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A B S T R A C T   

Background: Exosomes are promising tools for the development of new diagnostic and therapeutic 
approaches. Exosomes possess the ability to activate signaling pathways that contribute to the 
remodeling of the tumor microenvironment, angiogenesis, and the regulation of immune re-
sponses. We aimed to develop a prognostic score based on exosomes derived from breast cancer. 
Materials and methods: Training was conducted on the TCGA-BRCA dataset, while validation was 
conducted on GSE20685, GSE5764, GSE7904, and GSE29431. A total of 121 genes related to 
exosomes were retrieved from the ExoBCD database. The Cox proportional hazards model is used 
to develop risk score model. The GSVA package was utilized to analyze single-sample gene sets 
and identify exosome signatures, while the WGCNA package was utilized to identify gene mod-
ules associated with clinical outcomes. The clusterProfiler and GSVA R packages facilitated gene 
set enrichment and variation analyses. Furthermore, CIBERSORT quantified immune infiltration, 
and a correlation between gene expression and drug sensitivity was assessed using the TIDE 
algorithm. 
Results: An exosome-related prognostic score was established using the following selected genes: 
ABCC9, PIGR, CXCL13, DOK7, CD24, and IVL. Various immune cells that promote cancer immune 
evasion were associated with a high-risk prognostic score, which was an independent predictor of 
outcome. High-risk and low-risk groups exhibited significantly different infiltration abundances 
(p < 0.05). By conducting a sensitivity comparison, we found that patients with high-risk scores 
exhibited more favorable responses to immunotherapy than those with low-risk scores. 
Conclusion: The exosome-related gene signature exhibits outstanding performance in predicting 
the prognosis and cancer status of patients with breast cancer and guiding immunotherapy.   

1. Introduction 

Recent GLOBOCAN data [1] reveals that breast cancer is increasingly prevalent among women worldwide, emphasizing its status as 
a major public health concern and the urgent need for enhanced research and treatment. Accurate diagnosis, outcome prediction, and 
treatment selection for breast cancer rely on histological and phenotypic distinctions among tumors [2]. The rapid advancement of 
high-throughput technology in multi-omics has resulted in the identification of biomarkers that hold tremendous clinical significance 
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for early screening, differential diagnosis, precise treatment, and prognosis of breast cancer [3]. However, despite these advances, 
numerous patients with breast cancer still experience disease progression after their initial diagnosis [3]. Hence, an urgent need exists 
to acquire a profound understanding of the fundamental mechanisms implicated in breast cancer progression and the establishment of 
efficacious therapeutic approaches. 

Exosomes, with a size range of 30–150 nm, are extracellular vesicles enclosed by a membrane released by different cells, such as 
immune cells, stem cells, and cancer cells [4,5]. Initially discovered in the 1980s as potential cellular debris [6,7], exosomes have since 
been recognized as pivotal mediators of intercellular communication [8,9]. Exosomes play a significant role in transferring infor-
mation and signaling molecules between cells, thereby activating pathways that promote cell proliferation, angiogenesis, and immune 
evasion, while also suppressing antitumor immune responses [10–12]. Specifically, exosomes from stromal or cancer cells within the 
tumor microenvironment (TME) are crucial in drug resistance development [13,14]. By transferring signaling molecules like miRNAs, 
proteins, and transcription factors [15], these vesicles can alter gene expression in recipient cells and induce drug resistance. Exosomes 
exert a significant influence on the behavior of infiltrating immune cells and are crucial in enhancing the effectiveness of immuno-
therapies as well as facilitating tumor progression [16,17]. The phenomenon of exosome-mediated drug resistance, significant across 
various cancer types, is notably observed in breast, lung, and colorectal cancers, yet it is not confined to these [18]. This represents a 
substantial challenge, particularly in the context of chemotherapy and immunotherapy [19]. As such, exosomes have become 
promising targets for developing novel diagnostic and therapeutic strategies to modify the tumor-associated immune environment and 
enhance responsiveness to immunotherapy. 

Infiltrating immune cells within the TME modulate immune responses and promote tumor cell migration and invasion [14]. This 
process contributes to the formation of premetastatic niches in distant organs for disseminated tumor cells [14]. These cells exert 
antitumor effects by releasing cytotoxic substances, recognizing and eliminating tumor cells, and producing cytokines [20,21]. 
However, tumor cells have developed mechanisms to evade immune detection, such as releasing immunosuppressive factors, altering 
immune cell activity and function, and inducing immune cell exhaustion [20,22]. The dynamic interplay between immune cells and 
tumor cells is central to understanding tumor progression and developing effective immunotherapeutic strategies. By dissecting these 
interactions, researchers can gain essential insights into creating new therapeutic approaches against cancer. 

Recent advancements in cancer prognostics underscore the pivotal role of exosomes in tumor microenvironment modulation across 
various cancers [23–29]. Studies, including groundbreaking work on head-neck squamous cell carcinoma [30], have elucidated the 
prognostic significance of exosome-related genes (ERGs) in forecasting treatment responses and patient prognoses. These models 
leverage bioinformatics and statistical analyses to establish prognostic signatures correlating with survival rates, immune infiltration, 
and therapeutic responses. Despite significant advancements, the exploration of exosome-related biomarkers in breast cancer prog-
nostics remains underexplored. Our study sought to assess the association between ERGs and breast cancer prognosis, diagnostic 
accuracy, and patient responsiveness to immunotherapy. To construct an exosome risk model, we initially collected high-throughput 
data of patients with breast cancer from TCGA and GEO databases. Subsequently, we focused on exosome-associated genes using the 
ExoBCD database, which identifies these genes through detailed analyses and literature reviews, underlining their significance in 
breast cancer. The investigation concluded with the identification of prognostic ERGs, after employing a series of analytical tech-
niques. Hub genes were utilized in a preliminary step to evaluate the differences in immune cell infiltration rates and immunotherapy 
responsiveness. Receiver operating characteristic (ROC) curves and survival analyses were used to determine and validate the diag-
nostic, therapeutic, and prognostic values of these new biomarkers. Distinct from existing models, our research highlights the unique 
molecular landscape of breast cancer, providing a bespoke prognostic tool that enhances precision medicine for this prevalent disease. 

Table 1 
List of dataset Information.   

TCGA- 
BRCA 

GSE20685 GSE5764 GSE7904 GSE29431 

Platform TCGA GPL570 GPL570 GPL570 GPL570 
Species Homo 

sapiens 
Homo sapiens Homo sapiens Homo sapiens Homo 

sapiens 
Tissue Breast primary breast cancer mastectomy specimen human breast tissue Breast 

tissue 
Samples in 

normal 
group 

113 / 20 7 12 

Samples in 
BRCA 
group 

1109 327 10 43 54 

Reference / Correlation of microarray-based breast 
cancer molecular subtypes and clinical 
outcomes: implications for treatment 
optimization. 

Novel markers for differentiation of lobular 
and ductal invasive breast carcinomas by 
laser microdissection and microarray 
analysis. 

X chromosomal 
abnormalities in basal- 
like human breast cancer. 

/  
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2. Methods 

2.1. Data acquisition 

The TCGAbiolinks [31] was utilized for to acquire TCGA-BRCA dataset. Samples with incomplete clinical information were 
excluded from the analysis. The study analyzed data from 1,109 patients within the TCGA-BRCA breast cancer dataset, which consisted 
of 1,109 tumor tissue samples in the BRCA group and 113 samples of adjacent normal tissue in the normal group. Log2 transformed 
RNA-Seq read counts were used to calculate fragments per kilobase per million (FPKM). The clinical data of 1,109 breast cancer were 
obtained from the UCSC Xena database [32] (https://xena.ucsc.edu/). cBioPortal for Cancer Genomics (https://www.cbioportal.org/) 
provided tumor mutation burden (TMB) and microsatellite instability (MSI) metrics [33]. 

The gene expression datasets (Table 1), GSE20685 [34], GSE5764 [35], GSE7904 [36], and GSE29431, were downloaded from the 
Gene Expression Omnibus (GEO) database using the GEOquery R package [37]. The GSE20685 (BRCA tissue, n = 327), GSE5764 
(normal tissue, n = 20; invasive ductal carcinomas, n = 5; invasive papillary carcinoma, n = 5), GSE7904 (BRCA tissue, n = 43; normal 
tissue, n = 7), and GSE29431 (BRCA tissue, n = 54; normal tissue, n = 12) datasets served as the validation sets. The methodology for 
this study is depicted in a flowchart in Supplementary Fig. 1. 

2.2. Exosome-related genes and differentially expressed genes 

121 ERGs were identified from the ExoBCD database [38] (https://exobcd.liumwei.org/; Table S1). ExoBCD database was 
instrumental in our gene selection process, employing comprehensive analyses, TCGA case validations, and literature reviews to 
pinpoint genes critical for breast cancer’s exosomal processes. Through ExoBCD, these genes were chosen for their strong linkage to 
diagnostic, prognostic, and therapeutic relevance in the disease context. Thereafter, the differentially expressed genes (DEGs) between 
tumors and adjacent tissues in TCGA-BRCA dataset were determined using the limma [39] R package. Count data were normalized and 
analyzed using the limma package. DEGs were selected based on |logFC| > 1 and p.adjust <0.05. The study divided DEGs into two 
categories: upregulated genes, which had a logFC >1 and an adjusted p-value <0.05, and downregulated genes, characterized by a 
logFC < − 1 and an adjusted p-value <0.05. 

2.3. Phenotype score 

An analysis of single-sample gene set enrichment (ssGSEA) was performed using the GSVA [40] R package. Each sample was 
analyzed using the ssGSEA to determine its exosome-related enrichment scores. Tumor samples in TCGA-BRCA dataset were divided 
into two groups, high and low, based on the median phenotype scores. 

2.4. Weighted gene co-expression network analysis (WGCNA) 

Weighted gene co-expression network analysis (WGCNA) [41] was performed to assess the inter-gene co-expression relationships 
and subsequently categorizing co-expressed genes into modules. Within each module, gene expression levels were consistent, but 
showed substantial differences when compared across various modules. Of note, this concept allows the transformation of complicated 
high-throughput data into multiple basic modules, and the dimensionality reduction process is partially accomplished. The association 
between these gene co-expression modules and clinical phenotypes should then be determined, followed by the biological importance 
of this module. 

To obtain co-expression modules from TCGA-BRCA tumor samples, DEGs and exosome-related scores were obtained. The WGCNA 
[42] R package was used to identify the co-expressed modules, with parameters “Soft-power = 5, RsquaredCut = 0.9, minModuleSize 
= 50, mergeCutHeight = 0.2, mincutHeight = 0.2.” Key genes were extracted from the overlap between module genes and DEGs, 
prioritizing those with the greatest correlation to exosome scores. 

2.5. Mutation analysis and Cox regression analysis 

With a group comparison graph and the Pearson correlation coefficient, we identified and compared the differentially expressed 
key genes between breast cancer and adjacent normal tissues. Somatic mutation data from the TCGA-BRCA dataset were preprocessed 
using VarScan software (https://varscan.sourceforge.net/), and the maftools package [43] enabled visualization of mutations. 
TCGA-BRCA dataset was analyzed to determine the expression of essential genes using univariate Cox regression analysis [44]. Genes 
with a significance level of p < 0.05 were selected for further investigation. 

2.6. Risk model construction 

We conducted regularization and dimensionality reduction analyses using the glmnet package [45]. LASSO regression was used in 
conjunction with ten-fold crossvalidation [46], with “2021″ as the chosen random seed number. We selected key genes to build a risk 
model, which was later used to construct a prognostic score for OS [44,47]. Using the ’rms’ R package in conjunction with the 
multivariate Cox regression analysis findings, we developed a nomogram [48], illustrating the functional interactions between 
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independent variables. This allowed for event probability prediction by applying a unique scoring scale to each model variable. Based 
on the median prognostic score of the multivariate Cox regression model, patients were categorized into high- and low-risk groups. 
Using the same coefficients, a risk model was established for the GSE20685 dataset. Multivariate Cox models for high- and low-risk 
groups were assessed using time-dependent ROC curves for the TCGA-BRCA dataset. The prognostic score was calculated using the 
following equation: 

prognostic score=
∑

i
beta (hub genei)× x (hub genei)

2.7. Functional enrichment analysis 

Analysis of Gene Ontologies (GO) [49] is a common technique for large-scale functional enrichment analyses. Kyoto Encyclopedia 
of Genes and Genomes (KEGG [50]) database provides information on biological systems and pathways. Using the ClusterProfiler R 
package [51], GO and KEGG enrichment was executed. Our study adopted P-values or FDR below 0.05 as thresholds for statistical 
significance. Corrections to P-values were carried out using Benjamini-Hochberg (BH) methods. We proceeded to visualize the 
enriched pathways via the Pathview [52] R package. 

2.8. GSEA 

This study used clusterProfiler to perform Gene Set Enrichment Analysis (GSEA) [53]. In TCGA-BRCA dataset, gene enrichment 
analyses were performed on genes in the high- and low-risk groups of the LRRGs risk model. The following parameters were used for 
GSEA: the random seed used in this study was set to 2022. To ensure statistical robustness, gene set permutations were performed 1, 
000 times for each analysis, and each gene set contained 10–500 genes. The reference gene collection was c2.cp.v7.2.symbols.gmt 
obtained from the Molecular signature database 3.0 (MsigDB, https://www.gsea-msigdb.org/gsea/msigdb) [54]. Genes with values 
less than 0.05 were considered significantly enriched. 

2.9. Protein-protein and mRNA-miRNA interaction network 

The Protein-Protein Interaction (PPI) network comprises individual proteins that interact with one another to participate in various 
biological processes, including signaling, gene expression regulation, material metabolism, and energy transduction. LRRGs with low 
confidence were selected from the STRING database (https://string-db.org/) [55], using a minimum interaction score of 0.150. For 
visualization purposes, the network was rendered in Cytoscape (https://cytoscape.org/). Importantly, closely interconnected regions 
in the PPI network are indicative of molecular complexes involved in specialized biological processes. 

The Encyclopedia of RNA Interactomes (ENCORI) [56] database (http://starbase.sysu.edu.cn/) version 3.0 of the starBase database 
has identified millions of interactions among miRNAs, ncRNAs, mRNA, and RBP by analyzing thousands of CLIP-seq and other 
high-throughput sequencing datasets. The database also offers several interfaces for visualizing miRNA target information. The 
ENCORI database was utilized to predict the interactions between miRNAs and hub genes. Subsequently, the mRNA-miRNA inter-
action network was illustrated using Cytoscape software. 

2.10. Immune infiltration analysis of TCGA-BRCA dataset 

We integrated TCGA-BRCA RNA matrix with the LM22 characteristic gene matrix using R code from the CIBERSORT (https:// 
cibersortx.stanford.edu/) [57] website. After eliminating the data with null immune cell enrichment scores, an immune cell infil-
tration abundance matrix was obtained. The stacked histogram displays the fraction of immune cell infiltration in TCGA-BRCA dataset 
samples, whereas the boxplot illustrates the difference. Immune cells were compared across various groups using the Pearson cor-
relation coefficient. By applying the ssGSEA algorithm, we assessed the abundance of infiltrating immune cell types and classified them 
into distinct subtypes. ssGSEA enrichment scores provided insight into the relative presence of these immune cells [58,59]. 

Consensus Clustering [60] can categorize samples into subtypes based on many omics datasets to identify new disease subtypes or 
perform comparisons of different subtypes. Utilizing ConsensusClusterPlus [61], we conducted cluster analysis to delineate molecular 
subtypes from the expression profiles of phenotype-related genes in the TCGA-BRCA dataset. The following parameters were used for 
the clustering algorithm: reps = 1000; pItem = 0.8; pFeature = 1; and method, ‘euclidean’. 

2.11. Statistical analysis 

Statistical analyses involved the Student’s t-test and Mann-Whitney U test for normal and non-normal variables, respectively, with 
the Kruskal-Wallis test for multi-group comparisons. Categorical differences were examined using the chi-square or Fisher’s exact test. 
A survival analysis was conducted using Kaplan-Meier curves and the log-rank test in the R ‘survival’ package, which considered two- 
sided p-values below 0.05 as statistically significant discrepancies. We performed all data processing and analyses with the open- 
source R software, version 4.1.3. 
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3. Results 

3.1. Screening of key genes via differential expression analysis and WGCNA 

Differentially expressed genes between tumor and adjacent normal tissues in the TCGA-BRCA dataset were identified using the 
limma R package. 6,786 DEGs were identified, each exhibiting an absolute log fold change (|logFC|) greater than 1 and an adjusted p- 
value below 0.05. Under this threshold, 2,899 genes were upregulated (logFC >1 and p.adjust <0.05) and 3,887 genes were 

Fig. 1. Clustering molecular subtype. (A) Consensus cluster heatmaps (k = 2) in TCGA-BRCA dataset; (B) Consensus cluster cumulative distribution 
function (CDF) plot; (C) Delta area under CDF of the consensus cluster; (D) Principal component analysis (PCA) plot of cluster 1 and cluster 2; (E) 
Boxplot of the comparison of key genes in cluster 1 and cluster 2; (F) Heatmap illustrating the expression of key genes in different subtypes. ns, non 
significant, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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downregulated (logFC < − 1 and p.adjust <0.05). A volcano map was generated based on the results of differential analysis of this 
dataset (Supplementary Fig. 2A). We obtained 30 differentially expressed exosome-related genes (ERDEGs) by intersecting DEGs and 
ERGs. The expression of ERDEGs is shown as a heatmap (Supplementary Fig. 2B). 

Using the expression of 30 phenotype-related genes, we calculated the exosome phenotype score for each individual in TCGA-BRCA 
cohort using ssGSEA. The TCGA-BRCA dataset underwent WGCNA to identify co-expression modules. The optimal soft threshold was 6 
(Supplementary Fig. 2C), and the genes in TCGA-BRCA dataset were clustered into 11 modules (Supplementary Fig. 2D), among which 
the pink module had the highest correlation with the exosome score (Supplementary Fig. 2E). The differentially expressed ERGs in 
TCGA-BRCA dataset intersected with the green, magenta, brown, and pink module genes to obtain five key genes (POSTN, DUSP1, 
CXCL13, PIGR, and FGFR3) (Supplementary Fig. 2F). 

3.2. Mutation analysis of key genes 

The boxplot displays the expression differences in five key genes (POSTN, DUSP1, CXCL13, PIGR, and FGFR3) between the tumor 
and adjacent normal groups (Supplementary Fig. 3A). All key genes were identified to exhibit statistically significant group differences 
(p < 0.05). An expression correlation heatmap was generated for the five key genes (Supplementary Fig. 3B). A substantial (R = 0.31, p 
< 0.05) positive association was observed between DUSP1 and PIGR. 

We evaluated somatic mutations in five key genes in TCGA-BRCA dataset. Supplementary Figs. 2C–D shows the mutation analysis 
results of the five key genes in the breast cancer patient samples. Missense and nonsense mutations were the most prevalent forms of 

Fig. 2. Differential expression analysis and GO and KEGG analyses based on the high- and low-risk groups. (A) Volcano plot of differential 
expression analysis; (B) Bar plot of GO functional annotation and KEGG pathway analysis in TCGA-BRCA dataset; (C) Boxplot of the semantic 
similarity of hub genes. 
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somatic mutations in TCGA-BRCA dataset. Notably, missense mutations are the most common in patients with breast cancer. 
Furthermore, the most prevalent SNV mutation in patients with cancer was from C to T, followed by C to G. (Supplementary Fig. 3C). 
Supplementary Fig. 3D shows that three of the five key genes in TCGA-BRCA dataset had somatic mutations, with POSTN and PIGR 
having the highest mutation rates and accounting for 1 % of breast cancer patient mutation samples. 

3.3. Clustering and risk prediction model construction 

We used the R package, ConsensusClusterPlus, to cluster molecular subtypes based on five key genes (POSTN, DUSP1, CXCL13, 
PIGR, and FGFR3) and obtained two subtypes: Cluster 1 and Cluster 2 (Fig. 1A–C). Cluster 1 comprised 738 samples whereas cluster 2 
comprised 371 samples. The PCA plot indicated that the distributions of the principal components of the two subtypes were distinct 
(Fig. 1D). The group comparison boxplot revealed that among the five key genes, DUSP1 did not significantly differ between the two 
subtypes, whereas POSTN, CXCL13, PIGR, and FGFR3 exhibited substantial differences (Fig. 1E). A heatmap, created using the 
pheatmap R package, depicted the differential expression of five key genes between two subtype groups (Fig. 1F), POSTN and FGFR3 
were found to be abundantly expressed in Cluster 1 whereas CXCL13 and PIGR were highly expressed in Cluster 2. 

Based on the DEGs of tumors and adjacent normal tissues, a risk scoring system was established to quantify the prognostic risk of 
each breast cancer patient using prognostic score. Univariate Cox analysis of the DEGs was conducted and six genes (ABCC9, PIGR, 
CXCL13, DOK7, CD24, and IVL) were identified (Supplementary Fig. 4A). LASSO analysis facilitated the selection of pivotal candidate 
genes for the prognostic risk model, as detailed in Supplementary Figs. 4B–C, yielding an optimal model incorporating six essential 
variables: ABCC9, PIGR, CXCL13, DOK7, CD24, and IVL. These six genes were integrated into multivariate Cox regression analysis, and 
the prognostic score was computed using multivariate regression coefficients and a gene expression matrix. The division of TCGA- 
BRCA tumor samples into high- and low-risk groups was determined by the median prognostic score. 

Kaplan-Meier curves were generated for the six exosome-related differentially expressed genes (ABCC9, PIGR, CXCL13, DOK7, 
CD24, and IVL, Supplementary Figs. 4D–4I). ABCC9 (p = 0.015), PIGR (p = 0.008), DOK7 (p = 0.0028), and CD24 were identified as 
ERGs associated with prognostic significance (p < 0.0001). 

3.4. DEGs of the high- and low-risk groups and functional enrichment analysis 

Based on the high- and low-risk groups, differential analysis was performed on the RNA-seq data from TCGA-BRCA dataset. 
Seventeen DEGs exhibited upregulation (logFC >1 and p.adjust <0.05), while ninety-four DEGs were downregulated (logFC < − 1 and 
p.adjust <0.05). Differential expression analysis results are represented in a volcano plot (Fig. 2A). 

We evaluated the functional enrichment of the 111 DEGs using GO and KEGG annotations (Fig. 2B, Table 2). The following terms 
were enriched according to GO enrichment analyses: B cell activation, retinal homeostasis, and humoral immune response for BP; 
immunoglobulin complex, circulating, and external side of the plasma membrane for CC; and endopeptidase inhibitor activity, 
peptidase regulator activity, and peptidase inhibitor activity for MF (Fig. 2B). KEGG analysis revealed that the hematopoietic cell 
lineage and primary immunodeficiency pathway were enriched (Fig. 2B). The R package, GOSemSim, was used to estimate the se-
mantic similarity of the GO terms and gene clusters. The TOP5 positive and negative DEGs were considered as hub genes (PIGR, PIP, 
TFF1, CXCL13, PGLYRP2, ONECUT2, SOX11, CD24P4, SIM2, and CD24). Boxplots of the hub genes are presented in Fig. 2C. Based on 
the results, TFF1 had the highest functional similarity among the 10 hub genes. 

GSEA was performed to demonstrate biological processes (summarized in Table 3), cellular components, and molecular functions 
of the DEGs (Supplementary Fig. 5A). DEGs were significantly enriched in oxidative phosphorylation (Supplementary Fig. 5B), the 

Table 2 
GO and KEGG enrichment analysis results of differentially expressed genes in high - and low-risk groups.  

ONTOLOGY Description pvalue p.adjust qvalue 

BP humoral immune response 2.3294E-09 3.4638E-06 2.962E-06 
BP B cell activation 4.6626E-08 3.3129E-05 2.833E-05 
BP retina homeostasis 8.5941E-08 3.3129E-05 2.833E-05 
BP humoral immune response mediated by circulating immunoglobulin 8.9118E-08 3.3129E-05 2.833E-05 
BP B cell receptor signaling pathway 1.6504E-07 4.9082E-05 4.1972E-05 
CC external side of plasma membrane 8.3521E-06 0.00108577 0.00099346 
CC immunoglobulin complex, circulating 2.9354E-05 0.00190803 0.00174581 
CC immunoglobulin complex 0.00012838 0.00556323 0.00509024 
CC blood microparticle 0.00061497 0.01998658 0.01828732 
CC tertiary granule lumen 0.00213506 0.05551143 0.05079184 
MF peptidase inhibitor activity 2.6326E-06 0.00055285 0.0004711 
MF peptidase regulator activity 1.2063E-05 0.00126667 0.00107937 
MF endopeptidase inhibitor activity 2.131E-05 0.00149169 0.00127111 
MF endopeptidase regulator activity 3.4452E-05 0.00180873 0.00154127 
MF glycosaminoglycan binding 0.00011225 0.00471436 0.00401725 
KEGG Hematopoietic cell lineage 7.5916E-05 0.00485859 0.0043152 
KEGG Primary immunodeficiency 0.00064816 0.02074111 0.01842138 

GO，Gene Ontology; BP，biological process; CC，cellular component; MF，molecular function; KEGG，Kyoto Encyclopedia of Genes and Genomes. 
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IL18 signaling pathway (Supplementary Fig. 5C), apoptosis (Supplementary Fig. 5D), regulation of TP53 activity through phos-
phorylation (Supplementary Fig. 5E), the toll-like receptor signaling pathway (Supplementary Fig. 5F), regulatory circuits of the 
STAT3 signaling pathway (Supplementary Fig. 5G), and MAPK signaling pathway (Supplementary Fig. 5H). 

3.5. Protein-protein interaction analysis and mRNA-miRNA network construction 

Using the STRING database, we predicted and constructed 111 DEGs interaction networks (Supplementary Fig. 6A) to explore the 
physical interaction relationships, common protein domains, and gene interactions between them. Setting thresholds of K-core = 2, 
Node Score Cutoff = 2, and maximum depth = 100, we utilized the MCODE plug-in to identify core gene clusters within the protein 
interaction network (Supplementary Fig. 6A). The following three main gene clusters were identified via the analysis: (TCL1A, 
CXCL13, BLK, PAX5, CR2, TNFRSF13B, CCL21, FCER2, MS4A1, CCL19, CD19, CD79A, CD24, score = 7.167), (TFF1, TFF3, AGR2, 
AGR3, score = 4), and (PIP, SCGB2A2, SCGB1D2, score = 3). The top10 genes were obtained consecutively using the MCC, DMNC, and 
EPC algorithms of the CytoHubba plug-in. Seven core genes (BLK, PAX5, CR2, TNFRSF13B, FCER2, MS4A1, and CD79A, Supple-
mentary Fig. 6B) were selected as hub genes for subsequent studies by intersecting the core gene clusters acquired by MCODE with the 
genes measured using different methods of the cytoHubba plug-in. 

Using the ENCORI database’s mRNA-miRNA prediction tool, miRNAs associated with seven hub genes were pinpointed (Supple-
mentary Fig. 6C). The resulting mRNA-miRNA interaction network, featuring five hub genes (PAX5, CR2, TNFRSF13B, MS4A1, and 
CD79A), 82 miRNA molecules, and 96 pairings, was visualized via Cytoscape. The specific mRNA-miRNA interactions are shown in 
Table S2. 

3.6. Analysis of immune infiltration 

To examine immune infiltration, we calculated the infiltration abundance of 22 immune cells using the CIBERSORT algorithm. The 
bar plot depicts the proportion of abundant immune cell infiltration in TCGA-BRCA dataset (Fig. 3A). Using the Mann-Whitney U test, 
the differences in immune cell infiltration between the groups were statistically examined, and the results are displayed in a grouped 
boxplot (Fig. 3B). There were statistically significant differences (p < 0.05) in the infiltration abundances of the 10 types of immune 
cells in TCGA-BRCA dataset between the high- and low-risk groups. The 10 types of immune cells included naïve B cells, CD8 T cells, 
follicular helper T cells, regulatory (Tregs) T cells, gamma delta T cells, activated NK cells, monocytes, macrophages M0, macrophages 
M2, and dendritic cells. We computed the correlation between the abundance of these 10 types of immune cells (Fig. 3C and D). 

We also calculated the correlation between hub genes (BLK, PAX5, CR2, TNFRSF13B, FCER2, MS4A1, and CD79A) and immune 
cells using ssGSEA and the Pearson correlation coefficient (Supplementary Fig. 7A). Several immune cell types were correlated with 
the hub genes (Supplementary Figs. 7B–I). CD79A expression was significantly and positive correlated with activated B cells (R = 0.89, 
p < 0.01) and immature B cells (R = 0.84, p < 0.01). Similarly, MS4A1 demonstrated significant positive correlations with activated B 
cells (R = 0.81, p < 0.01) and immature B cells (R = 0.80, p < 0.01), as did TNFRSF13B with activated B cells (R = 0.7, p < 0.01) and 
immature B cells (R = 0.67, p < 0.01), and BLK with both activated B cells and immature B cells (R = 0.69, p < 0.01 for each). 

3.7. Mutational analysis of hub genes, and TMB and TIDE analyses 

We investigated the copy number variations (CNVs) of seven hub genes (BLK, PAX5, CR2, TNFRSF13B, FCER2, MS4A1, and CD79A) 
in TCGA-BRCA dataset. We downloaded and combined the CNV data of patients with breast cancer and analyzed and visualized the 
results using GISTIC 2.0. (Fig. 4A). Seven hub genes demonstrated a high frequency of amplifications and deletions in breast cancer 
patient samples, with CR2 being the most amplified and TNFRSF13B and BLK having the highest frequency of deletions. 

An analysis of TCGA-BRCA dataset samples revealed significant differences in Tumor Mutation Burden (TMB) between different 
risk groups, illustrated in Fig. 4B. The TMB of breast cancer patient samples in TCGA-BRCA dataset exhibited statistically significant 
changes across the groups (p < 0.05). Fig. 4C illustrates how the TIDE algorithm was applied to the assessment of immunotherapy 

Table 3 
GSEA analysis of TGCA-BRCA.  

ID NES p.adjust qvalue 

WP_OXIDATIVE_PHOSPHORYLATION − 1.85535702 0.02932436 0.02282698 
WP_IL18_SIGNALING_PATHWAY − 1.58655817 0.02932436 0.02282698 
WP_APOPTOSIS − 1.78367559 0.0370099 0.02880964 
REACTOME_REGULATION_OF_TP53_ACTIVITY_THROUGH_PHOSPHORYLATION 1.71621257 0.0370099 0.02880964 
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY − 1.59908052 0.04035079 0.03141029 
WP_REGULATORY_CIRCUITS_OF_THE_STAT3_SIGNALING_PATHWAY − 1.61447182 0.04037724 0.03143088 
KEGG_MAPK_SIGNALING_PATHWAY − 1.34749707 0.04668053 0.03633755 
REACTOME_INITIAL_TRIGGERING_OF_COMPLEMENT − 2.71823284 0.02932436 0.02282698 
REACTOME_CD22_MEDIATED_BCR_REGULATION − 2.71766712 0.02932436 0.02282698 
REACTOME_COMPLEMENT_CASCADE − 2.66616791 0.02932436 0.02282698 
REACTOME_SCAVENGING_OF_HEME_FROM_PLASMA − 2.66316589 0.02932436 0.02282698 
REACTOME_FCGR_ACTIVATION − 2.66299217 0.02932436 0.02282698 

TCGA，The cancer genome atlas; BRCA，Breast invasive carcinoma; GSEA：Gene Set Enrichment Analysis. 
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efficacy. The prognostic score of the responder group was significantly higher than that of the non-responder group (p < 0.01). 

3.8. Risk model construction 

Univariate analysis revealed a significant association between overall survival (OS) and prognostic score, age, and stage (p < 0.001 
for each), as illustrated in Fig. 5A. Multivariate Cox regression analysis of significant factors from univariate Cox regression revealed 
that prognostic score (p < 0.001), Stage IV (p < 0.001), and age (p < 0.001) were attributes of OS (Fig. 5B). The time-dependent ROC 
curve of TCGA-BRCA data risk model was constructed using the R package, timeROC. The analysis revealed that the area under the 

Fig. 3. Analysis of immune infiltration. (A–B) Stacked histogram of CIBERSORT immune infiltration analysis in TCGA-BRCA dataset (A), Boxplots 
of comparison (B); (C–D) Correlation analysis of the infiltration abundance of 10 types of immune cells in the high-risk group (C) and low-risk group 
(D) in TCGA-BRCA dataset. 
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curve (AUC) values for 1-, 3-, and 5-year OS were 0.604, 0.709, and 0.673, respectively (Fig. 5C). The results demonstrate the model’s 
strong predictive performance. The Kaplan-Meier curve showed significantly lower OS for breast cancer patients in the high-risk group 
(p < 0.0001, Fig. 5D). We developed a nomogram (Fig. 5E) that integrated the prognostic score, stage, and age to comprehensively 
predict the OS status of patients with breast cancer. 

The risk factor distribution for TCGA-BRCA risk model is displayed in Supplementary Fig. 8A. In the high-risk group, there was a 
higher incidence of deaths and increased expression of IVL and CD24; while the low-risk group demonstrated higher expression levels 
of DOK7, CXCL13, and PIGR. Incorporating prognostic score, age, and stage into the Decision Curve Analysis (DCA) resulted in 3-year 
and 5-year DCA curves that differed notably from the reference lines, underscoring the model’s high level of precision and reliability 
(Supplementary Figs. 8B–D). 

3.9. Efficacy assessment and external validation of the risk model 

The risk score prediction model for the GSE20685 dataset was computed and created according to the multivariate Cox regression 
coefficient of TCGA-BRCA dataset. To establish whether the prognostic score and various clinicopathological variables were inde-
pendent prognostic factors, we examined the GSE20685 dataset using Cox regression analysis. Based on univariate analysis, prognostic 
score (p < 0.001), age (p < 0.5), stage_T (p < 0.001), stage_N (p < 0.001) and stage_M (p < 0.001) were correlated with OS 

Fig. 4. Gene mutation analysis, and TMB and TIDE analyses. (A) CNV; (B) Boxplot of TMB between the high- and low-risk groups. (C) Boxplot of 
prognostic score of TIDE analysis between the responder and non-responder groups. (ordinate) prognostic score; (abscissa) grouping, (red) non- 
responder group, (blue) responder group. Asterisks indicates significance. TMB, tumor mutation burden; TIDE, tumor immune dysfunction and 
exclusion; CNV, copy number variation; TCGA, The cancer genome atlas; BRCA, Breast invasive carcinoma. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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(Supplementary Fig. 9A). Multivariate Cox regression analysis of the significant factors revealed that the prognostic score (p < 0.001) 
and stage_N was significantly associated with OS (Supplementary Fig. 9B). The time-dependent ROC curve of the GSE20685 dataset 
risk model was constructed using the R package, timeROC. The analysis revealed that the AUC values for 1-, 3-, and 5-year OS were 
0.755, 0.78, and 0.747, respectively (Supplementary Fig. 9C), indicating that the model has a good predictive ability. Compared with 
patients in the low-risk group, patients in the high-risk group had significantly shorter OS (p = 0.00038; Supplementary Fig. 9D). The 
1-year, 3-year and 5-year DCA curves differed between the two reference lines, indicating that the model was precise and reliable 
(Supplementary Figs. 9E–G). 

Fig. 5. Risk model for prediction of prognosis. (A–B) Forest plot; (C) Time-dependent ROC curves for breast cancer risk prediction model, the colors 
represent the discrimination accuracy (AUC value), with red indicating 1-year survival, blue indicating 3-year survival, and yellow indicating 5-year 
survival; (D) Kaplan-Meier curves; (E) Nomogram constructed using the prognostic score combined with age, stage, and clinicopathological features 
predicts the 1-, 2-, and 3-year OS rates of patients with breast cancer. ROC, Receiver operating characteristic; AUC, area under curve; OS, overall 
survival. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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3.10. Hub genes and prediction of cancer status 

The six exosome-related prognostic DEGs in TCGA-BRCA dataset exhibited statistically significant differences in expression be-
tween tumor and normal tissues (ABCC9 (p < 0.001), PIGR (p < 0.001), CXCL13 (p < 0.001), DOK7 (p < 0.001), CD24 (p < 0.001), and 
IVL (p < 0.001), Supplementary Fig. 10A). The ROC curves of the six exosome-related DEGs in TCGA-BRCA dataset are shown in 
Supplementary Figs. 10B–G. The expression of ABCC9 (AUC = 0.832, Supplementary Fig. 10B), CXCL13 (AUC = 0.726, Supplementary 
Fig. 10D), DOK7 (AUC = 0.738, Supplementary Fig. 10E), PIGR (AUC = 0.839, Supplementary Fig. 10G) in TCGA-BRCA dataset 
demonstrated an association with the occurrence of breast cancer, despite a weaker correlation between the expression of CD24 (AUC 
= 0.699, Supplementary Fig. 10C) and IVL (AUC = 0.635, Supplementary Fig. 10F) and the incidence of breast cancer. 

For the GSE5764, GSE7904, and GSE29431 datasets devoid of prognostic information, we validated the ROC for cancer status 
prediction. In the GSE5764 dataset, IVL (AUC = 0.860, Supplementary Fig. 11E), PIGR (AUC = 0.860, Supplementary Fig. 11F), and 
CXCL13 (AUC = 0.7, Supplementary Fig. 11C) could effectively distinguish invasive ductal carcinoma from normal tissues, whereas 
ABCC9 (AUC = 0.6, Supplementary Fig. 11A), CD24 (AUC = 0.61, Supplementary Fig. 11B), and DOK7 (AUC = 0.56, Supplementary 
Fig. 11D) could not perform this distinction. In the GSE7904 dataset, IVL (AUC = 0.761, Supplementary Fig. 11K), PIGR (AUC = 0.987, 
Supplementary Fig. 11L), and CD24 (AUC = 0.709, Supplementary Fig. 11H) distinguished breast cancer from normal tissue, whereas 
ABCC9 (AUC = 0.605, Supplementary Fig. 11G), DOK7 (AUC = 0.618, Supplementary Fig. 11J), and CXCL13 (AUC = 0.568, Sup-
plementary Fig. 11I) could not distinguish breast cancer from normal tissue. In the GSE29431 data set, ABCC9 (AUC = 0.824, Sup-
plementary Fig. 11M), CD24 (AUC = 0.877, Supplementary Fig. 11N), and CXCL13 (AUC = 0.781, Supplementary Fig. 11O) could well 
distinguish breast cancer from normal tissue, while IVL (AUC = 0.669), PIGR (AUC = 0.574), and DOK7 (AUC = 0.596) could not 
adequately distinguish breast cancer from normal tissue (Supplementary Fig. 11P). 

4. Discussion 

Breast cancer is a prevalent and heterogeneous disease, primarily diagnosed in females. With approximately 2.3 million new cases 
reported each year, breast cancer is the leading cause of cancer-related mortality in the world [62]. Although comprehensive in-
terventions can control the growth of breast cancer cells, recurrence and metastasis are common and result in treatment failure. Failure 
could be attributed to a small fraction of cells breaking away from the original tumor, migrating to nearby or distant organs, and 
forming secondary tumors. Understanding the mechanisms underlying metastasis is crucial for developing new and effective treat-
ments for breast cancer. 

Exosomes are critical regulators of intercellular communication [5] and regulators of oncogenaration, cancer advancement and 
immune system by altering the TME [4]. Exosomes present in the peripheral blood are highly durable and thus hold great promise as a 
source of tumor-derived materials for investigating tumor behavior. Monitoring exosomes and analyzing their protein and RNA 
content could enable their use in diagnostic applications [63]. In view of this, the molecular composition of breast cancer cells’ 
exosomes holds great promise for non-invasive diagnosis and treatment of breast cancer. The ability to track and analyze exosomes 
from breast cancer cells can provide a wealth of information regarding tumor behavior and aid in the development of personalized 
treatment strategies. 

Our goal was to develop a prognostic score for tumor-derived exosomes. The prognostic score offers insights into immunological 
states and predicts survival outcomes in patients with breast cancer. Our predictive model, validated on the GSE20685 dataset, 
demonstrated strong long-term prognostic power with AUCs of 0.755, 0.78, and 0.747 for 1-, 3-, and 5-year OS (Supplementary 
Fig. 9C). In comparison, a distinct study [64] focused on short-term outcomes reported AUCs of 0.68, 0.745, and 0.714 for 100, 200, 
and 300 days, emphasizing the variability in predictive timelines. Another research [65] showed promising long-term predictions for 
2, 3, and 5 years with AUCs of 0.727, 0.691, and 0.695, while a further study [66] validated its risk score for breast cancer survival over 
similar periods, achieving AUCs of 0.714, 0.676, and 0.729. Our model’s focus on longer-term predictions aligns better with clinical 
needs in breast cancer, emphasizing its utility in providing meaningful prognostic insights. Furthermore, According to Cox regression 
analysis, prognostic scores were independent prognostic factors (P < 0.001). Six novel tumor-derived exosome genes were identified in 
this study, including ATP Binding Cassette subfamily C member 9 (ABCC9), Polymeric Immunoglobulin Receptor (PIGR), C-X-C Motif 
Chemokine Ligand 13 (CXCL13), Docking Protein 7 (DOK7), CD24 Molecule (CD24), and involucrin (IVL), which significantly affected 
the prognostic score. These results offer valuable insights into the diagnostic and prognostic potential of exosomes in breast cancer. 

As a member of the superfamily of ATP-binding cassette (ABC) transporters, ABCC9 serves as a crucial component in the trans-
portation of a diverse range of molecules across both the extracellular and intracellular membranes, including sugars, proteins, and 
lipids [67]. Specifically, the ABCC9 gene encodes the muscle plasma protein activator KATP channel subunit SUR2, which is expressed 
in the heart, blood vessels, and pancreatic islet cells. It plays a significant role in regulating potassium ion channels on the cell 
membrane, associated with heart diseases and insulin secretion disorders. As part of its role in regulating KATP channel activity, ABCC9 
collaborates with potassium channel proteins [67,68]. ABC transporters can cause drug resistance by effluxing the drug out of cells, 
thereby reducing the bioavailability and effectiveness of cancer cells [69]. PIGR or the polymeric immunoglobulin receptor is a 
glycoprotein associated with exosomes and is important for the development and progression of tumors [70,71]. The PIGR gene 
encodes the polymeric Ig receptor, part of the immunoglobulin A receptor, and is highly expressed in mucosal epithelial cells. It is 
involved in mucosal immune defense functions, including the adhesion and transport of anti-pathogenic microbes [72]. The function 
and regulation of PIGR may be closely related to the immune defense system of the body [72]. Recent studies have shown that PIGR can 
serve as a biomarker for good outcomes in luminal breast cancer [73], and the current study suggests that high PIGR expression is 
associated with better survival. CXCL13 has been identified as a key mediator of cellular interactions and a hallmark of allergic 
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inflammation, as reported in previous studies [74]. The CXCL13 gene encodes chemokine 13 (C-X-C motif chemokine ligand 13) and is 
expressed in lymphoid tissue, playing a significant role in immune regulation, especially in lymph node formation and B-cell attraction 
[75]. Research suggests CXCL13 plays an important role in shaping the immunoactive TME and enhancing PD-1 checkpoint blockade 
efficacy in ovarian cancer [76]. Although some researchers have suggested that the co-expression of CXCL13 and CXCR5 could pro-
mote disease progression and metastasis in breast tumors through chemotaxis of these cells [77], other studies have shown that 
CXCL13+ cells can respond effectively to anti-PD-L1 therapies [78]. Our findings highlight a correlation between CXCL13 and better 
outcomes. These results emphasize the complex and multifaceted role of CXCL13 in cancer development and treatment. Several studies 
have explored the correlation between DOK7 and cancer. High DOK7 expression has been associated with favorable prognosis in acute 
myeloid leukemia [79]. Conversely, reduced DOK7 expression has been linked to poor survival in lung cancer [80] and the acquisition 
of tamoxifen resistance in breast cancer [81]. The DOK7 gene encodes the kinase binding protein Dok-7, which is critical for the 
development and function maintenance of the neuromuscular junction [82]. This gene is expressed in nerve and muscle tissues and is 
involved in the aggregation of acetylcholine receptors and neuromuscular transduction signal transmission [82]. Based on recent 
studies, DOK7 inhibits the proliferation, migration, and invasion of breast cancer cells through the PI3K/PTEN/AKT pathway [83]. 
Thus, DOK7 may be an advantageous marker for breast cancer. The protein cluster of differentiation (CD) is known for its multifaceted 
functions and anti-inflammatory properties. The CD24 gene encodes the cell surface antigen CD24, which is widely distributed in 
various tissues and cells [84]. According to recent research, CD24 is overexpressed in various cancer cell lineages [85] and is an 
oncogenic marker [86]. The accumulation of CD24 in the cytoplasm associated with tumor progression, lymph node positivity, and 
reduced patient survival [84]. Therapeutic blockade of CD24 using monoclonal antibodies has been investigated in in vitro and in vivo 
animal models with promising results, including increased phagocytosis of cancer cells, tumor reduction, and improved surviva [87]. 
Oncogenic effectiveness was confirmed in this study. The Involucrin (IVL) gene encodes the intermediate filament protein 1 in 
keratinocyte-forming cells, which is highly expressed in the skin and other epithelial tissues [88]. It is involved in the formation and 
maintenance of the cytoskeleton and the structural stability of the stratum corneum [88]. IVL is localized in the cytoplasm and is 
crosslinked to membrane proteins by transglutaminase [89]. The expression of IVL in squamous cell carcinoma was found to be 
associated with poor prognosis [90]. IVL may play an important role in the prognosis and treatment of melanoma [91] and head and 
neck cancer [92]. 

In the present study, the enrichment of immune-related pathways was observed. B cell activation, humoral immune response, 
immunoglobulin complex, and endopeptidase inhibitor activity were enriched according to the GO enrichment analyses (Fig. 2B). 
Kyoto Encyclopedia of Genes and Genomes analysis revealed that the primary immunodeficiency pathway was enriched (Fig. 2B). 
GSEA indicated that the DEGs were implicated in immune-related pathways, including the IL18 signaling pathway (Supplementary 
Fig. 5C), apoptosis (Supplementary Fig. 5D), Toll-like receptor signaling pathway (Supplementary Fig. 5F), regulatory circuits of the 
STAT3 signaling pathway (Supplementary Fig. 5G), and the Mapk signaling pathway (Supplementary Fig. 5H). 

The immune system is responsible for defending the body against tumors. Several studies have emphasized the importance of the 
tumor immune microenvironment in cancer development [63,93]. The identification of a new approach for categorizing patients 
suitable for immunotherapy is challenging. Therefore, we examined the relationship between prognostic score and tumor immune 
microenvironment. When the potential efficacy of immunotherapy was evaluated, the prognostic score of the responder group was 
found to be substantially higher (p < 0.01). This therapeutic strategy based on biomarkers can be utilized in the future to generate a 
variety of intriguing combination therapy strategies. 

This study presented certain limitations. The research utilized data samples sourced from various origins, potentially introducing 
elements of selection and sample bias. Moreover, validating our findings through clinical specimens would have strengthened the 
study. The retrospective design and in silico analysis constrained our capacity to perform detailed analyses of senescence and 
exhaustion phenotypes at the single-cell level. Not conducting crosstalk analysis limited our insight into gene-pathway interactions 
and potential therapeutic implications. Future research should concentrate on this aspect to enhance comprehension of exosomal 
biomarkers and their utility in diagnosis and prognosis. 

5. Conclusion 

A model that predicts breast cancer prognosis based on exosomes associated with immune infiltration has been established and 
validated. Overall, the ERG signature shows outstanding performance in predicting the prognosis and cancer status of patients with 
breast cancer. These findings provide novel insights into the treatment of breast cancer. 
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