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Cytomegalovirus (CMV) infection and delayed immune reconstitution (IR) remain serious obstacles for successful haploidentical
stem cell transplantation (haplo-SCT). CMV-specific IR varied according towhether patients receivedmanipulated/unmanipulated
grafts or myeloablative/reduced intensity conditioning. CMV infection commonly occurs following impaired IR of T cell and its
subsets. Here, we discuss the factors that influence IR based on currently available evidence. Adoptive transfer of donor T cells
to improve CMV-specific IR is discussed. One should choose grafts from CMV-positive donors for transplant into CMV-positive
recipients (D+/R+) because this will result in better IR than would grafts from CMV-negative donors (D−/R+). Stem cell source
and donor age are other important factors. Posttransplant complications, including graft-versus-host disease and CMV infection,
as well as their associated treatments, should also be considered. The effects of varying degrees of HLA disparity and conditioning
regimens are more controversial. As many of these factors and strategies are considered in the setting of haplo-SCT, it is anticipated
that haplo-SCT will continue to advance, further expanding our understanding of IR and CMV infection.

1. Introduction

Haploidentical stem cell transplantation (haplo-SCT) is an
alternative treatment for transplant candidates lacking a
human leukocyte antigen- (HLA-) matched related or appro-
priate unrelated donor. After hematopoietic stem cell trans-
plantation (HSCT), T cells are regenerated through thymic
and peripheral pathways, with the thymus generating a more
diverse T cell repertoire. Because thymic function is poor
in adults, posttransplantation immune reconstitution (IR) in
the months following transplant depends on the peripheral
expansion ofmature T lymphocytes in the allograft. Impaired
recovery of adaptive immunity following haplo-SCT remains
an outstanding issue and is associated with increased risk of
infection, including bacterial, fungal, and cytomegalovirus
(CMV) infections. CMV infection after haplo-SCT contin-
ues to adversely affect transplant outcomes [1–4] despite
the use of prophylactic or preemptive treatment [5]. Lack
of CMV-specific immune recovery has been reported as

consistently associated with relapses of CMV infection and
the development of CMV disease after allogeneic stem cell
transplantation [6–9]. Therefore, this review summarizes the
kinetics of CMV-specific T cell recovery and its association
with CMV infection after haplo-SCT. Strategies to improve
CMV-specific IR are also discussed.

2. Cytomegalovirus-Specific T Cell Immune
Reconstitution after Haplo-SCT (Table 1)

2.1. Manipulated (T Cell Depleted, TCD) Haplo-SCT. Using
a megadose of extensively T cell depleted, G-CSF-mobilized
stem cells and a fludarabine-based conditioning protocol [10],
the Perugia group demonstrated that haplo-SCT could be
successful in patients with acute leukemia. Early results [2]
showed a nonrelapse mortality rate of 40%, with infection
as the leading cause of death, mainly CMV and Aspergillus.
Additionally, improved IR and fewer deaths secondary to
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infection occurred when G-CSF was eliminated from the
regimen [11]. The results showed that in patients not treated
withG-CSF, CD4+ cell countswere greater than 0.1× 109/L 60
days after transplantation and greater than 0.3× 109/L at 180
days. Subsequently, Lilleri et al. [12] performed a study with
48 young patients who received a TCD, allogeneic myeloab-
lative HSCT from an HLA-disparate relative. The 1-year
cumulative incidence of both CMV infection and specific T
cell reconstitution was 83% among the 23 CMV-seropositive
patients, and these incidences were 4% and 8%, respectively,
among the 25 CMV-seronegative patients [12]. CMV-specific
T cell (CMV-CTL) reconstitution was significantly delayed
in patients receiving TCD grafts compared with patients
receiving unmanipulated HSCTs [12].

Reduced intensity conditioning (RIC) is used to mini-
mize toxicity while allowing rapid engraftment and expedit-
ing immune reconstitution during the early posttransplant
period, thereby protecting the host from infection. Data
showed that IR was rapid in 22 pediatric recipients after RIC
and CD3-depleted haplo-SCT andwas similar to, if not better
than, outcomes obtained after myeloablative haploidentical
transplantation [13]. CMVwas detected in only one patient in
this group, and no patient had died of viremia. In an attempt
to reduce the risk of graft-versus-host disease (GVHD)
and Epstein-Barr virus-related lymphoproliferative disease,
Federmann et al. used CD3/CD19-depleted grafts with RIC
and observed that T cell reconstitution after haplo-SCT was
delayed with a median of 205 CD3+ cells/𝜇L, 70 CD3+ CD4+
cells/ul, and 66 CD3+ CD8+ cells/𝜇L on day 100, respectively
[14]. Eight of the 28 patients had CMV reactivation, and no
deaths due to infections were observed. Bader et al. reported
their experience of CD3/CD19-depleted haplo-SCT for 22
children with acute leukemia [15]. Reconstitution with T
cells can start on day 30 and the early T cell regeneration
following transplantation results from the expansion of T
precursor cells contained in the stem cell transplant.Thymus-
dependent T cell regeneration only begins on day 100. In
contrast to these published data, reports fromPérez-Mart́ınez
et al. using allogeneic CD3/CD19-depleted grafts showed that
T cell recovery achieved normal valueswithin the first 60 days
after transplantation [16]. And up to 2 years, 2 of the 30
patients had died because of CMV pneumonia. Similar
results were reported in patients with acquired severe aplastic
anemia [17].

2.2. Unmanipulated Haplo-SCT. Although extensive deple-
tion of T cells or selective depletion of alloreactive T cell
subsets improves engraftment and reducesGVHD, thismani-
pulation is associated with prolonged immune deficiencies
and increased risk of infection. In an attempt to perform
haplo-SCT without T cell depletion, Peking University
researchers developed the GIAC protocol for haplo-SCT by
combining G-CSF-primed bone marrow and unmanipulated
PBSCs [18–22] (Figure 1). Using this protocol [23], we pre-
viously observed that patients undergoing haplo-SCT had a
higher 100-day cumulative incidence of CMV antigenemia
compared with a matched group (65% versus 39%), whereas
the incidence of CMV-associated interstitial pneumonia was

Neutropenia

0 30 100
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Figure 1: T cell immune reconstitution and CMV infection fol-
lowing unmanipulated haplo-SCT without ex vivo TCD (GIAC
transplant protocol, Peking University Institute of Hematology).
CMV, cytomegalovirus; GVHD, graft-versus-host disease; CMV-
CTL, CMV-specific CTL; TCD, T cell depleted; G-BM/PB, combin-
ing G-CSF-primed bone marrow (G-BM) and peripheral blood (G-
PB) harvests.

the same between the two groups (17% versus 17%).We inves-
tigated IR in patients with hematological malignancies after
haploidentical transplantation and HLA-matched transplant
[21]. Compared with those from HLA-matched recipients, T
cell subset cell counts in the first 90 days after grafting were
lower in haploidentical recipients. The difference was most
striking for CD4+ and CD4+ naı̈ve T cells. T cells appeared
equally functional among patients without GVHD from both
groups. Furthermore, we prospectively investigated CMV-
CTL IR in 42 recipients after haplo-SCT [22]. CMV reacti-
vation occurred in 36 of the 42 patients, but only 5 had CMV
disease. The CD8+ T cell count in transplant recipients was
equal to that of controls at day 60 after transplantation. The
median number of CMV-specific T cells and the subsets to
which they belonged was comparable to those of the controls
from day 30 to day 360. Furthermore, CMV-CTLs from
transplant recipients were found at high frequencies and
demonstrated robust proliferation capacities and interferon-𝛾
responses at 1 year after transplantation.

Recent reports showed that it is feasible to performhaplo-
SCT without ex vivo TCD after RIC. Kurokawa et al. from
Japan [24] conducted haplo-SCT on 66 adults with hemato-
logic malignancies using RIC without TCD. CMV antigen-
emia occurred in 45 of 57 evaluable patients at a median
of 19 days after transplantation. CMV-related diseases were
diagnosed in 3 patients, and one patient died of CMV-colitis.
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The lowest numbers of CD3+, CD4+, and CD8+ T cells were
observed at 1 month after transplantation, but all values con-
tinued to increase until 6 months after transplantation and
remained stable thereafter [24]. Data from a Korean study
[25] showed a RIC therapy with busulfan, fludarabine, and
antithymocyte globulin (ATG) for haplo-SCT in acute
leukemia and myelodysplastic syndrome. Fifty-eight of 72
evaluated patients (81%) had at least 1 positive assay result for
CMV pp65 antigenemia. Four patients developed CMV
disease, and 3 of them died of CMV-colitis per se or of other
causes. Despite the use of ATG, CD8+ lymphocyte counts
exceeded pretransplantation levels at 2 months, whereas
CD4+ lymphocyte counts recovered more slowly, with only
approximately half of all patients showing CD4+ lymphocyte
counts > 200/𝜇L at 2 to 6 months after transplantation [25].

Alemtuzumab, which has a strong lympholytic effect, is
usually used against GVHD in a reduced intensity condition-
ing regimen. Using an in vivo alemtuzumab-based regimen,
Kanda et al. [26] reported thatCD3+/CD4+ andCD3+/CD8+
T cells were strongly suppressed within 2 months after
haploidentical peripheral blood SCT but recovered on day 90.
CMV-specific cytotoxic T lymphocytes were detected on day
90 after transplantation in two patients and represented
0.03% and 0.25% of CD8+ T cells, respectively, for each
patient. Ten of the 12 patients experienced CMV reactivation,
and CMV disease was observed in three patients but was not
fatal. Rizzieri et al. [27] extended the prior work and
reported the large series assessing outcomes and immune
reconstitution in nonmyeloablative haplo-SCT for 49 patients
with alemtuzumab-based regimen. Twenty-five percent of the
patients experienced a severe infection, whereas 86% experi-
enced reactivated CMV with CMV disease in seven patients.
Quantitative lymphocyte recovery through expansion of
transplanted T cells was noted by 3 to 6 months [27].
Recently, Kanda et al. [28] updated their transplant data with
continued use of in vivo T cell depletion with alemtuzumab.
Nine patients experienced positive CMV antigenemia with
CMV disease in three patients, none of which was fatal. The
numbers ofCD4+ andCD8+T-cells remained lowwithin one
year after HSCT. The median quantities of CMV-specific
CD8+ T lymphocytes as measured by the tetramer-based
assay were 0.05%, 0.01%, and 1.83% at 90, 180, and 365 days
after HSCT, respectively.

3. Cytomegalovirus Infection Associated with
T Cell Immune Reconstitution

IR of the immune subsets is likely to have the greatest
impact on clinical outcomes after haplo-SCT [29]. In healthy
CMV-seropositive individuals, high frequencies of CMV-
specific CD4+ and CD8+ T cells that mediate control of viral
reactivation can be detected [30, 31]. Both the quantity and
quality of CMV-specific T cell recovery are essential for
immune control of CMV infection following HSCT. A strat-
egy of deferred antiviral therapy based on the presence of a
detectable functional CMV-specific T cell response at the
time of documentation of CMV DNAemia was clinically

administered and allowed for the sparing of antiviral treat-
ment in transplant patients [32, 33]. A recent phase II study by
Blyth et al. showed that donor-derived CMV-specific T cells
reduce the requirement for CMV-directed pharmacotherapy
without increased GVHD after allo-HSCT [34].

In immunocompromised HSCT recipients, few patients
with levels of CMV-specific CD8+ lymphocytes > 2 × 106–
10 × 106/L developed CMV disease [35–37]. Both CD4+ and
CD8+ CMV-specific IR are required for protection from
recurrent activation [38–40], and an absolute CD4+ and
CD8+ T cell response at day 60may confer protection against
viremia in young patients [41]. Borchers et al. [42] reported
that the presence of CMV-CTL before day 50 and their
expansion after reactivation appear to protect against recur-
rent CMV reactivation. In patients with uncontrolled reacti-
vation, differentiatedCMV-specificT cells of the late differen-
tiation phenotype CD45RA+CD27−CD28− did not develop
[37]. Furthermore, Lilleri et al. [12] found that detection of
CMV-specific T cells also correlated with control of CMV
infection after T cell depleted haplo-SCT.

In our own analysis [43], high CMV-CTL with terminally
differentiated effector CD45RO−CD62L− (TEMRA) pheno-
type in the allografts was associated with reduced risk of
CMV reactivation when sufficient CD45RO+CD62L− cells
(TEM) were provided by infusion (≥0.208 × 106/kg). Early
after transplantation, there was significant expansion of
CMV-CTL with central memory CD45RO+CD62L+ (TCM)
phenotype when CMV was reactivated [23, 43]. We further
investigated CMV-CTL in bone marrow (BM) after haplo-
SCT. BM-resident CMV-CTLs displayed distinct phenotypes
when CMV was reactivated [23], as there are more TEMRA in
the BM at day 360 after SCT and relatively higher TNaive cells
(CD45RO−CD62L+) in the BM at day 90 in patients with
infection compared with those without infection. This result
suggested that CTL in BM may play an important role in
controlling CMV infection, as mature T cells in the BM play
an essential role in maintaining normal peripheral T cell
numbers, and CMV-CTL could therefore be more efficiently
derived from the BM than from the PB [44, 45].

4. Factors Influencing CMV-Specific IR

The process of IR is influenced by patient- and transplant-
related factors, such as donor and patient ages, primary dis-
ease, transplant type, conditioning regimen, stem cell source,
HLA disparity, GVHD, and infection [46]. Not surprisingly,
the intensity of immunosuppression and the degree of T
cell depletion in transplant protocols, such as ATG or alem-
tuzumab, both critically affect the risk of CMV reactivation
[47]. As for CMV-specific IR after haplo-SCT, there are sev-
eral influences, except graft manipulation described above.

4.1. Donor and Recipient CMV Serostatus. CMV-negative
recipients of grafts from CMV negative donors (D−/R−)
rarely developCMV infection andD− should be chosenwhen
possible. Ljungman et al. reported that only acute GVHD
grade II–IV andD−/R+were significant risk factors for CMV
disease after multivariate analysis [48]. D+/R+ transplants,



6 Journal of Immunology Research

on average, generate higher levels of multifunctional CMV-
specific T cells and require less antiviral therapy compared
with D−/R+ transplants [49]. D+/R+ patients had a lower
cumulative incidence of CMV reactivation, recurrent reacti-
vation, CMV disease, and mortality compared with D−/R+
patients [50]. Pretransplant human CMV infection of the
recipient is a major factor driving human CMV-specific
immune reconstitution [12]. Our previous data also suggested
protective immunity could be transferred by infusion of
CMV-CTL within allografts [43]. Nevertheless, Pietersma et
al. found that reactivation of CMV infection occurred more
frequently in patients receiving a CMV-positive graft but was
less severe than in patients receiving a CMV-negative graft
[51].These data suggest roles for both virus andCMV-specific
immunity present in the graft. Based on current knowledge,
the use of D+/R+ transplant is preferred for improved IR,
and D−/R− is preferred for decreased risk of CMV infection.
Other donor/recipient combinations remain to be confirmed
in clinical trials. Determining CMV serostatus and levels
of CMV-CTL in the donor grafts may help in controlling
CMV reactivation, which is closely correlated with immune
reconstitution and differentiation of CMV-CTL subsets.

4.2. StemCell Source andGraftComposition. Numerous stud-
ies have compared IR during SCT using different stem cell
sources. IR after peripheral blood stem cell transplantation
(PBSCT) is generally characterized by faster myeloid and
lymphoid recovery versus BMT [52–54]. Along with accel-
erated and sustained näıve CD4+ recovery, improved in vitro
proliferative responses have beenmeasured following PBSCT
[52–54]. Hakki et al. suggested that BM as the source of stem
cells resulted in delayed recovery of functional T cell immu-
nity at 3 months after transplantation [39]. In the setting
of HLA-matched sibling transplantation, recipients receivi
ng PBSCT had lower risks of documented bacterial, fungal,
and viral infection, including CMV viremia [52]. These data
clearly indicate rapid T cell reconstitution and a lower
incidence of CMV infection when PBSCT is used.

Transplantation using PBSCs with ex vivo TCD is the
most common HLA-mismatched/haploidentical transplant
approach in Europe and the United States [55]. In China,
Peking University researchers combined G-BM and G-PB
harvests (G-BM/PB) without ex vivo TCD for the GIAC
protocol and achieved encouraging results [18–21]. Recently,
unmanipulated PBSCT [56] and unmanipulated G-BM [57]
have been accomplished in haplo-SCT settings with very
encouraging results. However, limited data are available
concerning CMV-specific IR after haplo-SCT. Lilleri et al.
reported that children receiving T cell depleted transplants
exhibited significantly delayed CMV-specific T cell reconsti-
tution, and only D− and BM as a stem cell source were found
to significantly delay CMV-specific T cell reconstitution [12].
A small comparative series showed better survival among
patientswho receivedT cell-replete transplants, with less viral
infections, including CMV reactivation, and better immune
reconstitution of T cell subsets compared with T cell-
depleted haplo-SCT [58]. Reconstitution of CMV-specific
T cell immunity may have proceeded at a faster rate in

patients treated with our GIAC protocol than in patients
described in other reports of haplo-SCT [23]. A differential
pattern of T cell reconstitution is expected after in vivo TCD
and ex vivo TCD haplo-SCT. In TCD haplo-SCT, the time
lapse during IR, even in the absence of GVHD, is most likely
lengthened by extensive ex vivo T cell depletion itself, while
greater numbers of donor T cells cotransfused with allografts
are not immediately eradicated by in vivo TCD. The effect of
in vivo T cell depletion could be balanced by graft infusion at
the time of transplantation [43, 59]. Therefore, using PBSCT
or G-BM/PB is preferred for IR to CMV.

4.3. Conditioning Regimens. Although limited, studies com-
paring IR following myeloablative and nonmyeloablative
regimens have been insightful. Maris et al. compared IR for
one year after transplantation in 51 patients receiving HLA-
matched PBSCT following nonmyeloablative conditioning
with a reference group of 67 myeloablative recipients [60].
Both regimens demonstrated similar levels of total and
subset-specific lymphocyte recovery, lymphoproliferative
responses to viral stimulants, and in total and pathogen-
specific antibody levels. Overall infection rates were signifi-
cantly lower in nonmyeloablated patients, who also had lower
rates of CMV infection coinciding with greater numbers of
CMV-specific T cells at days 30 and 90. Data from Nakamae
and colleagues showed [61] that residual host cells after
nonmyeloablative SCT reduce progression to higher CMV
viral load in transplant recipients; however, this effect does
not appear to protect against serious complications of CMV.
Recent results [62] showed that CMV reactivation was less
common in the RIC group during the midrecovery period,
while there was no difference during the late-recovery period.
CMV disease is as much of a problem following non-
myeloablative transplantation as it is following myeloablative
transplantation [61, 63].

4.4. GVHD and Steroid Administration. The deleterious
effects of acute GVHD on T cell function are well established.
GVHD inhibits T cell recovery through T cell apoptosis via
activation-induced cell death, immunosuppressive cytokine
production by regulatory cell populations, and direct damage
to thymic epithelium and stroma [64, 65]. GVHD appears to
adversely affect all levels of T cell function, from delaying T
cell ontogeny and limiting TCR diversity to impairing cyto-
kine production in recovered T cells. Multivariable analysis
showed that patients receiving methylprednisolone had a 1.5
times higher risk of infection, with acute GVHD being
another independent risk factor for infections after trans-
plantation [66]. Steroids can suppress immune function by
promoting the development of high IL-10-producing regula-
tory T cells and inhibiting GATA-3 phosphorylation [67, 68].
High-dose steroid use (≥2mg/kg/d) predicts delayed recov-
ery of functional T cell immunity at 3months after transplan-
tation [39]. Özdemir et al. [69] showed that steroid adminis-
tration resulted in a significant impairment in CD8+ tumor
necrosis factor 𝛼 (TNF𝛼) production but not a decrease in the
frequency of CMV-specific CD8+ T cells. Corticosteroid
treatment may favor active viral replication even in patients
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with CMV-specific T cells [12]. These findings have implica-
tions regarding the tapering of steroids in patients with active
infections normally controlled by T cell responses, such as
CMV disease.

4.5. Subclinical CMV Reactivation. It is known that CMV
infection drives T cells to an effector phenotype in healthy
individuals [70]. Subclinical CMV reactivation while on gan-
ciclovir appears to be a potent stimulator of T-cell function
[39]. Among patients who received ganciclovir at engraft-
ment, those who had breakthrough antigenemia had signif-
icantly better recovery of T cell function at 3 months com-
pared with patients who remained antigenemia negative [39].
In the setting of HSCT and the absence of high-dose steroids,
low-level, short-term antigenemiamay, in fact, have a protec-
tive effect by enhancing late immune function. CMV infec-
tion is required for the generation and/or maintenance of
the CMV-specific T cell pool, and reactivation of latent virus
was identified as themain factor leading to immune reconsti-
tution [12, 41]. Our data also showed that CMV-CTLs with a
central memory CD45RO+CD62L+ phenotype significantly
expandedwhenCMVwas reactivated [23, 43]. However, pro-
longed CMV reactivation may lead to exhaustion of T cells,
as has been suggested for other antigens [71]. These studies
suggested that subclinical CMV reactivation, but not persis-
tentCMVreactivation,may be required for the reconstitution
of CMV-specific T cell responses.

4.6. Age and Degree of HLA Disparity. Children may have
a better capacity than adults to develop anti-CMV primary
immune responses after HSC transplantation [41]. Patients
<8 years of age demonstrate improved IR, with a probability
ratio of 4.57, and this likely results in better reconstitution of
CMV-specific CD4+ andCD8+ T cells [12]. Increased thymic
function might be responsible for better immune reconsti-
tution in younger children [72], especially when compared
with adult patients in whom naive thymic emigrants have
been reported to appear in the circulation only 6months after
receipt of a T cell depletedHSCT [73]. Recently, Azevedo et al.
[74] investigated long-term IR after RIC based haplo-SCT
with TCD, which followed by preemptive donor lymphocyte
infusions (DLI). They found the proportion of naive and
memory subsets in the recipients, both within CD8+ and
CD4+ T cells, more closely resembled that observed in age-
matched control subjects than in the donors. Their data [74]
suggested that long-term IR was successfully achieved after
haploidentical HSCT, a process that appears to have largely
relied on de novo T cell production. IR after haplo-SCT
is usually slower than that after matched-sibling donor or
matched-unrelated donor transplants [75]; however, the
impact ofHLAdisparity onCMV-specific IR after haplo-SCT
remains uncertain.

5. Adoptive Immunotherapy to
Accelerate CMV-Specific T Cell
Immune Reconstitution

Any further reduction in CMV infection after haplo-SCTwill
only be achieved by hastening posttransplant IR. To improve

posttransplant IR, various strategies of adoptive donor T cell
immunotherapy have been investigated over the past years.
However, T cell-based adoptive therapy is problematic in
the adult haploidentical transplant setting, for alloreactivity
still exists. Research is focusing on strategies to hasten IR by
adding back broad-repertoire or pathogen-specific mature
donor T lymphocytes after ex vivo depletion of antidonor
alloreactivity [76, 77].

Amrolia et al. demonstrated an accelerated immune
reconstitution in 16 patients who received adoptively trans-
ferred T cells that were allodepleted in vitro [78]. After 2 to 4
months, CMV-specific T cells and a broad V𝛽 T cell receptor
repertoire could be observed, while the incidence of GVHD
was low. PosttransplantationCD8-depletedDLI can also con-
tribute to improved T cell recovery after haplo-SCT for the
treatment of advanced hematologic malignancies, while
reducing the incidence and severity of acute GVHD [79].
Despite the high incidence of CMV reactivation (82%), no
patients developed CMV disease. Circulating CD3+/CD4+ T
cells significantly increased at day 120 after DLI, while the
expansion of CD3+/CD8+ was at a median value of 23/𝜇L.
Preliminary studies using gene engineering of donor lympho-
cytes to deplete alloreactive T cells appear to be promising
[80, 81], but larger-scale investigations are warranted to con-
firm the results.

Given high degree of mismatching makes cell immun-
otherapy impossible, Perruccio et al. [76] improved the
immune recovery after myeloablative haploidentical SCT
by the infusion of nonalloreactive clones specific for CMV
and Aspergillus. Within 3 weeks of the immunotherapy infu-
sion, CMV-specific CD4+ T cell clones were 404 ± 124 per
106 cells, and IFN-𝛾-producing CMV-specific CD8+ cells
were detected in normal frequencies. Of the 25 patients who
received CMV-specific adoptive therapy, CMV reactivation
was observed in only 7 patients, while thirty of the 33
control patients experienced repeated CMV reactivation.
More recently, Perruccio et al. [82, 83] tested a photodynamic
approach to purge DLI of alloreactive, but not pathogen-
specific, donor T cells. Pathogen-specific responses to CMV
were retained, although with a 19 ± 9.7 time reduction in
frequency [83]. Not only did the researchers achieve the suc-
cess of described prophylactic infusion, but Feuchtinger et al.
[84] also treated 18 patients with refractory CMV infection
after allo-SCT using polyclonal CMV-specific T cells. In
83% of cases, CMV infection was cleared or viral burden was
significantly reduced. Viral control was associated with the
in vivo expansion of CMV-specific T lymphocytes in 12 of 16
evaluable cases, without GVHD induction or acute side
effects.

These manipulated DLI approaches are effective but
expensive and labor intensive, and the effect on global IR is
unclear. For a long time following transplant, allogeneic DLI
can accelerate IR, treat infections, and provide a graft-versus-
malignancy effect [85, 86]. Currently, we focus mainly on
the infusion ofG-CSF-mobilized peripheral blood progenitor
cells. Previous studies have shown the multiple biological
effects of G-CSF on peripheral blood stem cells, such as the
ability to polarize T cells from Th1 to Th2 and the pro-
motion of regulatory T cell and tolerogenic dendritic cell
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Test for CMV serostatus pretransplantation in donor and recipient serum

D+/R+ preferred

Stem cell source: PBSC or G-BM/PB preferred

Younger donor preferred

Avoidance of GVHD and decreased steroid dose

Subclinical CMV reactivation while on antiviral drug

Immunotherapy using adoptive donor T cells if uncontrolled infection

Figure 2: Proposed algorithm for improving CMV-specific IR fol-
lowing haplo-SCT. CMV, cytomegalovirus; D+/R+, CMV-positive
recipients of grafts from CMV-positive donors; PBSC, peripheral
blood stem cell; G-BM/PB, combining G-CSF-primed bonemarrow
(G-BM) and peripheral blood (G-PB) harvests; GVHD, graft-
versus-host disease.

differentiation [87, 88]. Huang et al. [89] reported that G-
CSF-mobilized peripheral blood progenitor cell infusion pro-
duces superior disease-free survival in patients who received
unprimed lymphocytes for relapse after allo-HSCT, although
the difference in the incidence of severe GVHD was not
significant. We extended the use of DLI for the treatment
of infections. Our preliminary data showed that DLI is an
effective and safe therapy for EBV-associated PTLD aftermis-
matched/haploidentical SCT [90]. Investigation of DLI for
CMV infection and other opportunistic infections is under-
way. Until pathogen-specific T cells and/or alloreactive-
depleted T cells are more readily available, unmanipulated,
nonspecificDLIwill continue to play a role in the treatment of
uncontrolled infections and improvement of IR following
haplo-SCT.

6. Conclusions

The current options for haplo-SCT present intrinsic chal-
lenges. In T cell depleted haplo-SCT, the minimal residual T
lymphocytes in the grafts successfully prevent lethal GVHD
without any posttransplantation immunosuppression, but the
small number of T cells infused leads to delayed IR. In unma-
nipulated haplo-SCT, although the high T cell content of
the graft potentially enhances the graft-versus-leukemia
effect, recipients of unmanipulated grafts from alternative
donors remain at risk of TRM for months/years after trans-
plantation because of GVHD and its immunosuppressive
treatments that antagonize T cell expansion and function.
Delayed IR and increased risk of CMV infection remain crit-
ical problems early after transplantation, although long-term
IR can successfully be achieved after haplo-SCT [74, 91].

To address these shortcomings, several factors identified
to affect IR to CMV should be considered for better outcome
(Figure 2). Our data indicate that selection of D+ for R+,
young donor, stem cells derived from PBSC or G-BM/PB,
subclinical CMV reactivation while on antiviral therapy,
avoidance of GVHD, and decreased steroid dose can improve
CMV-specific IR. The effects of varying degrees of HLA dis-
parity and conditioning regimens are uncertain. Therefore,
more in-depth preclinical and clinical studies in this area are
needed, both in terms of reconstitution of normal immune
cell function and their effectiveness in anti-CMV cell activity.
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