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Abstract

Shiga toxin-producing Escherichia coli is an important cause of foodborne iliness, with
cases attributable to beef, fresh produce and other sources. Many serotypes of the patho-
gen cause disease, and differentiating one serotype from another requires specific identifi-
cation of the O antigen located on the lipopolysaccharide (LPS) molecule. The amphiphilic
structure of LPS poses a challenge when using classical detection methods, which do not
take into account its lipoglycan biochemistry. Typically, detection of LPS requires heat or
chemical treatment of samples and relies on bioactivity assays for the conserved lipid A por-
tion of the molecule. Our goal was to develop assays to facilitate the direct and discrimina-
tive detection of the entire LPS molecule and its O antigen in complex matrices using
minimal sample processing. To perform serogroup identification of LPS, we used a method
called membrane insertion on a waveguide biosensor, and tested three serogroups of LPS.
The membrane insertion technique allows for the hydrophobic association of LPS with a
lipid bilayer, where the exposed O antigen can be targeted for specific detection. Samples
of beef lysate were spiked with LPS to perform O antigen specific detection of LPS from E.
coli 0157. To validate assay performance, we evaluated the biophysical interactions of
LPS with lipid bilayers both in- and outside of a flow cell using fluorescence microscopy and
fluorescently doped lipids. Our results indicate that membrane insertion allows for the quali-
tative and reliable identification of amphiphilic LPS in complex samples like beef homoge-
nates. We also demonstrated that LPS-induced hole formation does not occur under the
conditions of the membrane insertion assays. Together, these findings describe for the first
time the serogroup-specific detection of amphiphilic LPS in complex samples using a mem-
brane insertion assay, and highlight the importance of LPS molecular conformations in
detection architectures.
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Introduction

Shiga toxin-producing Escherichia coli (STEC) is an important cause of foodborne illness with
cases attributable to beef and fresh produce, among other sources [1]. There are many sero-
types of STEC with a wide range of virulence, which are capable of infecting humans. Identifi-
cation in part has relied upon detection of serotype, which in turn, relies on the identification
of external biomarkers on the bacterial cell.

Lipopolysaccharide (LPS) is the primary component of the outer membrane of Gram-nega-
tive bacteria, and a key stimulator of the mammalian innate immune system [2-5]. LPS is
among a class of molecules called pathogen-associated molecular patterns (PAMPs). PAMPs
are bacterial products, often with redundant molecular structure, that are recognized by many
host immune receptors, e.g., Toll-like receptors [6]. The bacterial membrane of an Escherichia
coli (E. coli) cell is comprised of approximately 10° LPS molecules, or about 75% of the outer
membrane [7-9]. LPS, and more specifically the lipid A moiety is also known as endotoxin,
and can induce septic shock in a variety of mammalian hosts through the activation of mono-
cytes and macrophages that release a series of inflammatory cytokines [10-15] in response to
invading pathogens.

The structure and signaling mechanism of LPS has been well studied [16]. LPS is a nega-
tively charged amphiphilic molecule that consists of three primary components (Fig 1). The
hydrophobic lipid A tail is a highly conserved molecule consisting of 6-7 fatty acid tails [8].
The endotoxic effects of lipid A [9,16,17] are initiated by the binding of this component to host
receptors and serum binding proteins in vivo [13,18,19]. Lipid A is covalently attached to the
less conserved core polysaccharide region, which in turn extends to the hypervariable O poly-
saccharide antigen (O-ag) [16,17,20,21]. Typically, the O-ag consists of 1-50 subunits made of
1-7 glycosyl residues [21,22]. Among different serotypes and species, the O-ag can vary greatly
in both identity and degree of branching of the glycosyl residues [21]. This variability is there-
fore used for classifying a bacterial serotype. Interestingly, many of the PAMPs that stimulate
host innate immune recognition, such as lipoarabinomannan from Mycobacterium tuberculo-
sis, share a similar amphipathic structure [23,24]. Beyond LPS, detection of such amphiphilic
signatures is critical to the understanding of host-pathogen biology.

Detection of LPS and identification of the O-ag is not always straightforward because of the
variability in structure, and the possibility for conserved epitopes to present on multiple ser-
ogroups of LPS [16,21,25]. Detection methods for LPS typically focus on quantification of lipid
A or its biological activity, rather than identification of serogroup [26,27]. While this method
of detection is valuable for determining endotoxin contamination in sterile injectables and
implantable devices, it provides little value for diagnostic applications. Immunoassays that are
capable of antigen discrimination are optimized for detection of protein antigens and do not
take into account the amphiphilic biochemistry of lipoglycans, causing low sensitivity and
repeatability [28,29]. Factors such as conserved hydrophobic regions, micelle aggregation, poor
binding affinity of antibodies, and association with serum lipoproteins have made detection of
LPS and similar lipoglycans difficult targets for antigen specific assays [19,28,30,31]. Detection
of the O-ag with classical methods such as latex agglutination or immunomagnetic separation
utilize cross reactive polyclonal antibodies, which can lead to misidentification of the serogroup
[32-36]. Enzyme-linked immunosorbent assays for detection of both LPS and O-ag serogroup
identification have also been developed, but require extensive sample preparation, multiple
antibodies, and yet suffer from non-specific interactions of the antibodies [30,37-41]. Polymer-
ase chain reaction is also a method for detecting the specific LPS transport and polysaccharide
biosynthesis genes. However, cross reactivity between specific genes of particular serotypes has
been noted [42-44], leading to misidentification of those serotypes. Additionally, residual
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Fig 1. Representative structure of the molecular components of LPS. The conserved, hydrophobic lipid
A group, core polysaccharide, and hypervariable O polysaccharide antigen. The lipid A group of most E. coli
strains has 6 fatty acid tails which anchors LPS into the bacterial cell membrane, and is recognized by host
receptor proteins.

doi:10.1371/journal.pone.0156295.g001

nucleic acids can indicate false positive results due to the presence of non-viable bacteria in
samples [45].

Thus there is a need to improve current detection methods for identification of LPS O-ag. It
has been well documented that amphiphiles, like LPS, interact both with lipid components of
artificial membranes, as well as host serum-binding proteins [13,19,46-50]. Our team has pre-
viously explored the amphiphilic biochemistry of biomarkers such as phenolic glycolipid and
lipoarabinomannan, and developed a tailored method, membrane insertion, for their detection
[47,48,51]. Previously, we have reported on the detection of lipoarabinomannan using mem-
brane insertion and sandwich immunoassays, and characterized the interaction of the amphi-
phile with lipid bilayers by atomic force microscopy (AFM) [47,48,51-53]. Our approach
utilized a waveguide-based optical biosensor platform that was developed specifically for the
ultra-sensitive detection of biomarkers [54,55]. This platform uses single mode planar optical
waveguides functionalized with a lipid bilayer inside a flow cell to facilitate detection through
the use of evanescent sensing and a fluorescently conjugated antibody [54-58]. This technique
is based on the principle of exponential decay of the evanescent wave away from the surface of
the waveguide material, which results in an excitation field that extends only 200 nm from the
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surface of the waveguide. Therefore, only samples and fluorophores within the evanescent field
are illuminated by incident light. This minimizes background signal, thereby increasing the sig-
nal-to-noise (s:n) ratio of excited antibody-fluorophore conjugates bound to antigen at or near
the surface of the waveguide. Waveguides are functionalized with supported lipid bilayer
assemblies. Upon exposure to the amphipathic biomarker, the hydrocarbon tails passively dif-
fuse through the aqueous matrix, and associate with the lipid bilayer, eliminating the need for
capture antibodies [48,51]. In this manuscript, we show waveguide-based membrane insertion
assays for detection of LPS O157 in ground beef lysate. Also presented are membrane insertion
assays for detection of LPS from other serogroups, demonstrating broad applicability of this
platform. For detection of LPS, this method helps to minimize exposure of conserved lipid A
epitopes to cross reactive antibodies, while maximizing exposure of the highly specific O-ag to
detection antibodies. Due to the heterogeneous nature of LPS, the inability to determine an
accurate molecular weight or conformation of the antigens restricts the quantitative capability
of assays for whole LPS. This is not a limitation of the assay or the platform, rather a critical
issue with the detection of entire amphiphilic moieties by any methodology. Membrane inser-
tion offers a reliable and direct strategy for the detection of amphiphilic targets in complex
backgrounds with minimal sample preparation at high s:n levels and low (pg/mL) limits of
detection. Detection of amphiphilic biomarkers is important for many pathophysiological
measurements and in the study of host-pathogen biology, in addition to food safety.

To identify, describe, and delineate assay parameters, we have used biophysical methods to
characterize the interaction of LPS with lipid bilayers. Lipid bilayers have been previously used
to study the interactions of LPS in simple biomimetic systems [46,59]. Recent work from our
team demonstrated LPS-induced deformations in 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) lipid bilayers based on ionic conditions [10]. These findings raised questions on the
dynamics of the interaction of amphiphilic LPS with bilayers in membrane insertion assays.
Since the detection antibodies would bind to the open glass substrate caused by hole formation,
a high signal would result, which in the given scenario could be an effect of hole formation. In
this manuscript, we address that question by devising a flow cell mimetic chamber to explore
the interactions of LPS with lipid bilayers at conditions synonymous with our detection assays.
Finally, we examine LPS-lipid bilayer dynamics using multiple serogroups of LPS to determine
if the variable O-ag structure of the molecule affects the interactions with lipid bilayers, and
explore the relevance to detection assays and the study of host-pathogen biology. Thus, we
report membrane insertion as a reliable method for detection of entire LPS. The biochemistry
of the target should be considered in all scenarios of detection as many factors can influence
LPS micelle conformations and antigen presentation.

Results and Discussion
Detection of LPS with Membrane Insertion

To determine the concentration range over which LPS can be reliably detected by membrane
insertion, assays of LPS O157 were performed a minimum of three times over a concentration
range of 6.25-200 pg/mL LPS (Fig 2A), using polyclonal antibody (pAb) anti-E. coli 0157
(0157) labeled with Alexa Fluor™ 647 (af647) as the detection antibody (pAb O157-af647).
The limits of detection (LoD) for LPS 0157 were calculated to be 4.80 ug/mL using Eq (1) with
the specific signal intensity values from the lowest concentration. The results indicated that
membrane insertion consistently detects a broad concentration range of LPS with low non-spe-
cific binding (NSB) of the reporter antibody. However, the detection trend is non-linear (Fig
2B) with larger variability at higher concentrations. This lack of linearity is expected, and can
be explained by the biochemical properties of amphiphilic LPS which significantly affect the
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Fig 2. Membrane insertion for detection of LPS 0157. (A) Spectral curves demonstrating detection of various concentrations of LPS O157. (B)
Integrated values of spectral curves plotted as single points with standard error of the mean. Closed diamonds indicate averaged integrated signal
intensity, and open diamonds are integrated NSB.

doi:10.1371/journal.pone.0156295.9002

size and conformational presentation of the molecule. For one, LPS will present in a micellar
conformation in aqueous solutions [17,60-63]. Beyond the critical micelle concentration
(CMC) of LPS 0157, the amphiphile would exist both as monomers and aggregates [64,65],
making repeatable quantitation challenging [64]. LPS micelles can further vary based on the
size of the O-ag chains, which can be full-length, truncated, or absent entirely, depending on
bacterial strain and growth phase [17,60,66]. Furthermore, LPS can also present in different
shapes of micelles, such as lamellar, cubic, and hexagonal inverted structures [67-70], which
are dependent on antigen structure, pH, ion concentration, solution composition, and temper-
ature [10,17,62,71]. All of the above factors contribute to the size or shape of the micelles, and
influence the binding availability of epitopes for detection, which in turn affects the inter-assay
variability (Fig 2B). While reasonable efforts to control for the size of micelles in the prepara-
tions was taken (e.g. extended bath sonication [72] during testing of serogroup and beef lysate
assays), we cannot be certain that LPS micelles in our assay systems are homogenous. This bio-
chemical variability has limited the quantitative measurement of amphiphilic biomarkers in
general [51,73]. Lastly, due to the stability of endotoxin [68,74] we cannot entirely discount the
potential of endogenous endotoxin that may have been present on glassware, either from previ-
ous assays or other environmental bacteria, even though rigorous cleaning procedures were
employed. This is also a relevant concern in beef lysates. We therefore only demonstrate

the concentration range over which LPS can be reliably and repeatedly detected using mem-
brane insertion. Membrane insertion is not intended to provide a quantitative measurement of
concentration, but to accurately detect LPS with minimal sample processing in complex sam-
ples such as beef lysates. To determine that the variability between assays was caused by the
variable nature of LPS, we employed rigorous statistical analysis of the data. Statistical regres-
sion analysis of the uncorrected data sets and the residuals (Tables A-C in S1 File) from
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multiple experiments demonstrate that factors such as antigen (LPS) concentration, choice of
waveguide, power coupled into the waveguide, non-specific interaction of the antibodies with
the lipid bilayer, and other systematic parameters do not account for the large deviations seen
in detecting specific concentrations of LPS. The only significant factor resulting from the analy-
sis is the antigen itself, though we also saw some significance associated with a single waveguide
(Table C in S1 File). This suggests that variations in the CMC of the amphiphile, due to the het-
erogeneous nature and other biophysical properties, affect the interaction of LPS with the lipid
bilayer and the detection antibody. This is further substantiated by measurements of protein
binding on the same instrumentation in this and previous studies that do not present with such
variability. Therefore, we conclude that the variability in signal at specific concentrations is pri-
marily dependent on the conformation of the LPS antigens, and not variability associated with
the detection platform, methods, or other reagents.

To assess application for detecting contamination in food products, assays were performed
in a complex sample matrix (e.g. beef lysate). The ability to detect LPS in beef products has his-
torically required extensive processing and dilution of samples, and has only yielded informa-
tion about endotoxin contamination with no clues as to pathogen virulence [75,76]. However,
membrane insertion facilitates detection of whole, intact LPS, and discrimination of the O-ag
present within the samples, which facilitates bacterial serotyping. Membrane insertion assays
were performed in 1 mg/mL ground beef lysate at three concentrations over the range of 6.25-
50 pg/mL LPS O157 (Fig 3). LoD for this assay was calculated to be 4.2 pg/mL LPS O157. The
ratios between specific signal and NSB (s:n) at 6.25 pug/mL (~4), and at 50 pg/mL (~27) are
comparable, albeit slightly higher, to the those seen in the benchmark assay (Table 1). How-
ever, the ratio at 25 pg/mL (s:n~10) was lower than that observed in the benchmark assay
(Table 1). Despite this, the LoD for both assays are comparable (4.8 ug/mL vs. 4.2 ug/mL,
benchmark and beef lysate respectively). The changes in the presentation and micelle proper-
ties of the antigen in complex physiological backgrounds can account for these observed differ-
ences in s:n ratios. We attribute the increased signal at 6.25 and 50 pug/mL to the possibility that
LPS is known to associate with lipoproteins [13,19,47,48,53], such as low-density and high-
density lipoproteins (LDL and HDL respectively), in serum and muscle tissue [77]. Since these
lipoproteins carry amphiphiles and can insert them into membranes [50,78], it is possible that
HDL and LDL are serving to insert monomeric LPS or LPS-lipoprotein complexes into the
DOPC lipid bilayers which could serve to increase detection of O-ag. HDL is a critical factor
for both treatment and prognosis of septic patients [79] because of its ability to shuttle amphi-
philic LPS in hosts. No data is readily available on the CMC of LPS 0157, however, it is reason-
able to assume it to be somewhat similar to the CMC of LPS O111:B4 (22 ug/mL) [17]. This
means that at 6.25 pg/mL, LPS would be present mostly as a monomer, and above 25 pug/mL,
aggregates would be the primary conformation. At 25 pg/mL mL the change in the s:n ratio
between the two assays could also be caused by the difference in solution composition between
the beef lysate and benchmark (PBS) assays, which could affect micelle conformation. Addi-
tionally, the protein matrix of the beef lysate could be providing an additional blocking effect,
which could increase the s:n ratio. It is tempting to speculate about the conformation of LPS at
this specific concentration. This is especially important to consider when detecting multiple
subtypes of LPS in complex matrices. Since conformation will vary slightly between different
LPS antigens, the enhanced s:n ratios we see in the beef lysate will aid in the detection of multi-
ple serogroups of LPS associated with STEC. Finally, the epitopes recognized by the detection
antibodies, and their presentation can change significantly depending on the micelle conforma-
tion of LPS, which may contribute to the variability. In all instances, (e.g. benchmark, ser-
ogroup, or beef lysates) triplicate repeats of LPS membrane insertion assays demonstrated
reliable results with pug/mL sensitivity within two hours. Thus, several factors can affect
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Fig 3. Concentration dependent detection of LPS 0157 in 1 mg/mL beef lysates. Detection of LPS in
beef lysates shows an increase in signal to noise ratios as compared to those seen in the benchmark assay.

doi:10.1371/journal.pone.0156295.g003

variation in measured detection signals of intact amphiphilic biomarkers such as LPS, and
should be taken into account for the design and evaluation of diagnostic assays as well as the
understanding of host-pathogen biology.

To demonstrate the broad applicability of membrane insertion assays, we tested LPS from
other pathogenic E. coli (LPS O104:H4 and LPS O111:H11) using af647 labeled detection anti-
bodies targeted against the specific O-ag (Fig 4), Sensitive detection is demonstrated in both
cases with LPS O104 demonstrating a significantly higher (s:n~39) response than LPS O111
(s:n~6). This difference can largely be attributed to the sensitivity of the respective antibodies

Table 1. Signal to Noise Ratios of LPS Membrane Insertion Assays.

Signal:Noise Ratios

LPS pg/mL benchmark beef lysate*
6.25 2.6 4.1
12.5 52  eeeeeee-
25 13.4 9.8
50 8.8 26.9
100 ey ====s==s
200 25  eeeeeee-

*LPS 0157 was tested at 3 concentrations in beef lysates

doi:10.1371/journal.pone.0156295.1001
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Fig 4. O-ag targeted detection of LPS. Using membrane insertion, two types of LPS were detected using

their complement antibodies, polyclonal anti-E. coli 0104 (pAb O104) and monoclonal anti-E.coli O111 (mAb
0O111) labeled with af647.

doi:10.1371/journal.pone.0156295.g004

[36]. Due to the large difference in s:n ratios in these assays, the limits of detection also demon-
strate the same pattern (0.77 and 7.36 pg/mL respectively). This is due in part to the low NSB
of both antibodies, but also the specificity of the antibodies for their specific epitopes. Both
LoDs fall within the reported range for physiologically relevant concentrations of LPS [78].
The LoDs we report are also an order of magnitude lower than those demonstrated by Rangin
et al. [80,81] (2.2 mg/mL) when they reported specific detection of LPS in their benchmark
assays using polydiacetylene liposome sensors. Our benchmark detection limit is also lower
than that reported by Nieradka et al. [82], (50 pg/mL), who used self assembled monolayers to
discriminate between LPS from different strains of Hafnia alvei. We observed a much lower
variability between the assay replicates (S1 Fig) as compared to the benchmark assay at 25 pg/
mL LPS. We attribute this primarily to the increased sonication time during antigen prepara-
tion that was implemented here, but also acknowledge that the O-ag of these LPS subtypes are
much different from O157 and therefore may be more homogenous at this concentration. We
would like to iterate that membrane insertion is the first to detect the O-ag of intact amphi-
philic LPS directly in beef homogenates, as there is, there are not ideal comparisons for assay
sensitivity and performance. The advantage of this method is not simply the sensitivity, but the
ability to measure the entire moiety, which has significant physiological relevance.
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A key factor that affects performance of any antibody-based assay is the sensitivity and
specificity of the antibody being used. In membrane insertion, the amphiphilic antigen is pre-
sented partitioned into a lipid bilayer, which mimics the physiological presentation of such
antigens in vivo. The antibody targeting LPS 0104 is a polyclonal, extracted from an animal
immunized with whole bacteria, and likely is more suitable for recognizing LPS when pre-
sented in a lipid carrier interface. In contrast, the antibody against LPS O111:H11, is monoclo-
nal (mAb), and was raised in vitro. Also, polyclonal antibodies have multiple paratopes that
can bind several different epitopes on the antigen, as compared to mAbs that target a single
epitope. The source animal for antibodies may also play a large role in antibody affinity and
specificity, since it has been demonstrated that different animal types exhibit varied levels of
sensitivity to LPS [11,83], which would affect antibody expression. The above factors in anti-
body specificity and sensitivity are not unique to the two that are discussed here or to the
membrane insertion approach, but indeed should be considered in the development of all
assays involving detection antibodies.

Imaging LPS-Lipid Bilayer Interactions inside a Flow Cell

We have used fluorescence microscopy [10] as a tool to characterize amphiphile-lipid interac-
tions, thereby building more robust membrane insertion assays for these difficult antigens. Pre-
viously, we have shown that LPS O111:B4 can form holes in supported lipid bilayers [10,84]
using fluorescence microscopy. It therefore became imperative to determine whether hole for-
mation was a limitation of LPS membrane insertion assays. To investigate this, we developed
an imaging compatible flow cell model (Fig 5A) that replicated the internal dimensions and
functional surfaces of the flow cell used in our waveguide-based assays (Fig 5B). This model
enabled direct imaging of lipid bilayers, as well as the specific binding of the fluorescent anti-
bodies to LPS (Fig 5C-5F). We investigated the effects of LPS O111:B4 (Fig 5C and 5D) and
LPS O157 at 100 ug/mL, 50 pg/mL, and 25 pg/mL (Fig 5E and 5F), under the same conditions
as the waveguide assays. We found that with LPS O157, the lipids maintained excellent lateral
fluidity (S3 Fig) and there was no hole formation in the bilayers at any of the tested concentra-
tions, thereby eliminating our concerns. LPS O111:B4, on the other hand, formed holes in lipid
bilayers (Fig 5C) within the flow cell, but only at higher concentrations of antigen (>50 pg/
mL) (Fig 5D). No hole formation was observed at lower, more physiologically relevant concen-
trations of LPS (Fig 5D). We were also able to generate composite images of the fluorescent lip-
ids and the specific binding of pAb O157-af647 (Fig 5E and 5F) at localized spots within the
flow cell for LPS O157. As demonstrated by the lack of overall red fluorescence (S4 Fig) in the
images, the NSB of the antibody is quite low, while the specific binding intensity is saturated at
localized positions. This data supports the low NSB signals seen in the membrane insertion
assays, and serves as visual confirmation of antigen behavior.

Imaging LPS Subtypes on Glass Slides

Due to the differential effects we saw between LPS O111:B4 and LPS O157, we evaluated the
effect of 50 pg/mL LPS from various serogroups (026, 045, 0103, 0104, O111, 0113, O121,
and O145) on open cover slides to observe membrane dynamics. LPS is an indicator of bacte-
rial virulence, which in turn varies significantly between serotypes. These experiments were
critical to determine whether other subtypes of LPS interacted differently with lipid bilayers
and would therefore limit the capability of membrane insertion assays. Surprisingly, no
membrane deformation was observed in any of the LPS serogroups (Fig 6 and S5 Fig), except
the positive control, LPS O111:B4 (S5 Fig) [10]. The variability between these sub-types of
LPS, and the difference in interactions with a simple lipid bilayer, are intriguing. Since the
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structure of the O-ag chain affects the CMC of LPS [17], the size and shape of the micelle pro-
duced in an aqueous medium can be different between LPS subtypes. Additionally, differ-
ences in O-ag structure combined with possible chemical signature differences in the core
polysaccharide of LPS [68] between strains could contribute to a variable charge distribution
in the LPS [69,70]. This, in turn, could affect the delamination of the lipid bilayer by LPS
micelles. Lastly, there is the potential for capsular K polysaccharide antigens to be co-
expressed in these different preparations of LPS [85]. The differential effect seen when using
different types of LPS is a key indicator that small changes in biochemistry and structure can
have a large impact on the interface between LPS (and other amphiphiles) and lipid bilayers.
In other independent research we are currently exploring the effect of other environmental

!

Fig 6. Imaging LPS 0157 with lipid bilayers. (A) Bilayer prior to incubating with LPS O157. 50 pg/mL LPS (B) 0157, (C) 0104, and (D) O111:
H11.

doi:10.1371/journal.pone.0156295.9006
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factors such as complex lipids, temperature, and pH on hole formation with different ser-
ogroups of LPS, to be reported in future studies.

Here we have shown that LPS behaves in dramatically different ways under different condi-
tions. We demonstrated that it can be sensitively detected in complex beef lysate samples using
membrane insertion with higher s:n ratios than those seen in the benchmark assays, which
highlighted the important roles of LPS binding proteins (from the lysate) and solution compo-
sition, in the assay behavior. We also noted that the concentration dependent micelle proper-
ties of LPS in aqueous media, affects the interaction with bilayers at specific concentrations,
most notably around a published CMC value for LPS [17], and at higher concentrations where
LPS is known to form supramolecular aggregates [69], therefore causing the assay to be non-
linear. We also saw a concentration dependent effect in LPS-induced hole formation when we
incubated LPS O111:B4 in the flow cell mimetic where we saw no deformities of the membrane
at lower concentrations. Additionally, the absence of hole formation when using different types
of LPS is also a key indicator that the behavior of very similar amphiphiles can be dramatically
different. This data complements our previous results which demonstrate that simply changing
from a monovalent to a divalent cation in the buffer solution can also effect amphiphile behav-
ior when incubating with lipid bilayers [10]. Together, the results listed above indicate the criti-
cal importance of controlling conditions to manage amphiphile behavior, especially when
interfacing LPS with bilayers. The implications of these conclusions do not escape us, as many
studies that use LPS do not take necessary steps to control amphiphile behavior, and may
therefore achieve both unexpected and difficult to repeat results. These results may also help
explain the difference in biological activities of different serogroups of LPS, which may not be
solely attributable to the structure of lipid A [16]. Since LPS is globally used as an immune
stimulant and a key indicator of bacterial infection, the continued study of this molecule is crit-
ical for understanding host-pathogen interactions and developing better amphiphilic detection
platforms.

These studies demonstrate the challenges associated with the measurement of amphiphilic
biomarkers such as LPS. The biochemistry of LPS causes altered behavior of the molecule
when small differences are made to its environmental system. This is an especially important
consideration to take into account not just for LPS, but for all amphiphiles which may be indi-
cators of infection or disease. Previous studies reporting the poor sensitivity of assays for the
direct detection of LPS and other biomarkers in aqueous mileau, such as blood, have ignored
their amphipathic biochemistry. With this manuscript and others, we hope to unravel the chal-
lenges associated with the detection of such biomarkers in clinically relevant samples, and
develop strategies to overcome them effectively in the future.

Materials and Methods
Materials

Lipopolysaccharides from six strains of non-O157 STEC (DEC10B [026:H11], B8227-C8 [O45:
H2], MT#80 [0103:H2], 0201 9611 [O111:H11], MDCH-4 [O113:H21], DA-37 [0121:H21],
GS G5578620 [0145:NM], and TY-2482 [0104:H4]) were selected and prepared by hot phenol
extraction and tested for antigen activity as we have previously described [36]. LPS O157:H7
was purchased from List Biological Labs (Campbell, CA), and LPS O111:B4, bovine serum albu-
min (BSA), Dulbecco’s phosphate buffered saline (PBS), Ethylenediaminetetraacetic acid
(EDTA), and potassium chloride were from Sigma Aldrich (St. Louis, MO). Polyclonal antibody
anti-E. coli 0157 was from LifeSpan Biosciences (Seattle, WA). pAb E. coli 0104, as well as
monoclonal antibody for E. coli O111 were from Abraxis Inc. (Warminster, PA). 1,2-Dioleoyl-
sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-
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(cap biotinyl) (sodium salt) (cap-Biotin) were obtained from Avanti® Polar Lipids (Alabaster,
AL). C5-BODIPY® FL HPC (2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-
3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine) was purchased from Molecular
Probes™ (Eugene, OR). Sylgard™ silicone elastomer kit (Dow Corning, Midland, MI) was used
to pour a 90/10 mix of polydimethylsiloxane (PDMS). Alexa Fluor™ 647 labeling kits, Ultra-
Pure™ Glycerol, and HEPES were all from Life Technologies (Thermo Fisher Scientific, Grand
Island, NY). Silicon oxynitrite waveguides were purchased from nGimat (Norcross, GA) and
the functional surface of silicon dioxide was maintained by Spectrum Thin Films (Hauppauge,
NY). Silicone gaskets for waveguide assembly were from Grace Bio-Labs (Bend, OR) and Secure
seal spacers (9 mm diameter x 0.12 mm deep) were from Electron Microscopy Sciences (Hat-
field, PA). Glass microscope slides, Gold Seal™ cover glass, and sucrose were purchased from
Thermo Fisher Scientific (Rockford, IL). Epoxy was from Gorilla Glue, Inc., (Cincinnati, OH),
and Simple Truth® organic ground beef was purchased from the local Kroger Stores (Los Ala-
mos, NM). All reagents were of the highest quality for their intended purpose.

Waveguide Preparation

Single mode planar optical waveguides were cleaned and prepared as previously described
[33,54,55,57,86,87]. In brief, the waveguides and coverslides were cleaned by bath sonication
for 5 min each in chloroform, ethanol, then water. Waveguides and coverslides were dried
under an argon stream and exposed to UV-ozone (UVOCS Inc., Montgomeryville, PA) for 40
min. Flow cells for immunoassays were immediately assembled using cleaned waveguides and
coverslips which were bonded together by a silicone gasket with a laser cut channel in the cen-
ter. Following assembly, the flow cells were injected with a preparation of lipid micelles, then
incubated overnight at room temperature (RT), to facilitate vesicle fusion [57].

Micelle Preparation

Micelles for waveguide membrane insertion experiments were prepared by probe sonication as
previously described [33,54,55,86,87]. 2 mM DOPC and 1% (mol/mol) cap-Biotin were pre-
pared by deposition of chloroform-dissolved lipids into glass tubes, and evaporation of solvent
under an argon stream. Biotin incorporation allows for the evaluation of bilayer integrity at the
conclusion of assays [51,57]. Lipids were rehydrated in phosphate buffered saline (PBS), stirred
for 2 hours (hr) at RT, 120 revolutions per minute (rpm) on an orbital shaker, followed by 10
freeze-thaw cycles. Finally lipids were probe sonicated for 6 min (1.0 s pulse on/off, 15% ampli-
tude) using a Branson ultrasonic generator.

Micelles for fluorescent imaging were prepared in a similar fashion as those for waveguide
experiments with the addition of 0.5-1% (mol/mol) of Cs-BODIPY FL HPC to serve as a fluo-
rescent marker for imaging. Lipids in chloroform were vacuum dessicated overnight and subse-
quently prepared in PBS, followed by 6 freeze-thaw cycles and 10 minutes of continuous probe
sonication (tip dia. = 3 cm, 12 watts) (Sonicator 3000, Misonix, Farmingdale, NY)

Lipopolysaccharides, Beef Samples, and Antibodies

Except in the cases of concentration dependence assays, LPS stocks (5 mg/mL) were thawed
and bath sonicated for 15 min, diluted to the working concentration in PBS and sonication was
repeated prior to injection in the flow cell. For the benchmark assays on concentration depen-
dence of LPS, the stocks were sonicated for 5 min, diluted to working concentration in PBS and
resonicated for an additional 5 min prior to injection.

Ground beef was flash frozen in liquid nitrogen, and freeze-dried on a Schlenk line for 48
hr. Dried material was crushed using a mortar and pestle, then homogenized in lysis buffer
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(0.5 M sucrose, 10 mM HEPES, 25 mM KCl, 1 mM EDTA, 10% v/v glycerol, 5 mg/mL concen-
tration) [33]. The suspension was alternately vortexed (30 sec) and bath sonicated (30 s) until
large protein aggregates were eliminated. Samples were diluted to 1 mg/mL in PBS immediately
before use. The beef homogenate was used as a negative control, in order to evaluate back-
ground fluorescence and assess antibody cross-reactivity with a crude matrix that simulates an
actual test sample. Additionally we also spiked LPS directly into homogenates to determine
detection capabilities in a beef sample [33].

Reporter antibodies for LPS were pAb anti-E. coli LPS O157 (pAb O157), pAb anti-E. coli
LPS O104:H4 (pAb 0104) and mAb anti-E.coli O111:H11 (mAb O111). All reporter antibodies
were fluorescently labeled with Alexa Fluor™ 647 (af647) per kit instructions. Molar ratio of
dye to protein was measured using a NanoDrop™ 1000 (Thermo Scientific) and calculated
(3.68 for LPS concentration assays, and 7.37 for beef lysate assays) per Alexa Fluor™ kit
instructions. Degree of labeling for pAb 0104-af647 was 3.17 and that for mAb O111-af647
was 7. After labeling, antibodies were checked for activity using immunoblotting of 5 mg/mL
LPS antigens onto nitrocellulose, and compared with immunoblotting results for antibodies
prior to labeling.

LPS Membrane Insertion Assays

In all cases, unless stated otherwise, membrane insertion assays were performed in triplicate
(minimum number of repeats) using the same concentrations of antibody, method of LPS
preparation, and incubation times. All volumes (sample, antibody, beef lysate) were 200 pL.
Concentration dependent LPS insertion assays were using LPS O157 and 25 nM pAb O157-
af647 as the reporter antibody. Flow cells were prepared as described and blocked for 1 hr
with 2% (w/v) BSA, then rinsed with 0.5% BSA/PBS. Incident light from a 635 nm laser,
(power 440-443 uW) was coupled into the waveguide using a diffraction grating. The
response signal was adjusted for maximum peak intensity using a spectrometer (USB2000,
Ocean Optics, Winter Park, FL) interfaced with the instrument and an optical power meter
(Thor Labs, Newton, NJ) [33,54,55,58]. The background signal associated with the lipid
bilayer and protein block was recorded after which the flow cell was incubated (90 min) with
pAb O157-af647 to determine NSB between the antibody and the lipid bilayer. The flow cell
was rinsed with 2 mL of wash buffer (0.5% BSA/PBS) after all incubations. LPS was incubated
for 2 hr to allow maximal association with the supported lipid bilayer. Excess LPS micelles
were removed by washing and the signal recorded. Subsequently, reporter antibody was incu-
bated for 90 min and rinsed, and the specific signal associated with antibody bound to LPS
captured on the bilayer was recorded.

Membrane insertion assays for serogroups of LPS were performed in triplicate at a concen-
tration of 25 pg/mlL, using pAb O157-af647 as the reporter antibody. This approach exploits
the cross-reactivity of a polyclonal antibody to the conserved O-ag regions of different ser-
ogroups of LPS [36]. However, we raised the hypothesis that by use of antibodies specific for a
particular LPS serogroup, we could potentially enhance the sensitivity and selectivity of detec-
tion by targeting the variable O-ag region. To evaluate this, LPS O104 was tested under identi-
cal conditions using 25 nM pAb O104-af647 as the reporter, and then compared to the signal
using the non-specific pAb 0157-af647. Additionally we also tested whether using mAb spe-
cific to the O-ag would increase the specific signal and tested LPS O111:H11 with its respective
mAbs.

To determine NSB of the detection antibody with the beef lysate, a 1 mg/mL beef homoge-
nate sample was prepared by diluting in PBS and incubating with the bilayer for 2 hr. NSB of
the reporter antibody was assessed against the beef lysate after a 90 min incubation, and then
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LPS (6.25, 25, or 50 pg/mL) was spiked into beef lysate and incubated for 2 hr. Specific signal
was recorded after 90 min incubation with the reporter antibody.

Imaging Inside of a Flow Cell

Due to previous observations that LPS could induce hole formation in DOPC lipid bilayers, we
investigated this mechanism as a possible limitation of membrane insertion assays. To accom-
plish this, we established a flow cell mimic to investigate the interactions of LPS with DOPC
bilayers inside a flow cell of identical dimensions and functionalized surfaces as our waveguide
biosensor (Fig 5A and 5B). For this, two holes were drilled into a glass slide and a 24x50 mm
cover glass was used in place of the waveguide piece to allow imaging. Glass was cleaned in
30:10 sulfuric oxides for 40 min then rinsed repeatedly and bath sonicated 3 times (5 min/
each) in deionized water. The flow cell model was constructed from the two glass pieces with
the addition of an attached outflow tube and a rubber septum to allow buffer exchange. PDMS
(90:10 elastomer:curing agent) was poured into plastic petri dishes to a final height of ~4 mm,
allowed to cure, and then cut into a square (~1 cm x 1 cm). To create an injection port, a rubber
septum was inserted into the PDMS when it was approximately halfway cured. For the fluid
outflow port, a 2 mm hole was made in a 1 cm” of self-adhesive silicone using a biopsy punch
and tubing was inserted through the hole. PDMS and flow cell assembly was then exposed to
UV-Ozone for 2 min after which PDMS/septum assembly and silicone were stuck to the glass
slide and seams were sealed using epoxy. Epoxy was allowed to cure for 1 hr prior to deposition
of 2 mM DOPC + 1% biotin + BODIPY® labeled lipid micelles. Lipids were deposited into the
flow cell, the outflow tube was clamped shut, and the apparatus was incubated O/N at 4°C in
the dark. Flow cell was rinsed with 10 mL PBS and imaged on an Olympus IX-81 motorized
inverted microscope with excitation provided by a 488 nm Argon ion laser and green filter set.
Fluorescence recovery after photobleaching (FRAP) was used to confirm lateral fluidity of lipid
bilayers. LPS membrane insertion assays were then performed in the same manner as the wave-
guide assays (duplicate repeats), with images recorded to determine hole formation (or lack
thereof) under these conditions. In most cases, images were recorded at 1024 x 1024 pixels at a
scan rate of 12.5 ps/pixel. FRAP was performed on 512 x 512 pixel frames, using 5x zoom, at a
scan rate of 10 us/pixel.

Imaging LPS on Glass Slides

To determine differential interactions of various LPS serogroups on DOPC lipid bilayers, 9
mm secure seal spacers were adhered to clean glass cover slides and 2 mM DOPC + BODIPY®
micelles were deposited and incubated for 20 min as previously described [10]. Free lipid vesi-
cles were rinsed away using 10 exchanges of PBS buffer (1 mL total volume) and then LPS was
prepared and incubated with the bilayers for 20 min at RT, after which free LPS was rinsed
away with 10 exchanges of buffer. A minimum of two replicates was obtained for each ser-
ogroup of LPS. Negative and positive controls (LPS O111:B4 and buffer, respectively) were run
in parallel to each experiment. FRAP and fluorescence imaging was used to determine the
effect of the LPS groups on the fluidity and conformation of the bilayers. Data was optimized
for contrast and brightness using Image] 1.48.

Data Processing

Resulting spectra from the waveguide biosensor was processed and graphed using Igor Pro
6.37. Due to NSB signals that were nearly equivalent to background values, the data for the
membrane insertion assays of LPS O104:H4 and O111:H11 were not background corrected,
and were integrated as raw spectral curves between 550 and 850 nm and then averaged. In all
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other cases, individual spectra replicates were integrated between the wavelengths of 550-850
nm, where the significant signal appears for detection with af647 and a long pass 647 nm filter,
and then corrected for background noise levels. Integrated values were then averaged and used
to calculate a s:n ratio. LoD were obtained by taking the average integrated NSB for all repli-
cates in a set, determining the standard deviation (o) of the replicates, adding 30, then multi-
plying by the sample concentration (pg/mL), and dividing by the integrated average specific
signal for that concentration (see Eq 1).

(NSB + 30)[Sample]

LoD =
0 Specific

(1)

Statistical Analysis

Linear regression was used to relate the logarithm of the raw integrated intensities according to
LPS concentration (LPSc), waveguide ID (wg#), power coupled (power), and type of measure-
ment (background (mBG), non-specific (mNSB), specific, and specific (mSP)). Analysis of var-
iance (ANOVA) was then used to determine the significance of the variables at the 5% level,
(Table A in S1 File). Subsequently, to explain the observed heteroscedasticity, we regressed

the absolute value of the residuals from the previous regression analysis onto the same set of
explanatory variables (Table B in S1 File).

Model selection was performed using Akaike information criterion to determine the signifi-
cance of the variables. Absolute values of the residuals of the means for LPSc, wg#, and power
were processed with regression analysis (Table C in S1 File) using the type of measurement as a
covariate.

Supporting Information

S1 Appendix. Integration algorithm for spectral data processing. Short algorithm used in
IgorPro to individually integrate the raw spectral waves from an Ocean Optics Spectrometer.
(PDF)

S1 Dataset. Integrated spectral values and data processing method. Excel spreadsheet which
contains all the integrated values of the spectral curves and how those values were processed to
obtain limits of detection and signal to noise ratios. Data was integrated using IgorPro 7 and
algorithm available in S1 Appendix.

(XLSX)

$2 Dataset. Raw data of spectral curves. Excel spreadsheet that contains the spectra collected
from a waveguide-based optical biosensor fitted with a USB 2000 Ocean Optics spectrometer.
File contains 11 different tabs, and the replicates for each concentration or assay are contained
within a single tab. Concentrations are clearly marked, and the waveguide number is written
after each replicate number. E.g. N = 1/wg#.

(XLSX)

S1 Fig. Integrated intensities of O-ag targeted detection of LPS. Spectra from Fig 4 were
integrated and plotted to demonstrate the difference in values when using specific antibodies
for detection. Error bars indicate standard error of the mean for the average of three replicates.
(TIF)

S2 Fig. High concentration of LPS O157 in a flow cell. 100 pg/mL LPS O157 was incubated
in the flow cell and rinsed. No hole formation was observed.
(TTF)
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S3 Fig. Lateral fluidity of bilayers after incubation with 100 pg/mL LPS 0157 inside a flow
cell. (A) Time lapse series of DOPC-BODIPY bilayers that were photobleached and showed
lateral fluidity during recovery. (B) Intensity profile graph of the overall average intensity and
the recovery of the photobleached region. Incubating with LPS O157 does not cause hole for-
mation or effect fluidity of the bilayers.

(TIF)

$4 Fig. Specific and non-specific binding of pAb 0157-af647 inside a flow cell. (A) Com-
posite 2 channel image of DOPC-BODIPY lipids and pAb O157-af647. White arrows indicate
points of fluorescence intensity, and the white dotted line is the region of analysis graphed in
D. Arrow 1 is a DOPC-BODIPY surface associated vesicle, and arrow 2 is specific binding of
the reporter antibody. (B) Green channel of image A. (C) Red channel of image A. White
arrows indicate points of non-specific binding. (D) Line intensity profile of dotted line in
image A showing low non-specific binding and saturated intensity of the specific binding. Low
NSB and high specific binding events allow for increased signal to noise ratios allowing sensi-
tive detection of LPS membrane insertion.

(TTF)

S5 Fig. Effects of multiple serogroups of LPS on lipid bilayers. (A-I) 50 ug/mL LPS O111:B4,
026, 045, 0103, 0104, O111, O113, 0121, and 0145 respectively.
(TIF)

S1 File. Statistical results and tables. Presents a brief overview of the results obtained from
each ANOVA and the regression analysis of residuals.
(PDF)
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