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Abstract

Isocitrate dehydrogenase (IDH) mutant glioblastoma (GBM), accounts for ~10% GBMs, arises from lower grade diffuse 
glioma and preferentially appears in younger patients. Here, we aim to establish a robust gene expression-based 
molecular classification of IDH-mutant GBM. A total of 33 samples from the Chinese Glioma Genome Atlas RNA-
sequencing data were selected as training set, and 21 cases from Chinese Glioma Genome Atlas microarray data were 
used as validation set. Consensus clustering identified three groups with distinguished prognostic and molecular features. 
G1 group, with a poorer clinical outcome, mainly contained TERT promoter wild-type and male cases. G2 and G3 groups 
had better prognosis differed in gender. Gene ontology analysis showed that genes enriched in G1 group were involved in 
DNA replication, cell division and cycle. On the basis of the differential genes between G1 and G2/G3 groups, a six-gene 
signature was developed with a Cox proportional hazards model. Kaplan–Meier analysis found that the acquired signature 
could differentiate the outcome of low- and high-risk cases. Moreover, the signature could also serve as an independent 
prognostic factor for IDH-mutant GBM in the multivariate Cox regression analysis. Gene ontology and gene set enrichment 
analyses revealed that gene sets correlated with high-risk group were involved in cell cycle, cell proliferation, DNA 
replication and repair. These finding highlights heterogeneity within IDH-mutant GBMs and will advance our molecular 
understanding of this lethal cancer.

Introduction
Glioblastoma (GBM) is the most common form of primary brain 
cancer in adults, accounting for ~55% of glioma (1). Patients with 
GBM have a uniformly poor prognosis, with a median survival 
of 14–16 months. Owing to highly diffuse and aggressive inher-
ence, GBM displays strong treatment resistance and inevitable 
recurrence (2); thus, advances on basic and clinical fronts are 
urgently needed.

In an ever-increasing attempt to better understand GBM, 
many groups have focused on high-dimensional profiling 
studies. The Cancer Genome Atlas (TCGA) reported an inte-
grative analysis of DNA copy number, expression and DNA 
methylation aberrations in 206 GBMs, confirming biologically 

relevant abnormalities in three core pathways, namely TP53, 
RB and receptor tyrosine kinase (RTK)/Ras/phosphoinositide 
3-kinase (PI3K) signaling (3). Verhaak et  al. (4) described a ro-
bust gene expression-based molecular classification of GBM 
into proneural, neural, classical and mesenchymal subtypes. At 
present, TCGA constructed a detailed somatic landscape of GBM 
through multidimensional analysis and confirmed that the sur-
vival advantage of proneural subtype was conferred by glioma-
CpG island methylator phenotype (5).

According to the current 2016 World Health Organization 
classification of central nervous system tumors, GBMs are 
divided into two categories: IDH-wild-type (wt) GBM and IDH-
mutant GBM (6). Despite their similar histology, IDH-mutant 
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GBM that has better prognosis typically affects younger patients 
and progresses from low-grade diffuse astrocytoma or oligo-
dendroglioma (7). Integrated genomic analyses of IDH1-mutant 
glioma malignant progression identified activation of oncogenic 
pathways (MYC and RTK/Ras/PI3K) driving progression, as well 
as upregulation of FOXM1- and E2F2-mediated cell cycle transi-
tions (8). DNA methylation clustering disclosed that IDH-mutant 
GBM formed a distinct group separate from other diffuse glioma 
subtypes (9). However, the biological heterogeneity within IDH-
mutant GBM patients remains elusive.

Here, we described a robust gene expression-based mo-
lecular classification of IDH-mutant GBM into three subtypes 
with distinct prognostic and molecular features. In addition, 
we also constructed a risk signature for prognostic prediction 
of this glioma. Our data provide a transcriptomic dimension for 
IDH-mutant GBM molecular stratification with potential impli-
cations for future studies.

Materials and methods

Patients and tissues
A total of 54 IDH-mutant GBM samples from Chinese Glioma Genome Atlas 
(CGGA) database [33 cases from RNA-sequencing (RNA-seq) data and 21 
cases from microarray data] were included in this study (Supplementary 
Table 1, available at Carcinogenesis Online). All these tissue samples and 
clinicopathological information were collected with informed consent. 
This study was conducted in accordance with the declaration of Helsinki 
and approved by the ethics committee of Tiantan Hospital.

Datasets
The RNA-seq data, microarray data and corresponding clinical infor-
mation [age, gender, TCGA subtype, methylguanine methyltransferase 
(MGMT) promoter status, isocitrate dehydrogenase (IDH) mutation status 
and telomerase reverse transcriptase (TERT) promoter status] were down-
loaded from CGGA database (http://www.cgga.org.cn) (10). IDH mutation 
and MGMT promoter status were determined by DNA pyrosequencing as 
described in previous study (11). TERT promoter mutation was evaluated 
by Sanger sequencing (10). The characteristics of patients are listed in 
Supplementary Table 2, available at Carcinogenesis Online.

Consensus clustering
For class discovery, consensus clustering was performed with R package 
‘ConsensusClusterPlus’ based on the comparison of gene expression pro-
file (12). Measured by median absolute deviation (>1), the most variable 
genes were used for subsequent clustering. Cumulative distribution func-
tion (CDF) was constructed for a range from 2 to 10 consensus clusters. 
The optimal number of clusters was determined by CDF and consensus 
matrices.

Gene signature selection
Significance analysis of microarray (SAM) was performed to identify 
differentially expressed genes within clusters. Univariate Cox regres-
sion analysis was used to determine the prognosis-related genes. Then, 
the Cox proportional hazards model was applied for selection of op-
timal prognostic gene set with R package ‘glmnet’, which was suitable 

for regression analysis of high-dimensional data (13,14). Risk score for 
each case was calculated with the linear combinational of signature 
gene expression weighted by their regression coefficients (Coeffs). Risk 
score  =  (expressiongene1 × coeffgene1) + (expressiongene2 × coeffgene2) + … 
(expressiongenen × coeffgenen).

Bioinformatic analysis
Gene set enrichment analysis (GSEA) was performed to identify gene sets 
of statistical difference with GSEA, v3 software (15). Gene ontology and 
Kyoto Encyclopedia of Genes and Genomes analyses were applied for 
function and pathway annotation of differential genes between groups 
(16). Receiver operating characteristic  (ROC) curve analysis was used for 
overall survival (OS) prediction with R package ‘pROC’. Principal compo-
nents analysis (PCA) was performed to detect expression difference be-
tween groups with R package ‘princomp’ (17). Stromal and immune scores 
were calculated with R package ‘estimate’, and tumor purity of each case 
was estimated based on the formula described in Yoshihara et  al. (18). 
A total of 22 immune cells-specific gene sets were obtained from a pub-
lished study (http://cibersort.stanford.edu) (19).

Statistical analysis
Univariate and multivariate Cox regression analyses were performed to 
assess independent prognostic factors. Kaplan–Meier analysis was used to 
determine OS difference between groups. Chi-square test was carried out 
to detect the difference of pathological features between groups. P < 0.05 
was considered statistically significant. All statistical analyses were con-
ducted using SPSS, R software and GraphPad Prism 6.0.

Results

Consensus clustering identifies three distinct 
subtypes of IDH-mutant GBMs

To decipher the heterogeneity within IDH-mutant GBMs, RNA-
seq data of 33 samples were obtained from CGGA database. We 
filtered the data and got 3897 genes with highly variable expres-
sion across samples (median absolute deviation > 1). Consensus 
average linkage hierarchical clustering of 3897 genes identified 
three robust groups (Figure 1A–C), assessing by CDF and con-
sensus matrices (Figure 1D and E;. the shape of CDF curves 
did not change much beyond this number). PCA showed that 
these three groups tended to distribute in different regions 
clearly (Figure 1F). In addition, we also evaluated two- or four-
classification scheme, but survival and PCA analysis found no 
advances (Supplementary Figure 1, available at Carcinogenesis 
Online). We further observed that these three groups were asso-
ciated with distinct clinical and molecular characteristics (Figure 
2A and B; Supplementary Table 3, available at Carcinogenesis 
Online). Gender and TERT promoter status rather than age, 
TCGA subtype and MGMT promoter status had a large impact 
on the composition of these groups. G1 group, with significantly 
poorer clinical outcome, mainly contained TERT promoter wild-
type and male cases. G2 and G3 groups that had better prognosis 
differed in gender (cases in G2 group were mainly male, whereas 
the opposite in G3 group). Moreover, univariate Cox analysis 
found that only the new classification scheme had a significant 
prognostic value (P = 0.032, Supplementary Table 4, available at 
Carcinogenesis Online).

After that, we used an independent set of 21 IDH-mutant 
GBMs from CGGA microarray data to assess group reproduci-
bility. Gene order from the training set was maintained in the 
validation dataset (3196 genes available). Hierarchical clus-
tering of these 3196 genes clearly recapitulated the gene sample 
groups (Figure 2C). Importantly, survival analysis revealed that 
cases in G1 group also had shorter OS than those in G2 or G3 
group (Figure 2D). Although attempts to detect differences of 
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Figure 1.  Identification of three IDH-mutant GBM subtypes. (A–C) Consensus clustering matrix of 33 samples for k = 2 to k = 4. (D) Consensus clustering CDF for k = 2 

to k = 10. (E) Relative change in area under CDF curve for k = 2 to k = 10. (F) PCA of three groups based on gene expression data.

Figure 2.  Clinical and molecular features of the three subtypes. (A) Heat map of three groups defined by 3897 genes with highly variable expression. (B) Kaplan–Meier 

analysis of three groups. (C) Gene order from the training set was maintained in the validation set (n = 21). (D) Kaplan–Meier analysis of three groups in validation set.
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clinical and molecular features within these three groups were 
uninformative (lack of samples and TERT promoter mutation 
information, Supplementary Table 3, available at Carcinogenesis 
Online), univariate Cox analysis confirmed the significant 
prognostic value of this acquired classification (P  =  0.039; 
Supplementary Table 4, available at Carcinogenesis Online).

Functional annotation of subtypes

To gain insight into the biological meaning of the groups, we per-
formed gene ontology analysis based on the differential genes 
between groups, which were identified by SAM (false discovery 
rate < 0.05). As shown in Figure 3A–D and Supplementary Table 
5, available at Carcinogenesis Online, the upregulated genes in G1 

Figure 3.  Enrichment analysis of distinct subtypes. (A, C and E) Volcano plots show the differentially expressed genes between G1 and G2, G1 and G3, G2 and G3 groups. 

(B, D and F) Gene ontology analysis based on the differentially expressed genes between G1 and G2, G1 and G3, G2 and G3 groups.
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group, compared with G2 or G3 group, were mainly enriched in 
mitotic nuclear division, cell division, DNA repair, replication 
and G2/M transition of mitotic cell cycle. Compared with cases 
of G3 group, the differential genes in cases of G2 group were an-
notated to cell cycle and regulation of transcription. Instead, the 
upregulated genes in G3 group were involved in protein trans-
port and polyubiquitination (Figure 3E and F; Supplementary 
Table 5, available at Carcinogenesis Online). Meanwhile, GSEA 
further confirmed that cell division, DNA replication, cell cycle 
transition and mitotic nuclear division were significantly en-
riched in cases of G1 group (Supplementary Figure 2, available at 
Carcinogenesis Online). Subsequently, we detected the functional 
differences of groups in the validation set. PCA found that cases 
of three groups located in different areas (Supplementary Figure 
3A, available at Carcinogenesis Online). The highly expressed 
genes in G1 group, compared with G3 group, were also involved 
in cell division, proliferation, DNA replication and regulation of 
cell cycle (Supplementary Figure 3B–D, available at Carcinogenesis 
Online). GSEA further reproduced the enriched functions of 
G1 group (Supplementary Figure 3E, available at Carcinogenesis 
Online), whereas fewer upregulated genes in G2 or G3 group 
made functional annotation meaningless (attributing to fewer 
samples in these groups).

Identification of a prognostic signature for 
IDH-mutant GBMs

Considering the poorer outcome of G1 group relative to other 
groups, we proposed to construct a prognostic signature using 
the differential genes. SAM analysis found that 77 genes were 
differentially expressed between G1 and other groups (P < 0.05). 
Of the differential genes, 62 were significantly correlated 

with patients’ survival in univariate Cox regression analysis 
(P < 0.05; Figure 4A). Then, we applied a Cox proportional haz-
ards model for choosing gene set with the best prognostic value. 
Consequently, a six-gene signature was acquired and the risk 
score for each sample was calculated with expression value and 
regression coefficient (Figure 4B–D).

On the basis of the median value of risk scores, cases were 
assigned into low- and high-risk groups. Kaplan–Meier ana-
lysis found that patients in high-risk group had a significantly 
shorter OS than those in low-risk group (Figure 4E). To validate 
this signature in other populations, we calculated the risk score 
for each sample in CGGA microarray set with the same formula. 
As expected, the survival curve showed that low-risk cases had 
longer OS than high-risk ones (Supplementary Figure 4A, avail-
able at Carcinogenesis Online). Then, we further explored the 
prognostic value of this signature in stratified patients by age, 
gender, TERT promoter and subgroup. The similar results were 
also observed in most stratified patients (Supplementary Figure 
5, available at Carcinogenesis Online). We further conducted 
univariate and multivariate Cox regression analyses to evaluate 
the prognostic independence of this signature. The acquired sig-
nature and group in the training set were both significantly cor-
related with patients’ OS, independent of other factors, whereas 
in the validation set were associated with OS only in univariate 
Cox analysis (Supplementary Table 4, available at Carcinogenesis 
Online). Moreover, we also evaluated the predictive accuracy 
by computing area under the curve of the risk score and group. 
The area under the curve of risk score (87.2%) was much higher 
than that of group (68.6%) (Supplementary Figure 6, available at 
Carcinogenesis Online). These results demonstrated the powerful 
ability of this signature for prognosis prediction.

Figure 4.  Identification of a prognostic signature by Cox proportional hazards model. (A) Venn diagram shows prognosis-related genes that are also differentially ex-

pressed between G1 and other groups. (B) Cross-validation for tuning parameter selection in the proportional hazards model. (C) Heat map of six genes of the signature 

based on the risk score value. (D) Coefficient (Coeff) values of the six selected genes. (E) Survival analysis of the signature in 33 IDH-mutant GBMs.
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Figure 5.  Outcome prediction of the six-gene signature in diffuse gliomas. (A) Cases with low- or high-risk scores show significantly different OS in CGGA RNA 

sequencing cohort. (B and C) The prognostic value of signature in LGG and GBM. (D–F) Survival analysis in stratified patients (LGG IDH-mut, LGG IDH-wt and GBM-wt).

Application of the acquired signature across diffuse 
gliomas

We further detected the prognostic significance of this signa-
ture across diffuse gliomas using CGGA cohort (RNA-seq and 
microarray data). A  total of 309 diffuse glioma samples with 
clear clinicopathological information were included in this co-
hort (20,21). Kaplan–Meier analysis found that high-risk score 
conferred reduced OS in this cohort (Figure 5A). Then, patients 
were further stratified by grade and molecular subgroups. 
Consequently, consensus results were observed in cases of 
lower-grade gliomas (LGG) as well as IDH-mutant LGG, whereas 
in GBM, IDH-wt LGG and IDH-wt GBM found no significant dif-
ferences (Figure 5B–F). In addition, we also applied this signature 
in patients of CGGA microarray set. As shown in Supplementary 
Figure 4B–G, available at Carcinogenesis Online, cases with high 
risk had shorter OS than those with low risk in the whole cohort, 
LGG and IDH-wt LGG, suggesting the compatibility of the signa-
ture in patients with LGG.

High-risk gliomas show an enhanced phenotype of 
cell division and DNA replication

To determine the functional differences, we next compared gene 
expression between low-risk and high-risk cases. On the basis 
of differentially expressed genes (P  <  0.05) identified by SAM 
(Figure 6A), gene ontology and Kyoto Encyclopedia of Genes and 
Genomes analyses revealed that cell division and proliferation, 
DNA replication and repair, transition of mitotic cell cycle and 
p53 signaling pathway were significantly enriched in high-risk 
IDH-mutant GBMs (Figure 6B and C). Meanwhile, GSEA also con-
firmed this finding and found that low-risk cases showed en-
richment of lipid catabolic and fatty acid metabolic processes 
(Figure 6D and E). Consistently, analyses of the microarray set 

displayed similar results (Supplementary Figure 7, available at 
Carcinogenesis Online). These enriched biologic functions might 
contribute to patients’ favorable or poor prognosis.

Discussion
Tumor heterogeneity contributes to therapy failure and cancer 
progression. Combing single-cell RNA-seq profiles with bulk 
RNA-seq profiles of IDH-mutant gliomas, Venteicher et  al. (22) 
found that differences in bulk profiles between IDH-astrocytoma 
and oligodendroglioma can be primarily explained by distinct 
tumor microenvironment, whereas both tumor types share 
similar lineages of glial differentiation. As grade increases, pro-
liferative cell and undifferentiated glioma cells enhanced as well 
as macrophage over microglia expression programs (22). Here, 
we showed that gene expression profiling defined three sub-
types of tumors with a common morphologic diagnosis of IDH-
mutant GBMs. The importance of these subclassification lied in 
different targeted therapies that different subtypes might need. 
Moreover, studying IDH-mutant GBMs in light of subtypes could 
accelerate our understanding of GBM pathology. However, our 
study was impeded by the limited number of samples. A larger 
sample set might find additional subtypes for which we lacked 
the power to detect.

Immunotherapy has recently shown significant antitumor 
activity in several adult human cancers (23,24). For developing 
potential therapeutic targets, we explored if there were any dif-
ferences in infiltrating immune signatures in these three sub-
types using the immune score described by Yoshihara et al. (18). 
G1 group exhibited a trend of lower immune scores and higher 
purity compared with G2 or G3 group, but no significant differ-
ences (Supplementary Figure 8A–D, available at Carcinogenesis 
Online). We also determined immune-subtype differences 
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between these groups using the CIBERSORT immune cell-
specific gene sets (19) and found G1 group had lower memory 
B-cell scores compared with G2 group (Supplementary Figure 
8E, available at Carcinogenesis Online). No significant differences 
in other immune cells scores were found, probably due to the 
limited case number of each group. B cells have been reported 
to play both positive and negative roles in tumor immunity (25). 
The presence of CD20+ B cell tumor-infiltrating lymphocytes 
correlated with improved survival and lower relapse rates in 
several cancers (26,27). Considering the poorer outcome of G1 
group, B cells might negatively modulate tumor progression in 
this cancer, which has important implication for developing ef-
fective anticancer therapies.

Risk score was a widely used approach to develop a mean-
ingful signature for predicting outcomes (14,28). On the basis 
of the upregulated genes of G1 group with worse outcome, we 
constructed a six-gene signature that could stratify patients 
with high or low risk of poor outcome. Because univariate Cox 
model was insufficient for variable selection, we first performed 
a Cox regression analysis to identify genes that were signifi-
cantly correlated with patients’ survival. Then, we applied an 
elastic net regression Cox model to increase the predictive per-
formance of the prognostic index, and the obtained six genes 
showed a cumulative effect on survival prediction. Most of 
these genes had been studied widely in various tumors except 
LOC100506474. BIRC5 (29,30), POLQ (31,32), SHCBP1 (33,34) and 
CBX3 (35,36) preferentially upregulated and promote cancer 
progression, whereas DEDD, as a tumor repressor, interacts with 

PI3KC3 to activate autophagy and attenuate epithelial–mesen-
chymal transition in breast cancer (37). We further explored the 
expression and prognostic correlation of these six genes in our 
RNA-seq data. All these genes showed increased expression in 
GBM compared with LGG (Supplementary Figure 9A, available 
at Carcinogenesis Online). High expression of these genes was 
associated with poor outcome except DEDD (Supplementary 
Figure 9B, available at Carcinogenesis Online). The biological role 
of these six genes involved in glioma progression needs to be 
studied further.

We also detected whether this signature was associated 
with pathological features. Cases were arrayed based on their 
risk scores. As shown in Supplementary Figure 10A and E, avail-
able at Carcinogenesis Online, the risk scores distributed differ-
ently in three groups, with higher levels in G1 group, whereas 
there were no differences of distribution in cases stratified by 
age, gender and TERT promoter status (Supplementary Figure 
10, available at Carcinogenesis Online). Although the acquired 
signature could stratify patients with high or low risk of poor 
outcome in IDH-mutant gliomas of our dataset, more valid-
ation sets were needed for further confirmation. Our work-
flow is summarized in Supplementary Figure 11, available at 
Carcinogenesis Online.

In summary, this study demonstrated the transcriptome het-
erogeneity within IDH-mutant GBMs and developed a valuable 
signature for outcome assessment. We believe that this study 
will serve to facilitate discovery of new insights that can ad-
vance our molecular understanding of this disease.

Figure 6.  Functional enrichments between low- and high-risk cases. (A) Volcano plot represents the differential genes between low- and high-risk cases. (B) Gene 

ontology analysis of differential genes between low- and high-risk cases. (C) Kyoto Encyclopedia of Genes and Genomes analysis shows the enriched pathways. (D and 

E) GSEA analysis based on the median value of the risk scores.
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