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Abstract: Perfluorinated and polyfluoroalkyl substances (PFASs) are known for their long-distance
migration, bioaccumulation, and toxicity. The transport of PFASs in the environment has been a
source of increasing concerned. The organic carbon normalized sorption coefficient (Koc) is an impor-
tant parameter from which to understand the distribution behavior of organic matter between solid
and liquid phases. Currently, the theoretical prediction research on log Koc of PFASs is extremely
limited. The existing models have limitations such as restricted application fields and unsatisfactory
prediction results for some substances. In this study, a quantitative structure–property relationship
(QSPR) model was established to predict the log Koc of PFASs, and the potential mechanism affecting
the distribution of PFASs between two phases from the perspective of molecular structure was
analyzed. The developed model had sufficient goodness of fit and robustness, satisfying the model
application requirements. The molecular weight (MW) related to the hydrophobicity of the com-
pound; lowest unoccupied molecular orbital energy (ELUMO) and maximum average local ionization
energy on the molecular surface (ALIEmax), both related to electrostatic properties; and the dipole
moment (µ), related to the polarity of the compound; are the key structural variables that affect
the distribution behavior of PFASs. This study carried out a standardized modeling process, and
the model dataset covered a comprehensive variety of PFASs. The model can be used to predict
the log Koc of conventional and emerging PFASs effectively, filling the data gap of the log Koc of
uncommon PFASs. The explanation of the mechanism of the model has proven to be of great value
for understanding the distribution behavior and migration trends of PFASs between sediment/soil
and water, and for estimating the potential environmental risks generated by PFASs.

Keywords: perfluorinated and polyfluoroalkyl substances; organic carbon normalized sorption
coefficient; quantitative structure–property relationship; distribution behavior

1. Introduction

Perfluorinated and polyfluoroalkyl substances (PFASs), as a class of synthetic aliphatic
compounds [1,2], have be widely used in industrial production and daily consumer prod-
ucts because of their hydrophobicity, oleophobicity, thermal stability, and chemical stabil-
ity [3,4]. Up to now, PFASs and their precursors have been found in water, atmosphere,
soil, sediment, and other environmental media [5–8]. Generally, the concentration of
PFAS in these environmental media is within the scale range of ng·L−1, but in some areas
with serious pollution (i.e., around fluorine chemical plants), the concentration of PFAS
in water can reach the scale range of mg·L−1 [9]. PFASs can enter the human body and
accumulate through drinking water, the food chain, and in other ways [10,11], and when a
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certain threshold is reached, they will produce corresponding toxic effects, such as neuro-
logical, reproductive, liver, and endocrine toxicity, which can seriously endanger human
health [12–16].

Sediment, soil, and water are important sinks for PFASs [1,10,17]. The accurate
measurement of the organic carbon normalized sorption coefficient (Koc) of PFASs can
reflect their distribution behavior between sediment/soil and water [18–20], which is crucial
for their environmental fate and risk assessment. So far, many studies have been undertaken
on the distribution behavior of traditional PFASs, such as perfluorinated carboxylic acids
(PFCAs) and perfluoroalkyl sulfonic acids (PFSAs), but there are few studies on that of
emerging PFASs. PFASs are composed of a carbon skeleton and hydrophilic groups, where
the hydrogen atoms connected to the carbon skeleton are partially or completely replaced
by fluorine atoms [1,2]. From a structural perspective, both conventional and emerging
PFASs are dominated by the carbon skeleton. However, the substituents on the skeleton and
the functional groups at the ends have an important impact on the environmental transport
characteristics of the compounds. Previous studies have shown that the migration of PFASs
in different environmental media is closely related to their structural factors, such as their
carbon chain length, substituents, and functional groups [17,21]. For instance, for the two-
phase medium of sediment/soil and water, there is a linear relationship between the Koc of
PFASs and the number of perfluorinated carbon (CF). In general, the Koc increases with the
number of CF, while PFASs with a sulfonic group have a larger Koc than similar compounds
containing a carboxyl group [21]. The lack of research on the environmental migration
law of emerging PFASs results from the variety of PFASs, the fact that their derivatives
appeared one after another, and the insufficient understanding of their physicochemical
properties. At the same time, the experimental measurement of Koc is not only cumbersome
and costly but may also pose environmental pollution and human health risks in large-scale
experiments. However, it is possible to quickly fill the data gap syrrounding the log Koc
of PFASs at low experimental cost by constructing a mathematical model based on the
structural characteristics of PFASs to predict their Koc.

The quantitative structure–property relationship (QSPR) model is a theoretical pre-
diction tool with a rapid development and a wide application range. It establishes a
functional relationship between the molecular structure of compounds and their properties
to effectively predict the compounds’ properties [22,23]. The QSPR model can be used to
predict the partition coefficient of various organic pollutants with high efficiency, such as
the partition coefficient of polycyclic aromatic hydrocarbons (PAHs) between polydimethyl-
siloxane (PDMS) and water [24], the partition coefficient of polychlorinated biphenyls
(PCBs) between low-density polyethylene and water [25], and the partition coefficient of
PFASs between gas and particles [2]. To date, few studies have employed PFASs as a unique
research object to construct QSPR models for predicting their log Koc [26,27]. A previous
study reported the log Koc of 824 organic compounds predicted by a QSPR model, but
only a few PFASs were included [26]. Due to the limitation of its data set, the application
scope of the model was narrow for PFASs Another limitation of prior work on the model’s
establishment was that the modeling process did not fully follow the five guidelines for
QSPR model construction [27,28]. Generally, for the log Koc prediction of PFASs by QSPR,
it is necessary to improve the applicability and accuracy of the model. Meanwhile, the
standardization of modeling also need further investigation. Owing to the issues with the
above models, there is still a knowledge gap in the overall analysis of PFASs distribution
mechanism between sediment/soil and water at the molecular level.

This study developed an optimal log Koc prediction model for PFASs based on the
QSPR model construction guidelines. A comprehensive verification and evaluation of
the model was undertaken to ensure the integrity and standardization of the modeling
process and achieve a reasonable prediction of the log Koc of PFASs. The model used
22 PFASs from eight different classes as the modeling dataset, equipped with strong
pertinence which greatly improves the applicability of the model for PFASs. Molecular
descriptors with clear definitions were included in the model, which identified the potential



Molecules 2022, 27, 5610 3 of 11

mechanism of PFASs distribution between sediment/soil and water from the perspective
of the molecular level quickly and accurately, facilitating a better understanding of the
distribution behavior of PFASs between the two phases. This combination of effects has
significant practical implications for enriching the migration theory of PFASs with different
structures between sediment/soil and water, and provides a reference for predicting the
deposition concentration of emerging PFASs in environmental media.

2. Results and Discussion
2.1. Model Construction and Validation

After stepwise linear regression, the optimal QSPR model (Equation (1)) was obtained.
The model contained four molecular descriptors: molecular weight (MW), dipole moment
(µ), lowest unoccupied molecular orbital energy (ELUMO), and maximum average local
ionization energy on the molecular surface (ALIEmax).

log Koc = 7.334 × 10−3 MW − 1.705 µ − 0.956 ELUMO − 1.398 ALIEmax + 24.10 (1)

Table S4 in the supplementary materials lists the calculated values of the four molecular
descriptors and the predicted values of log Koc. The statistical parameters of the developed
model are shown in Table 1. According to the evaluation criteria of the QSPR model
summarized in previous studies [29], coefficient of determination (R2) > 0.8, multiple
correlation coefficient of leave-one-out cross-validation (Q2

LOO) > 0.5, external validation
indicators (Q2

F1, Q2
F2, and Q2

F3) > 0.5, indicating that the model has sufficient goodness
of fit, robustness, and predictive ability and meets the requirements of the QSPR model
construction guidelines [28]. In addition, the R2 − Q2

LOO value of this model is less than
0.3, indicating that there is no overfitting phenomenon in this model [30]. Q2

LOO, Q2
F1,

Q2
F2, and Q2

F3 were calculated according to the method in a previous study [29], and the
calculation formulas of these parameters are presented in the supplementary materials; R2

was obtained using SPSS 26 software (IBM SPSS Inc., Chicago, IL, USA).

Table 1. Statistical parameters of the optimal QSPR model.

Training Set Validation Set

n R2 Q2
LOO RMSE F p n Q2

F1 Q2
F2 Q2

F3 RMSE

18 0.962 0.920 0.212 82.269 <0.001 4 0.961 0.955 0.959 0.219

Notes: n: the number of data points; R2: coefficient of determination; Q2
LOO: multiple correlation coefficient

of leave-one-out cross-validation; RMSE: root mean square error; F: variance ratio; p: significance index; when
p < 0.05, this indicates that the model is significant; Q2

F1, Q2
F2, and Q2

F3: external validation indicators.

Figure 1 shows the error distribution of the model prediction. The prediction errors
of the PFASs were randomly distributed on both sides of the baseline, and there was no
obvious regularity, indicating that the built model had no obvious systematic errors. Table 2
lists the significance index (p) and variance inflation coefficient (VIF) values of the molecular
descriptors contained in the model. When p < 0.05, this indicates that the molecular
descriptor was significant; when VIF < 10, this indicates that there was no multicollinearity
among the molecular descriptors [31]. It can be seen from the table that all molecular
descriptors in the model were key descriptors, and there was no collinearity among them.
p and VIF were obtained using SPSS 26 software (IBM SPSS Inc., Chicago, IL, USA).

Table 2. Statistical parameters of different descriptors.

Description p VIF

MW 0.000 1.192
µ 0.002 1.239

ELUMO 0.000 3.420
ALIEmax 0.003 3.216

Notes: VIF: variance inflation coefficient.
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As shown in Figure 2, the good consistency between the predicted value and the
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Figure 2. Observed and predicted values of the optimal model.

2.2. Application Domain

According to the Williams plot (Figure 3), none of the standardized residuals of the
log Koc of the PFASs obtained from the QSPR model exceeded the thresholds (−3, 3) [1].
In the test set, leverage values (h) > warning leverage value (h*) (h* = 0.83) of 6:2 chlori-
nated polyfluorinated ether sulfonate (6:2 Cl-PFAES), indicating that this substance was
structurally quite different from most of the PFASs in the training set; 6:2 Cl-PFAES is an
emerging PFAS that has been widely used in industry as a substitute for traditional PFASs
(such as perfluorooctane sulfonic acid (PFOS)) [32,33]. The QSPR model predicts that the
standardized residual of its log Koc value is 0.454, which does not exceed the threshold. It
can be seen that the QSPR model has a wide range of applications and strong generalization
ability, which can successfully predict not only traditional PFASs but also emerging PFASs.
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2.3. Mechanistic Interpretation of the Model

The standardized regression coefficient refers to the regression coefficient when all
variables are expressed in standardized form. Since the same measurement unit is used, the
independent variables are more comparable [34]. The standardized regression coefficients
of MW, µ, ELUMO, and ALIEmax in the QSPR model were 1.048, −0.219, −0.495, and −0.362,
respectively. Based on a comparison of their absolute values, it can be seen that the influence
of the four molecular descriptors on log Koc was MW > ELUMO > ALIEmax > µ.

MW is related to the molecular size and hydrophobicity and can reflect the effect of
molecules on the formation and destruction of holes in water [35]. When MW increases,
this increases the PFASs’ molecular size and strengthens their hydrophobicity [36,37]. At
this time, the energy of the adsorbate required for the formation of holes between water
molecules will lead to stronger hydrophobic repulsion of water on the surface of the PFAS
molecules [38], thus driving the adsorption of PFASs in solid media (such as sediment
or soil) [17]. In this study, the QSPR model showed that MW was positively correlated
with log Koc. When MW increased, the log Koc of PFSAs showed an increasing trend, and
the log Koc of PFCAs roughly showed an increasing trend (except for perfluorobutanoic
acid (PFBA); the possible explanation is given below). This result is consistent with the
previously reported results that the log Koc of the same type of PFASs usually increases
with the increase in the carbon chain [39]. PFASs of the same class have similar structures
(with the same functional groups). With the increase in the carbon chain length, its MW
and hydrophobicity increased, which promoted the adsorption of PFASs in solid medium
and increased their log Koc. In addition, the size of MW explained the change of log Koc
of different types of PFASs to a certain extent. For example, perfluorododecanoic acid
(PFDoDA), 6:6 perfluoroalkyl phosphinic acid (6:6 PFPiA), and n-ethyl perfluorooctane
sulfonamidoacetic acid (N-EtFOSAA) have the same carbon chain length (12 carbon atoms);
their MW are 6:6 PFPiA > PFDoDA > N-EtFOSAA; their µ are N-EtFOSAA > PFDoDA
> 6:6 PFPiA; their ELUMO are PFDoDA > 6:6 PFPiA > N-EtFOSAA; their ALIEmax are N-
EtFOSAA > 6:6 PFPiA > PFDoDA, and their log Koc are 6:6 PFPiA > PFDoDA > N-EtFOSAA,
which shows the same ranking as MW.

ELUMO reflects the ability of molecules to receive electrons [40]. When ELUMO is more
positive, it is more difficult for molecules to obtain electrons from the external environment.
ALIEmax is the average energy required to ionize electrons at any point in molecular
space [41], which is related to their molecular electrostatic potential, electronegativity,
hardness, and other properties [42]. When ALIEmax is smaller, the electron activity is
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stronger, and electrophilic and free radical reactions are more likely to occur [43]. According
to the QSPR model, ELUMO and ALIEmax were negatively correlated with log Koc, which
reflects the electrostatic interaction between molecules. These two molecular descriptors
were used to explain why the molecular weights of perfluoroheptanoic acid (PFPeA) and
perfluorohexanoic acid (PFHxA) were both larger than that of PFBA but their log Koc was
smaller than that of PFBA. From the perspective of ELUMO, it is more difficult for PFBA to
obtain electrons from the external environment than PFPeA and PFHxA, but the difference
between the compounds is small. From the perspective of ALIEmax, PFBA has stronger
electronic activity than PFPeA and PFHxA and is more prone to electrophilic reactions,
and the difference between the compounds is larger. Compared with PFPeA and PFHxA,
PFBA may be more capable of electrostatic interaction with the external environment,
increasing its log Koc. This explanation is consistent with the results reported previously
that electrostatic interactions may be the main factor affecting the adsorption of short-chain
PFASs in solid-phase media [44].

µ is often used to describe the intermolecular dipole–dipole interactions in QSPR
studies [45]. As µ increases, ionic compounds are more easily solvated in liquid phases
(water) [46], and PFASs are adsorbed with greater difficulty in solid phases (aqueous
aerosol) [1]. It can be seen from the QSPR model that µ was negatively correlated with
log Koc. The larger the µ value, the easier it is to solvate in water, so it is more difficult
for PFASs to be adsorbed in solid media. For example, N-EtFOSAA is the precursor of
perfluorooctane sulfonamide (PFOSA) [47]; the two have similar structures and they have
the same carbon chain length; only the terminal functional groups are different. The MW
of N-EtFOSAA is larger than that of PFOSA, and the ALLEmax is smaller, but the log Koc of
PFOSA is much larger than that of N-EtFOSAA. In addition to the influence of ELUMO, it is
mainly due to the µ of N-EtFOSAA being relatively large (nearly threefold).

2.4. Model Comparison

The QSPR model with high R2 was developed using the molar volume as a single
molecule descriptor [27], but the robustness and external prediction ability of the model
were not verified in the process of model construction, and the log Koc prediction ability
of PFASs with molar volume less than 160 cm3·mol−1 was limited. In this study, the
robustness and external prediction ability of the developed QSPR model were verified
through the Q2

LOO and Q2
F1, Q2

F2, and Q2
F3. The results show that the model has good

robustness and external prediction ability. For example, the model built by Brusseau had
prediction errors of 1.4 and 0.5 for PFBA and PFPeA (two PFASs with molar volumes of less
than 160 cm3·mol−1) [27], while the QSPR model developed in this study had prediction
errors of 0.52 and −0.13 for PFBA and PFPeA, respectively. The log Koc prediction ability
of this model is better for PFASs with a smaller molar volume.

A QSPR model was developed using nine molecular descriptors based on the structural
properties of 824 compounds [26], but only six PFASs were included in these compounds.
The QSPR model established by Wang et al. has a lower prediction accuracy of log Koc for
PFASs than the QSPR model, which only takes PFASs as the modeling data set [26]. The
QSPR model developed in this study uses more PFAS modeling datasets and fewer molec-
ular descriptors to obtain better model statistical parameters, and the log Koc prediction
accuracy for PFASs is higher. For example, the QSPR model developed by Wang et al. has
prediction errors of −0.38 and 0.18 for traditional PFASs (such as perfluorooctanoic acid
(PFOA) and PFOS) [26], while the prediction errors of this model for PFOA and PFOS are
only −0.29 and 0.07, respectively.

To sum up, compared with the models developed in previous studies (Table 3), the
data set used in this study has more types and numbers of PFASs, the developed QSPR
model has higher prediction accuracy, and the model has a wider application field. It covers
a large number of structurally diverse PFASs, including not only traditional PFASs but also
emerging PFASs. In addition, the modeling process of this study is completely based on
the standard framework of the QSPR model [28], which not only establishes a simple linear
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relationship between the structural properties of PFASs and their log Koc but also analyzes
the distribution behavior of PFASs between sediment/soil and water in detail through the
mechanical interpretation of the QSPR model.

Table 3. Comparisons of models in the current and earlier studies.

n Chemicals R2 RMSE Q2
LOO Q2

F1 Q2
F2 Q2

F3 Reference

12 PFCAs, PFSAs 0.98 0.200 NR NR NR NR [27]
824 * PFCAs, PFSAs 0.854 0.472 0.850 0.761 NR NR [26]

22 PFCAs, PFSAs, FOSAs, PFPiAs, and
other emerging PFASs 0.962 0.212 0.920 0.961 0.955 0.959 This study

Notes: NR: not reported; *: the 824 compounds in the dataset contain only six PFASs; FOSAs: perfluoroalkane
sulfonamide; PFPiAs: perfluoroalkyl phosphinic acid.

3. Materials and Methods
3.1. Data Collection and Processing

The log Koc values were collected from the research literature on the adsorption of
PFASs in sediments and soils [17,21,48–53], including 11 PFCAs, 5 PFSAs, 1 perfluoroalkane
sulfonamide (FOSAs), 1 perfluoroalkyl phosphinic acid (PFPiAs), and 4 other PFASs. Since
the experimental data in the previous studies were measured by different experimenters
and under different experimental environments, in order to ensure the reliability of the
data, this study first removed the outliers that obviously deviated from the overall data
samples from the multiple log Koc experimental values of the same PFASs collected and
then calculated the average value to develop the QSPR model.

The log Koc values of 22 PFASs ranged from 1.54 to 5.04, the span range was 3.50,
the average value (mean) was 3.22, and the corresponding standard deviation (SD) was
1.11. All data fell within the interval of (mean −3SD, mean +3SD) and did not require
further processing [54]. In total, 80% of the data in the dataset were randomly selected
as the training set (18 PFASs) for developing the QSPR model; the remaining 20% of the
data were the test set (4 PFASs) for external validation of the model. Details about PFASs,
experimental values and references pertaining to the modelling and external validation
sets are given in Table S1 in the Supplementary Materials.

3.2. Calculation of Molecular Descriptors

The B3LYP/6-31G* algorithm in the Gaussian program package (ver. G09W, Michael
F, Wallingford, CT, USA) was used to optimize the molecular structure of the PFASs in
the neutral electron ground state, and the stable molecular configuration of the PFASs
with the lowest energy was obtained. The Multiwfn program (ver. 3.8, Lu T, Beijing,
China) [55] calculated the optimized molecular structure of the PFASs and obtained
62 molecular descriptors, including the molecular structure features, orbital energy levels,
electronegativity, atomic charge, polarity, and other physical and chemical information
about the PFASs. The multiple physicochemical properties of the PFASs were successfully
predicted using these molecular descriptors [1,56].

3.3. Model Development and Validation

Firstly, correlation analysis was performed between all molecular descriptors. For
molecular descriptors with a correlation coefficient (R) higher than 0.9, only one molecular
descriptor with a high correlation coefficient with log Koc was retained. Secondly, based on
SPSS 26 software (IBM SPSS Inc., Chicago, IL, USA), the retained molecular descriptors
were taken as independent variables with log Koc as the dependent variable to perform
a stepwise linear regression to obtain the QSPR models containing different numbers of
molecular descriptors. Lastly, the optimal QSPR model with the largest adjusted coefficient
of determination (R2

adj) and the smallest root mean square error (RMSE) was selected as
the final model in this study. R, R2

adj and RMSE were obtained by SPSS 26 software (IBM
SPSS Inc., Chicago, IL, USA).
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According to the QSPR model construction guidelines [28], the QSPR model should
have sufficient goodness of fit, robustness, and predictive ability. In this study, the R2 was
used to evaluate the goodness of fit of the QSPR model, the Q2

LOO was used to evaluate
the robustness of the QSPR model, the test set was used to externally validate the QSPR
model, and the Q2

F1, Q2
F2, Q2

F3 were used to evaluate the prediction ability of the QSPR
model. In addition, in order to further verify the reliability of the developed model, the
error distribution of the model prediction was used to evaluate whether the model had
systematic errors; the p and VIF of the molecular descriptors contained in the QSPR model
were used to determine whether each molecular descriptor was significant and whether
there was multicollinearity among the molecular descriptors.

3.4. Application Domain

A Williams diagram [57] was used to characterize the application domain of the QSPR
model, evaluate its scope of application, and determine whether there were outliers in the
modeling samples. The composition of the Williams diagram and its calculation method
are described in the Supplementary Materials.

4. Conclusions

In this study, we successfully developed an optimal QSPR model to predict the log Koc
of PFASs. The dataset of this model includes 22 PFASs in eight different categories, covering
the common PFASs in current industrial production and daily life, and the model has a
wide range of applicability. The comprehensive verification and evaluation of the model
show that the developed model has sufficient goodness of fit, robustness, and predictive
ability and can accurately predict the log Koc of PFASs (within the application field defined
by the model).

Through the mechanistic interpretation of the model, we found that the MW, ELUMO,
ALIEmax, and µ of PFASs are the main structural factors affecting the partitioning behavior
between the solid and liquid phases, and the order of influence is MW > ELUMO > ALIEmax
> µ. Specifically, MW reflects the hydrophobic property of the compound, µ reflects the
polarity of the compound, while ELUMO and ALIEmax are related to the electrostatic inter-
action between molecules. The partitioning behavior of PFASs between the two phases
is the result of the joint influence of multiple mechanisms. The hydrophobic interaction,
electrostatic interaction, and dipole–dipole interaction play key roles in determining the
partitioning of PFASs between the two phases. PFASs that can produce a strong hydropho-
bic interaction tend to be distributed in solid–phase media. The results of this study are
of great significance to understanding the migration behavior and environmental fate of
PFASs between sediment/soil and water, providing basic data for further environmental
risk assessment.

In future research, the relationship between the log Koc of PFASs and other partition
coefficients can be compared and analyzed in order to illustrate the transport of PFASs in
multiphase media as well. Moreover, new PFASs with less impact on the environment can
be designed based on the structural factors that affect the distribution behavior of PFASs to
reduce the environmental load caused by this kind of compound.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27175610/s1. 1. The five guidelines for QSPR construc-
tion; 2. Descriptor selection; 3. Model validation 4. The application domain; Table S1. The values
of log Koc for PFASs; Table S2. Description of the descriptors generated from Multiwfn; Table S3.
Statistical parameters of QSPR model; Table S4. The observed and predicted log Koc values of PFASs.
The values of the descriptors used in the QSPR models.

https://www.mdpi.com/article/10.3390/molecules27175610/s1
https://www.mdpi.com/article/10.3390/molecules27175610/s1
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