All 754 (∼75 × 10)
test images from 10-fold cross-validation were used to
analyze the results for immature, transition-stage, and
mature cells.

Discussion

In this study, fully automatic CNF and DC segmen-
tation and quantification methods have been devel-
oped for corneal IVCM images. To the best of our
knowledge, this is the first deep neural network–
based DC segmentation and evaluation method to be
proposed. This research study validates our deep learn-
ing methods and demonstrates segmentation perfor-
mance that is comparable with manual annotation
while reducing the amount of time required for analy-
sis. In particular, the methods we developed show high
interclass correlation between manual annotation and
automatic segmentation in quantification metrics. In
addition to automatic segmentation, our developed
methods provide fully automatic, quantitative, clinical
variables that can have utility in the diagnosis of dry eye
disease, neuropathic corneal pain, and other corneal
diseases.

IVCM images play an important role in the diagno-
sis of many corneal diseases in clinical practice. Clini-
cians must analyze the images multiple times to ensure
accurate results for disease diagnosis or scientific
research. During their manual analyses, clinicians may
quantify the CNFs or DCs differently at different
patient appointments which could lead to within-
observer variability. In addition, two different clini-
cians could quantify the same image of CNFs or DCs
differently, leading to between-observer variability.
Therefore, a fully automatic quantitative evaluation of
IVCM images is needed to obtain stable, constant, fast,
and reproducible results. Unlike traditional feature
engineering, deep neural network–based automatic
segmentation is comparatively easier and faster
than the conventional image processing approaches
where various types of filters and graphs have been
used.28–31 In contrast to conventional machine learn-
ing methods such as support vector machine,29 the
deep learning–based method eliminates the need for
manual feature selection and extraction and allows the
machine to learn complex features using hundreds of
filters.

We developed a new method of automatically
characterizing corneal nerves into main trunk nerves
and branching nerves for further morphometric analy-
sis after segmentation using a deep neural network.
Our trained model achieved on average 86.1% sensi-
tivity and 90.1% specificity and AUC of 0.88 on the
test dataset during cross-validation. We automatically
calculated average nerve tortuosity, total nerve density,
and total number of branch points, which have been
shown to be useful clinical parameters to measure the
severity of DED and ocular pain.7,8,12 Our work builds
upon the first deep learning–based CNF segmentation
and evaluation method based on U-Net architecture,
which was proposed byWilliams et al.43 This approach
achieved ICC of 0.933 for total CNF length, 0.891 for
branching points, 0.878 for number of nerve segments,
and 0.927 for fractals between manual annotation
and automatic segmentation (Liverpool Deep Learn-
ing Algorithm (LDLA) method) but had a different
method for corneal nerve characterization. Williams et
al.43 calculated the total number of nerve segments by
calculating the nerve segments between two branch-
ing points, two end points, or an end and a branch-
ing point, and they used fractal dimensions to describe
the nerve curvature. Supplementary Figure S4 illus-
trates the difference between the method of Williams
et al.43 and our new proposal for detecting the trunk
and branch nerves, highlighting the difference in total
nerve count. Our work also differs in the loss function
used. Williams et al.43 used the Dice similarity coeffi-
cient as a loss function, whereas we used clDice,55 a
state-of-the-art topology preserving loss function that
preserves connectivity among the segmented nerves.
Another recent deep learning–based CNF segmen-
tation based on U-Net was proposed by Wei et
al.44 This method achieved 96% sensitivity and 75%
specificity for segmenting CNFs from IVCM images.
In contrast, our U-Net–based model has achieved
86.1% sensitivity and 90.1% specificity for segmenting
CNFs and provides validated automatic morphometric
evaluation parameters such as the number of nerves,
nerve density, nerve length, branching points, and
tortuosity. Furthermore, our proposedmethod demon-
strates better performance compared to ACCMetrics
for low-quality images. In particular, average CNFL
per segment obtained by our proposed method are
closer to those obtained bymanual annotation than the
values obtained by ACCMetrics. By comparing both
methods with regard to the image quality of the dataset
used, we found that there is a higher requirement
for image quality when using ACCMetrics to calcu-
late CNFL, as out-of-focus, faint, or thinner nerves
on the images cannot be detected properly. This is
in agreement with previous studies using ACCMetrics
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in which only images with high optical quality with
regard to brightness, contrast, and sharpness were
selected for the analysis.69,70 In this context, Williams
et al.43 proposed further research on interrupted CNF
segments. Our proposed deep learning model was
trained using low-quality images; thus, it seems able
to segment more nerves in the category of low-quality
images.

We have proposed a new method of automati-
cally differentiating among immature, transition-stage,
and mature DCs for different pathological (dry eye,
diabetic, and neuropathic corneal pain) patient data,
along with cell density and cell size after the segmen-
tation, using a deep neural network. This method
could be a potential image-based biomarker to differ-
entiate the severity of patients among the different
pathological patient groups. However, in our future
work, we will correlate these findings with clinical
information for various patient groups. To segment
DCs, we used the instance segmentation algorithm
Mask R-CNN,57 which is different from the seman-
tic segmentation algorithm U-Net.51 Mask R-CNN
first predicts the bounding boxes that contain a DC,
then segments the DC inside the bounding box. There-
fore, the Mask R-CNN has the potential to detect
objects more accurately than U-Net71,72; however, it
struggles to predict good segmentation masks inside
the bounding box.71 A previous study71 in microscopy
image segmentation found that the two-step CNN
process of the Mask R-CNN enables more precise
localization compared with the single-step CNN used
in typical U-Net architectures. For DCs, determin-
ing accurate localization and number is important;
therefore, we compromised on accurate segmenta-
tion of dendritic cell border in favor of focus-
ing on precise localization and determining accurate
numbers.

In this research study, our results demonstrate
that the methods we have developed can reliably
and automatically segment and quantify CNFs and
DCs with rapid speed. The average individual image
segmentation and quantification time for CNFs was
approximately 4.5 seconds, whereas for DCs it was
approximately 3 seconds (based on the mentioned
software and hardware). Our developed deep neural
network–based methods significantly reduce image
analysis time when applied to a large volume of clinical
images. Manual annotation and automated segmenta-
tion of the same images appear similar, with important
features segmented in both methods. Overall, the newly
developed CNN models significantly reduce compu-
tational processing time while providing an objective
approach to segmenting and evaluating CNFs and
DCs.

Further studies are needed to identify the feasibility
of implementing these methods in clinical practice and
diagnostic devices. The CNF images that were acquired
from Peking University Third Hospital in China and
the DC images obtained from University Hospital
Cologne in Germany were based on a small group
of patients. Therefore, a larger patient cohort data in
other racial populations could potentially enhance the
strength and generalizability of the developedmethods.
Finally, the developed software should be assessed
using different types of IVCM devices.

Conclusions

Deep neural network–based fully automatic CNF
andDC segmentation and quantificationmethods have
been proposed in this work. Automatic and objective
analysis of IVCM images can assist clinicians in the
diagnosis of several corneal diseases, thereby reducing
user variability and time required to analyze a large
volume of clinical images. Our results demonstrate that
the deep learning–based approaches provide automatic
quantification of CNFs and DCs and have the poten-
tial to be implemented in clinical practice for IVCM
imaging.
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