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Targeting oxidative stress for the 
treatment of ischemic stroke: 
Upstream and downstream therapeutic 
strategies
Wenjun Li, Shaohua Yang

Abstract:
Excessive oxygen and its chemical derivatives, namely reactive oxygen species (ROS), produce oxidative stress 
that has been known to lead to cell injury in ischemic stroke. ROS can damage macromolecules such as proteins 
and lipids and leads to cell autophagy, apoptosis, and necrosis to the cells. This review describes studies on 
the generation of ROS, its role in the pathogenesis of ischemic stroke, and recent development in therapeutic 
strategies in reducing oxidative stress after ischemic stroke.
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Introduction

Reactive oxygen species (ROS) are a group of 
reactive oxygen‑containing molecules that 

readily react with macromolecules resulting 
in irreversible functional alterations or even 
complete destruction. While ROS play crucial 
roles in human physiological processes, ROS 
overproduction is a noteworthy feature of 
ischemic stroke and ROS is an important 
mediator of ischemic damage. Significant 
progress has been made in understanding the 
mechanisms underlying ROS‑induced brain 
damage after ischemic stroke. Accordingly, 
anti‑ROS approaches have been extensively 
explored for the treatment of ischemic stroke, 
including both upstream and downstream 
strategies. The upstream strategies focus 
on attenuating the ROS production from 
different sources after ischemic stroke while the 
downstream strategies target neutralizing ROS 
and/or disabling the subsequent detrimental 
actions. Although the protective effects of 
antioxidants against ischemic stroke have been 
demonstrated in experimental ischemic stroke 
models in numerous studies, all antioxidant 
treatments have failed to provide therapeutic 
effects in clinical trials. Despite their detrimental 
effects, ROS play very important roles in normal 

physiological process and homeostasis, such as 
synaptic activity, vascular tone regulation, and 
inflammatory response. Further studies on the 
mechanism of ROS in ischemic damage should 
lead to more specific targeting or combination 
treatments that may reduce their detrimental 
effects without interfering their normal functions.

Functions of Reactive Oxygen Species 
under Normal Physiological Conditions

Under normal physiological conditions, ROS 
play important roles in many biological processes 
including cell signaling, gene transcription 
regulation, immune response, and apoptosis. 
ROS work as the second messengers during 
signal transduction of many growth factors, such 
as epidermal growth factor, platelet‑derived 
growth factor, and NK1.[1,2] They also regulate 
the activities of many transcription factors, such 
as of p53 and nuclear factor‑kappa B  (NF‑κB), 
by oxidative modification of the proteins.[3,4] 
Oxidative burst, which is the massive production 
of ROS in immune cells such as neutrophils and 
macrophages, is an important defense mechanism 
against foreign pathogens. Insufficient ROS 
production caused by nicotinamide adenine 
dinucleotide phosphate  (NADPH) oxidase 
deficiency is responsible for the recurrent 
infections in patients with chronic granulomatous 

Address for 
correspondence:  
Dr. Shaohua Yang, 

Center for Neuroscience 
Discovery, University 

of North Texas Health 
Science Center, 

3500 Camp Bowie 
Blvd., Fort Worth, 

TX 76107‑2699, USA. 
E‑mail: shaohua.yang@

unthsc.edu

Submission: 26‑04‑2016
Revised: 04-07-2016

Accepted: 13‑07‑2016

Center for 
Neuroscience 

Discovery, University 
of North Texas 
Health Science 

Center, Fort Worth, 
TX 76107, USA

Access this article online
Quick Response Code:

Website:
http://www.braincirculation.org

DOI:
10.4103/2394-8108.195279

Review Article

How to cite this article: Li W, Yang S. Targeting 
oxidative stress for the treatment of ischemic stroke: 
Upstream and downstream therapeutic strategies. 
Brain Circ 2016;2:153-63.

This is an open access article distributed under the terms of the Creative 
Commons Attribution‑NonCommercial‑ShareAlike 3.0 License, which 
allows others to remix, tweak, and build upon the work non‑commercially, 
as long as the author is credited and the new creations are licensed under 
the identical terms.

For reprints contact: reprints@medknow.com



Li and Yang: Targeting oxidative stress after stroke

154	 Brain Circulation - Vol 2, Issue 4, October 2016

disease.[5,6] Apoptosis, which is programmed cell death, is 
important during development and for clearance of unhealthy 
cells. ROS can initiate both extrinsic and intrinsic apoptosis 
through various signaling pathways, such as activation of death 
receptors, damage to mitochondrial DNA, and activation of 
c‑Jun N‑terminal kinases.[7] However, during ischemic stroke, 
the amount of ROS is much more than what is needed for 
normal physiological functions and generates detrimental 
effects in the brain.

Reactive Oxygen Species Generation in Ischemic 
Stroke

ROS, including superoxide anion, peroxide, hydroxyl radical, 
and singlet oxygen, are reactive molecules; thus, their 
concentration is difficult to measure directly in the brain.[8,9] 
Excessive ROS generation after stroke is mainly indirectly 
supported by the protective effects of ROS scavengers.[10‑14] 
In human stroke patients, oxidation of serum albumin was 
increased, which can be attributed to the oxidation of amino 
acid residues by ROS.[15] Direct measurement of ROS using an 
in vivo chemiluminescence method through a closed cranial 
window in a rat middle cerebral artery occlusion  (MCAO) 
model found a steady increase of ROS production after 
occlusion.[16] Reperfusion may induce the second phase of 
ischemia/reperfusion injury and precipitate the generation of 
ROS that is fueled by the reintroduction of oxygen molecules 
to the ischemic tissue. The second peak of ROS generation 
was detected in rodents during reperfusion after MCAO.[16‑18]

The mitochondrial electron transport chain is an important 
source of ROS.[19] Under normal conditions, mitochondria 
reduce O2 to H2O by cytochrome c oxidase in Complex IV of the 
electron transport chain. In isolated mitochondria, only 0.1–2% 
of the oxygen is reduced by the mitochondria to generate 
ROS.[20] At least seven sites in the mitochondria have been 
identified that can partially reduce oxygen to generate ROS.[21‑26] 
Ubiquinone‑cytochrome b region of the electron transport chain 
has been proposed as the major site for ROS production during 
ischemia.[27] A recent study identified succinate accumulated 
during ischemia as a potential mitochondrial metabolite that 
drives extensive ROS production.[28]

NADPH oxidase  (NOX) is an enzyme complex on the cell 
membrane. It is another important source of ROS generation in 
ischemic stroke.[29] NOX is an enzyme made up of six subunits 
that generate superoxide by transferring electrons from 
NADPH across the cell membrane to oxygen molecules. ROS 
generation by NOX has been known for decades to contribute 
to the respiratory burst in neutrophils that provide a defense 
against bacteria.[30,31] A family of NOX has been identified: 
NOX1, NOX2, NOX3, NOX4, NOX5, and Dual Oxidase 1 and 
2 (Duo × 1 and Duo × 2). NOX subunits are widely expressed 
in different regions of the brain.[32‑34] Upregulation of NOX2 and 
NOX4 expression was observed after ischemic stroke.[35,36] NOX2 
drives neuronal ROS production in ischemic stroke[37] and is the 
major contributor of N‑methyl‑D‑aspartate receptor activated 
superoxide production.[38] Both NOX1 and NOX2 knockout in 
mice reduced lesion volume after stroke.[39‑41] Increased NOX 
expression and activity after MCAO also mediated matrix 
metalloproteinase‑9 (MMP‑9) upregulation and contributed to 
blood–brain barrier (BBB) damage.[42] Proteolytic degradation 

of zonula occludens by MMP‑9 contributed to BBB damage 
in ischemic stroke.[43] NOX2 knockout also attenuated MMP‑9 
upregulation in ischemic stroke and reduced BBB damage.[44] 
NOX4 knockout also protected the brain from oxidative stress 
after stroke.[45]

Xanthine oxidase (XO) is also a source of ROS during ischemic 
stroke. XO is a molybdo-flavin enzyme  that catalyzes the 
conversion of hypoxanthine to xanthine and xanthine to 
urate. This enzyme exists in two interconvertible forms: an 
NAD‑dependent dehydrogenase (xanthine dehydrogenase) 
and oxygen‑dependent superoxide production oxidase (XO). 
XO has higher affinity to O2 than NAD+  and hydrogen 
peroxide is the major product of XO.[46,47] Ischemia increased 
the activity of XO in rat brain.[48,49] XO is an important 
source of superoxide anion radicals in blood after forebrain 
ischemia/reperfusion in rat[50] and hydrogen peroxide 
derived from XO contributed brain edema induced by 
ischemia/reperfusion in gerbils.[51]

Other intracellular enzymes that catalyze the production of 
ROS include cyclooxygenases (COXs), lipoxygenases (LOXs), 
and cytochrome P450 enzymes. These enzymes are involved 
in the metabolism of free arachidonic acid released from cell 
membrane phospholipids during ischemia. COX metabolism 
of arachidonic acid has been proposed as a major source of 
superoxide generation during reperfusion in ischemic piglet 
brain.[52]

Functions of Reactive Oxygen Species in Ischemic 
Stroke

Under normal conditions, ROS production in the brain is 
balanced by the endogenous enzymatic and nonenzymatic 
antioxidative mechanisms. The enzymes include superoxide 
dismutase  (SOD), glutathione peroxidase  (GPX), and 
catalase  (CAT). SOD catalyzes dismutation of superoxide 
to hydrogen peroxide, providing the first line against ROS 
damage.[53,54] GPX and CAT further metabolize hydrogen 
peroxide to water and oxygen.[55,56] Nonenzymatic endogenous 
antioxidative small molecules also play very important roles in 
defending against oxidative stress, especially in extracellular 
spaces where the enzymes are absent or in very low 
levels.[57] Small‑molecule antioxidants can be water‑soluble or 
lipid‑soluble, and these molecules include glutathione (GSH), 
Vitamins E and C  (inhibits oxidation of membrane lipid), 
N‑acetylcysteine  (NAC), and melatonin. In humans, levels 
of most antioxidants  (Vitamins A, E, and C) were reduced 
immediately after an acute ischemic stroke,[58] probably due to 
the larger amount of ROS produced that cannot be balanced 
by endogenous antioxidants. In normal conditions, ROS play 
beneficial roles in regulating many important cellular processes, 
such as gene expression, cell proliferation and migration, and 
immune response.[59,60] However, when ROS produced during 
ischemic stroke exceed the need for maintaining normal 
functions and cannot be balanced by endogenous antioxidants, 
they can cause excessive damage.

ROS can interact with amino acids in protein molecules and 
cause protein modification or degradation. It can also react 
with the side chains and the backbone of protein, which 
can lead to protein oxidation, peptide bond cleavage, and 
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protein degradation.[61‑63] ROS oxidation of protein can lead 
to protein‑protein cross‑linkage and aggregation.[64,65] Protein 
oxidation can lead to functional changes of the proteins, such as 
enzyme inactivation[66] or ion channel activity modification.[67] 
Ischemic stroke causes extensive protein oxidation in human[68] 
and animal models of stroke.[69] Oxidative inactivation of 
glutamine synthetase, which catalyzes the conversion of 
glutamate to glutamine in astrocytes to protect neurons against 
excitotoxicity,[70] has been proposed as an important factor in 
the neurotoxicity caused by cerebral ischemia in gerbil brains.[71]

Lipid peroxidation, which is the oxidative degradation 
of lipids, by ROS is more damaging than protein oxidant 
to cells during ischemic stroke.[72,73] Lipid peroxidation by 
ROS leads to a self‑propagation of free radical reaction. 
ROS attack lipids containing carbon‑carbon double bonds, 
especially polyunsaturated fatty acids, producing lipid 
radicals. Lipid radical is not stable and can react with oxygen 
and form lipid peroxyl radical; lipid peroxyl radical can 
react with other lipid acids to generate another lipid radical 
and lipid peroxide.[74,75] Two lipid radicals react to form end 
products of lipid peroxidation‑reactive aldehydes, such as 
malondialdehyde  (MDA) and 4‑hydroxynonenal  (4‑HNE). 
MDA and HNE have been used as markers for lipid 
peroxidation.[76‑78] MDA can react with amino acids in 
proteins and other molecules to form its adducts such 
as malondialdehyde‑acetaldehyde and advanced lipid 
peroxidation end‑products, which can produce secondary 
deleterious effects by promoting intra‑  or inter‑molecular 
protein or DNA crosslinking to cause protein modification 
and DNA damage/mutation.[79‑83] 4‑HNE is a very reactive 
compound with three reactive groups: an aldehyde, a 
double‑bond, and a hydroxyl group.[84] 4‑HNE is a second 
messenger that can regulate several transcription factors such as 
nuclear factor erythroid 2‑related factor 2, activating protein‑1, 
NF‑κB, and peroxisome‑proliferator‑activated receptors.[85‑89] 
4‑HNE also regulates major cell signaling pathways, such as 
MAPK and PI3K/AKT.[90‑93] Lower nontoxic concentrations of 
4‑HNE are beneficial to cells by promoting cell proliferation, 
differentiation, antioxidant defense, and anti‑inflammation 
while high concentrations of 4‑HNE induce cell apoptosis.[94‑96] 
Increased lipid peroxidation has been found in human stroke 
patients[97‑101] as well as rat cerebral ischemia models[102,103] and 
has been proposed to play an important role in cell death by 
ischemic stroke.

ROS break DNA double strands, cause intra‑ and inter‑strand 
crosslinks, protein‑DNA crosslinks, DNA mutations, and DNA 
structural changes.[104] 8‑hydroxy‑2V‑deoxyguanosine (8OHdG) 
is one of the most common products of oxidative damage of 
DNA[105,106] and increased levels of 8OHdG suggested extensive 
DNA oxidation, which precedes DNA fragmentation, in 
ischemic stroke in rat.[69,107,108]

Therapeutic Strategies to Reduce Oxidative Stress 
for Treatment of Ischemic Stroke

In ischemic stroke, oxidative stress is created by the excessive 
ROS, whose effects cannot be balanced by endogenous 
antioxidants, resulting in wide‑spread damages by oxidation 
of lipid acid, protein, and DNA, which lead to cell death. 
To counteract this oxidative stress, different strategies have 

been proposed to target the pathways from upstream ROS 
production to their downstream effects on macromolecules.

Reactive oxygen species scavenger
ROS scavenger, such as vitamins, NAC, and lipoic acid (LA), 
are the most commonly used antioxidants. Vitamin E is a 
potent, lipid‑soluble antioxidant. It can interrupt the chain 
reaction of free radical production during lipid peroxidation 
by ROS. Vitamin E has been reported to be protective in rodent 
ischemic stroke models as shown by reduced lesion volume 
and lessened behavioral impairments.[109‑111] MDL 74,722, a 
Vitamin E analog, has been reported to reduce lesion volume 
in the rat MCAO model.[112] It has been reported that Vitamin 
C is protective in both rodent and primate models of ischemic 
stroke.[113‑115] However, a follow‑up study in human showed 
that food supplement of Vitamin E and Vitamin C did not 
reduce the risk for ischemic stroke.[116] Vitamin C did not 
improve functional recovery in ischemic stroke patients.[117] 
High dose of Vitamin E has been suggested to increase all‑cause 
mortality.[118,119] Dehydroascorbic acid  (DHA), a blood–brain 
barrier transportable form of Vitamin C, has shown potent 
protective effects in ischemic stroke in mice.[120] However, 
preclinical investigation of DHA in an ischemic stroke model 
in adult baboons did not show any protective effect.[121] EPC‑K1, 
a phosphate diester of Vitamins C, has been found to reduce 
lesion size and lipid peroxidation in the rat MCAO model.[122,123] 
The disappointing results from clinical trials of vitamins in 
ischemic stroke may suggest that food supplementation or 
intake of vitamins has little effect on the tightly regulated 
endogenous pathways.

Edaravone  (5‑methyl‑2‑phenyl‑4H‑pyrazol‑3‑one) is a free 
radical scavenger that has been approved for the treatment 
of stroke in Asia since 2002. Edaravone is lipophilic and can 
readily cross the BBB.[124] Several clinical trials in Japan have 
shown that Edaravone treatment was beneficial for a subset of 
stroke patients.[125‑128] Decreased lesion size, attenuated MMP‑9 
activation, and reduced BBB damage after ischemia were 
reported in rodent stroke models treated with Edaravone.[129] 
Edaravone also reduced recombinant tissue plasminogen 
activator (rtPA)‑induced BBB damage in rodents, suggesting 
Edaravone as a promising candidate to expand the time 
window of rtPA treatment.[130,131] Future clinical trials may 
expand the use of Edaravone for the treatment of ischemic 
stroke in other countries.

NXY‑059 is  (Disufenton sodium) a broad‑spectrum 
nitrone‑based free radical scavenger.[132] This compound 
reduced lesion volume in rats after permanent MCAO.[133] 
NXY‑059 also improved motor function of monkeys after 
permanent MCAO.[134] A Phase III clinical trial published in 
2006 reported that NXY‑059 administered within 6 h after acute 
ischemic stroke reduced disability at 90 days.[135,136] However, 
a following larger clinical trial failed to support the efficacy of 
NXY‑059 for acute ischemic stroke.[137,138]

NAC is an antioxidant that has a free thiol group capable 
of reacting with ROS; it is a GSH precursor which can exert 
an indirect antioxidant effect.[139] NAC has been reported to 
reduce lesion volume and improve neurological score in rat 
MCAO models;[140,141] it also increased hippocampal neuron 
survival in a transient forebrain ischemia model in rat.[142] GSH 
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monoethyl ester, which can be effectively transported into cells 
and converted to GSH, has been reported to be protective in a 
rat ischemic stroke model.[143]

LA can react with ROS and it also recycles Vitamin E and 
Vitamin C.[144] LA reduced mortality rate of rats after cerebral 
ischemia.[145] LA pretreatment reduced lesion volume in 
rat MCAO model when administered 30  min before the 
collusion.[145] A recent study further indicated that infusion 
of LA through the jugular vein immediately after reperfusion 
reduced lesion volume and promoted functional recovery in 
rat MCAO model.[146]

Tiri lazad  (U‑74006F)  is  a  synthet ic  l ipid‑soluble 
nonglucocorticoid. It is an inhibitor of lipid peroxidation as 
well as an antioxidant and free radical scavenger.[147] Tirilazad 
reduced lesion volume and attenuated neurological deficits 
in a rat permanent MCAO model;[148] another study reported 
that tirilazad reduced lesion volume after transient but not 
permanent focal cerebral ischemia in rats.[149] A meta‑analysis 
of the efficacy of tirilazad in experimental stroke concluded 
from 18 studies that tirilazad reduced infarct volume by 29.2% 
and improved neurobehavioral score by 48.1%.[150] A clinical 
trial (RANTTAS) with 660 patients found that 6 mg/kg per day 
for 3 days dose did not improve overall functional outcome.[151] 
A following clinical trial of higher dose (12–15 mg/kg per day) 
in acute ischemic stroke found that tirilazad treatment reduced 
mortality and increased functional recovery in both men and 
women.[152] However, a meta‑analysis of 4 published and 2 
unpublished clinical trials concluded that tirilazad increased 
death and disability in acute ischemic stroke patients, which 
precludes future trials of the drug.[153]

Citicoline is a natural compound that is an intermediate in the 
generation of phosphatidylcholine from choline.[154] Citicoline 
can stabilize cell membranes and reduce free fatty acid release 
caused by lipid peroxidation during ischemia.[155] Many studies 
have examined its protective effects in animal models of stroke. 
A meta‑analysis of fourteen studies concluded that citicoline 
reduced lesion volume by 27.8%.[156] Several clinical trials of 
citicoline for the treatment of stroke have been conducted.[157‑159] 
One of the trials reported that citicoline improved functional 
outcome and reduced neurologic deficit.[157] Although the 
other two studies concluded that citicoline was ineffective 
in improving functional outcomes,[158,159] a pooled analysis of 
data from four clinical trials found that citicoline was safe and 
promoted recovery after acute ischemic stroke.[160] In 2012, the 
International Citicoline Trial on Acute Stroke reported that 
citicoline was not efficacious for moderate‑to‑severe acute 
ischemic stroke.[161] GM1‑ganglioside, which may also stabilize 
membranes, was tested in clinical trials; however, the results 
did not support improved outcome after treatment.[162‑164]

Reactive oxygen species degradation
ROS can be degraded by SOD and CAT, which makes them 
candidates for stroke treatment. Intravenous administration 
of polyethylene glycol‑conjugated SOD (PEG‑SOD) and CAT 
(PEG-CAT) reduced infarct volume in rats.[10] PEG‑SOD or 
recombinant human SOD alone also reduced ischemic damage 
in animals.[165‑167] Synthetic combined superoxide dismutase/
CAT mimetics EUK‑134 and EUK‑8 reduced infarct volume 
when administered 3  h after MCAO.[14] A SOD mimetic, 

M40401, generated a protective effect in gerbil ischemic 
stroke models;[168] it also reduced infract size and improved 
neurological score when administered either before or after 
MCAO in rat.[169]

Reducing reactive oxygen species generation in ischemic 
stroke
Failure of ROS scavengers in ischemic stroke clinical trials 
suggests that it may be very difficult to eliminate the 
detrimental effects of ROS when it is already generated. 
Attenuating excessive ROS production after onset of ischemic 
stroke might provide a more effective strategy for treatment 
of ischemic stroke. In animal stroke models, excessive ROS 
generation persisted through occlusion and there is even a 
second perk of ROS generation after reperfusion, suggesting 
that there could be a time windows for treatment to reducing 
ROS generation after occurrence of occlusion.

NOX inhibition has been proposed as a strategy to reduce 
oxidative stress in ischemic stroke by reducing ROS 
generation.[170,171] NOX inhibitor apocynin has been extensively 
studied for stroke treatment, and several studies have reported 
its protective effect against ischemic stroke.[172‑175] NOX 
inhibitor diphenyleneiodonium (DPI) was protective in a rat 
MCAO model when administered with dimethyl sulfoxide;[176] 
however, DPI is not a specific NOX inhibitor.[177] A more specific 
NOX inhibitor, VAS2870, has been found to reduce stroke 
lesion volume and improve long‑term neurological functions 
in mice.[45] However, recent study indicated that VAS2870 has 
significant off‑target effects.[178] NOX inhibition is an important 
strategy to reduce ROS production in ischemic stroke; however, 
it is still not clear which NOX isoform and what cell types 
play a major role in NOX ROS production during ischemic 
stroke.[45,170] Further studies are warranted to examine the 
underlying mechanism and develop/test more specific NOX 
inhibitors, such as gp91ds‑tat[179] and GKT136901,[180] for the 
treatment of ischemic stroke.

XO inhibitor allopurinol has shown some beneficial effects on 
inflammatory indices in ischemic stroke patients in clinical 
trial[181] although a following clinical trial was not able to find any 
beneficial effect in patients with subcortical stroke.[182] A recent 
clinical trial indicated that allopurinol was well tolerated and 
improved the 3‑month functional status of acute ischemic stroke 
patients with high levels of serum uric acid.[183] Beneficial effects 
of allopurinol in ischemic stroke have been found in many 
studies using different animal stroke models.[51,184‑188] As a drug 
that has been approved by the Food and Drug Administration 
and has been used in humans for many years, allopurinol is 
a very promising candidate for stroke treatment. However, 
allopurinol can also reduce XO and generate superoxide 
when inhibiting its activity.[189] Many other small molecule 
XO inhibitors have been developed, such as TEI‑6720,[190] 
febuxostat,[191] Y‑700,[192] and BOF‑4272;[193] it may be interesting 
to test their effects in ischemic stroke considering their reported 
improved potency and/or efficacy compared to allopurinol.

COX‑2 knockout in mice decreased infarct volume after MCAO[194] 
while COX‑2 overexpression increase infarct volume.[195] COX‑2 
inhibitor NS‑398 reduced infarct volume and behavioral deficits 
in mice after MCAO model.[196,197] 12/15‑LOX knockout mice 
also exhibited smaller lesion volume after transient MCAO.[198] 
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12/15‑LOX inhibitor LOXBlock‑1 reduced infarct size in mouse 
MCAO model; it also reduced rtPA‑induced hemorrhage in a 
distal MCAO clot stroke model.[199] Baicalein, a natural product 
and specific inhibitor of 12/15‑LOX, reduced lesion volume and 
behavioral deficits in rodent stroke models.[198,200,201]

Mitochondrion is an important source of ROS. CoQ10 is a 
component of the mitochondrial electron transport chain. When 
administered, CoQ10 can accumulate in the mitochondria[202] 
and has been found to be protective against ischemia in various 
animal models of stroke, which can be attributed to its role as 
a potent antioxidant and ROS scavenger in mitochondria.[203‑205] 
CoQ10 belongs to the mitochondria‑targeted antioxidant (MTA) 
family.[206] CoQ10 is also an endogenous antioxidant.[207,208] 
Therefore, CoQ10 has dual therapeutic benefits by enhancing 
electron transport chain efficiency and simultaneously acting as 
an ROS scavenger. However, recent clinical trial for Parkinson’s 
showed that CoQ10 did not slow disease progression.[209]

Another MTA, MitoQ10, can accumulate in the mitochondria[210] 
and has been reported to reduce mitochondrial oxidative 
damage. MitoQ10 has been reported to be effective in 
many disorders, including Alzheimer’s disease, Parkinson 
Disease, cardiac ischemia, and hypertension.[211‑214] It is an 
interesting candidate for stroke treatment. Mild uncoupling 
of mitochondrial respiration and phosphorylation has 
been proposed as a strategy to reduce mitochondrial ROS 
production.[215,216] A cationic uncoupler SkQR1 has been shown 
to reduce lesion volume after ischemic stroke in rat.[216]

We have reported that methylene blue (MB) can shuttle electrons 
between NADH and cytochrome c and bypass Complex I/III 
blockage, which reduced electron leakage and ROS generation.[217] 

Our study and other studies have indicated that MB is protective 
against ischemic stroke.[217‑220] MB is a small molecular that can 
easily cross the BBB,[221] and it can be reoxidized by cytochrome 
c and reused for electron shuttling. MB and its derivatives as 
regenerable antioxidants that target mitochondria to reduce 
ROS production and provide neuroprotection are promising 
candidates for the treatment for ischemic stroke.[217,222]

Conclusion

ROS are  generated from various sources  during 
ischemia‑reperfusion, with mitochondrial electron transport 
chain as one of the most important sources. While most 
previous studies and clinical trials for ischemic stroke focused 
on ROS scavengers, more studies should be conducted to 
develop and test agents that can reduce ROS generation after 
onset of stroke, especially from mitochondria. The combination 
of the upstream and downstream therapeutic strategies should 
also be considered in the future studies [Figure 1].
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