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Abstract

Objective: To develop a novel software method (AR2) for reducing muscle

contamination of ictal scalp electroencephalogram (EEG), and validate this Invited Referees
method on the basis of its performance in comparison to a commercially 1 2
available software method (AR1) to accurately depict seizure-onset location.

Methods: A blinded investigation used 23 EEG recordings of seizures from 8 v v
patients. Each recording was uninterpretable with digital filtering because of version 2 report report
muscle artifact and processed using AR1 and AR2 and reviewed by 26 EEG published

specialists. EEG readers assessed seizure-onset time, lateralization, and 04 Apr 2017

region, and specified confidence for each determination. The two methods

were validated on the basis of the number of readers able to render version 1 ? ?
assignments, confidence, the intra-class correlation (ICC), and agreement with published report report

. T 10 Jan 2017
other clinical findings.

Results: Among the 23 seizures, two-thirds of the readers were able to
delineate seizure-onset time in 10 of 23 using AR1, and 15 of 23 using AR2
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(p<0.01). Fewer readers could lateralize seizure-onset (p<0.05). The
confidence measures of the assignments were low (probable-unlikely), but
increased using AR2 (p<0.05). The ICC for identifying the time of seizure-onset
was 0.15 (95% confidence interval (Cl), 0.11-0.18) using AR1 and 0.26 (95% CI
0.21-0.30) using AR2. The EEG interpretations were often consistent with
behavioral, neurophysiological, and neuro-radiological findings, with left sided
assignments correct in 95.9% (CI 85.7-98.9%, n=4) of cases using AR2, and
91.9% (77.0-97.5%) (n=4) of cases using AR1.

Conclusions: EEG artifact reduction methods for localizing seizure-onset does
not result in high rates of interpretability, reader confidence, and inter-reader
agreement. However, the assignments by groups of readers are often
congruent with other clinical data. Utilization of the AR2 software method may
improve the validity of ictal EEG artifact reduction.
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m Amendments from Version 1

We have substantially revised the manuscript in order to

address the concerns of the three reviewers. In an effort to

more transparently convey effect size, we have revised our
statistical approach by performing the student’s paired t-test and
providing the reader with the t-values. We also correct for multiple
comparisons using the Holm-Bonferroni method.

In the methods section we provide greater detail regarding the
AR2 methodology and also indicate that the experimental dataset
was used to derive parameters which could have overestimated
the efficacy of the approach. In the introduction and discussion,
we offer improved explanations of the approach and results
derived from an expanded body of literature.

We have slightly modified Figure 1, Figure 2, Figure 4, and Figure 5.

See referee reports

Introduction

The scalp electroencephalogram (EEG) is a critical diagnostic tool
in the evaluation of seizures, but artifact from muscle contraction
often limits its use because of the obscuring of the cerebrally gener-
ated potentials. This problem is present in 11% of ictal EEGs over-
all and up to 70% of frontal lobe seizures'~’. The inability, or lack of
precision, to discern the seizure-onset zone from scalp EEG often
necessitates additional testing, including (positron emission tom-
ography) PET, magnetoencephalography, ictal Single-photon emis-
sion computed tomography (SPECT), and intracranial EEG*. Each
of these tests adds undesired time and cost to the evaluation.

Digital filters are the common approach to maximizing the likeli-
hood of identifying a seizure-onset zone from EEG with muscle
artifact. This filtering reduces muscle artifact by attenuating all fre-
quencies beyond a selected value’, but it may impair the integrity of
the EEG recording since brain-generated potentials may be in the
same frequency band®’. Recently, new technologies to reduce mus-
cle artifact based on independent component analysis (ICA)*'" have
become available. ICA derives spatial features that can remove arti-
facts that have static scalp topographies and time courses of activity
that are distinct from that of EEG sources. ICA artifact correction
is necessarily imperfect and will remove some neurogenic compo-
nents of the EEG as well. However, the degree of EEG distortion
may be negligible and ICA has proven effective at removing EMG
and ocular artifacts from EEG data recorded from normal indi-
viduals in laboratory settings''~". Prior studies have demonstrated
that ICA-based methods improve the interpretation of artifact-
laden ictal EEG recordings; in these studies researchers manually
performed the ICA analysis prior to performing the EEG
interpretation'>'°. Automatic artifact reduction using ICA'-"
has become commercially available and is included in the latest
versions of popular EEG viewer software”. Ictal scalp EEG record-
ings present extraordinary challenges to ICA artifact reduction
algorithms because the number of EMG artifact sources increases.

Despite the utilization of these software products by neurologists
around the globe, the clinical benefit has not been established. It
is also unknown if the new approaches introduce confounding
artifacts that may lead to erroneous interpretations.
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The goal of this study was to assess the validity of a commercially
available EEG artifact reduction tool (ARI1) that uses different
montages and within electrode analysis to identify artefactual
independent components®, and compare its validity to a novel
automatic artifact reduction tool (AR2), which was developed at
the University of California Los Angeles on the basis of inter-
reader agreement, confidence, and congruence with other clinical
findings.

Methods

Implementation

The custom software algorithm involved importing EEG scalp
recordings as European Data Format (EDF) files in Matlab 8.4
(Mathworks, Natick, MA). Prior to performing ICA to remove
muscle artifact, the algorithm first identified epochs of the scalp
EEG record contaminated by muscle artifact and determined the
electrodes that were suspected of having high recording impedance
during that epoch. The purpose of these calculations was to exclude
these electrodes from the ICA calculations.

The imported EEG was band pass filtered (16-70 Hz) using a 500th
order finite impulse response filter, i.e. FIR1 in referential montage.
We then calculated the normalized instantaneous amplitude of the
band-pass filtered signal using a Hilbert transform. This signal was
smoothed using moving averaging, and the algorithm identified the
longest epoch in which the time series remained greater than one
standard deviation. We next calculated the normalized mutual infor-
mation (MI)*' adjacency matrix across all scalp electrode contacts
during the (1670 Hz) band-pass filtered artifact epoch of greatest
duration and assigned each scalp EEG electrode a single MI value
derived from the maximum pairwise MI values in the adjacency
matrix. We then determined if this maximum mutual information
value exceeded a threshold value defined by visual inspection of
the scalp EEG used in the experimental dataset, and if that elec-
trode should be included in subsequent artifact reduction process-
ing. If the recording lacked an artifact epoch, or all channels were
excluded, artifact reduction was applied to the referential record-
ings from all recording electrodes.

The high pass filtered (>16 Hz) scalp EEG was then separated into
consecutive 120-second trials (24,000 data points) and each trial
was processed using CUDAICA”>*. A 120 second trial length was
chosen to optimize processing time. The purpose of the ICA was
to separate the (>16 Hz) seizure activity, from the (>16 Hz) mus-
cle artifact. The 16 Hz cut-off for the filter was chosen to isolate the
vast majority of the muscle artifact. Independent components that
explained an amount of variance above a particular threshold were
excluded from the signal. The threshold was selected on the basis
of the values of the raw and normalized mixing matrix (i.e. inverse
weight matrix) calculated in each of the ICA iterations. We assumed
that the last myogenic component and first neurogenic component
can be differentiated on the basis of the inverse weight matrix,
which provides the spatial distribution of each component, and
identifying the independent component that account for the most
variance with a focal spatial topography'’ defined on the basis of
exceeding a normalized threshold of two standard deviations in at
least one electrode of the inverse weight matrix. This threshold was
chosen on the basis of visual inspection of the EEG in the experi-
mental dataset and resulting independent components.
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The pruned EEG calculated for each 120 second trial of EEG (i.e
iteration of CUDAICA) was concatenated, and subsequently the
entire raw ictal EEG was low pass filtered (<16 Hz) using a 500th
order symmetric digital FIR filter, and the resulting low pass filtered
EEG was reconstituted by addition of the waveforms with the high
pass (>16 Hz) filtered EEG, following the exclusion of the inde-
pendent components suspected to represent muscle artifact. The
reconstituted and modified ictal EEG was exported from Matlab
format to EDF for subsequent visual analysis.

Operation

All computations were carried out using compiled Matlab 8.4 cus-
tom scripts on a cluster of HP SL230s Gen 8 ES-2670 nodes with
dual-eight-core 2.6 GHz Intel ES-2670 central processing units,
4 GB of memory per core, and NVIDIA Tesla graphics process-
ing units. Minimal system requirements for operating AR?2 include
Matlab v8.4 or above, an Intel Xeon CPU, 2 GB of memory, a
NVIDIA GPU, which is CUDA compatible, and CUDAICA.
For scalp EEG files exported from Neuroworkbench (Nihon-
Kohden, Irvine, CA, USA), executing the AR2 software method
requires only inputting the file name of the EDF file of interest at
the command line. For EDF files exported from other equipment
manufacturers, full automation of the AR2 software method can
be easily accomplished with simple modifications of the input
parameters.

Patients and sample selection

We tested AR2 retrospectively using 23 seizures from eight adult
patients with suspected focal-onset seizures undergoing evaluation
at the UCLA Seizure Disorder Center. The patients and seizures
were selected by S.A.W, whom was not a reviewer, from a review
of consecutive clinical neurophysiology case conference presenta-
tions between January 1, 2014 and December 1, 2015 and based on
case conference consensus that the ictal EEG records were unin-
terpretable due to muscle artifact contamination when reviewed
with conventional digital filtering. For each of these patients,
between 1-4 uninterpretable seizures were selected for inclusion
in the study on the basis of a lack of ECG, electrode, and salt
bridge artifact by S.A.W. Clinical data for each patient included
seizure semiology, inter-ictal epileptiform abnormality, unob-
scured findings and radiological reports from MRI, PET, SPECT
scans. The EEG and clinical records were deidentified and research
informed consent was not required. This study was approved under
UCLA IRB#15-001481. The video EEGs were acquired using a
EEG-1200 amplifier (Nihon-Kohden, Irvine, CA) at a sampling
rate of 200 Hz, low frequency cut-off 0.08 Hz. Electrodes were
placed according to the 10-20 international system with the
additional anterotemporal electrodes at T1/T2. The duration of
the exported EEG recording included the entire seizure and a
2-3 minute peri-ictal epoch.

Muscle artifact removal

AR1 was the commercially available Persyst v12 artifact reduction
software”” (Persyst Development, San Diego, CA). The methods
are proprietary. AR2 was developed by S.A.W and involved a two-
step procedure consisting of a custom algorithm. EEG processed by
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AR?2 was also interpreted using the Persyst v12 artifact reduction
software.

Performance measures of AR1 and AR2

The ARI1 and AR2 processed data were reviewed in Per-
syst v12 without video by 26 neurologists with a specializa-
tion in EEG, 20 of whom were board certified. The readers
were blinded to which records received AR1 or AR2, and each
reader reviewed the 46 seizures in random. Following review
of each ictal record, the reader completed a multiple choice
questionnaire (Supplementary File 1), which assessed ability to
visualize seizure-onset (Y,N) lateralize seizure-onset (L,R,N),
locate the region of ictal onset (anterior temporal, anterior fron-
tal, mid-temporal, temporal-parietal-occipital, occipital, none),
and self-identify confidence of interpretation on a 5 point scale
[(5) entirely confident (4) somewhat sure (3) probable (2) not con-
fident (1) unlikely i.e. slight probability] for each measure. When
time of onset, laterality, or the seizure onset region was not assigned
the confidence was taken as (0). Readers were not provided with a
definition of seizure-onset.

EEG analysis

During the interpretation of the ictal EEG processed by AR1 or
AR2, no restrictions were placed on the use of Persyst v12 built in
EEG filters (low-pass, high-pass, band-pass), or changes to mon-
tage. A comment in each recording was used to demarcate the time
prior to the clinical seizure but not the EEG onset. The assessment
was not time limited.

Statistical analysis

Differences in EEG interpretation utilizing AR1 and AR2 were
assessed using the paired student’s t-test and the McNemar test on
paired nominal data. The Bonferroni-Holm method was used to cor-
rect for multiple comparisons. Agreement across readers (Y,N,L,R),
using either AR1 or AR2, was calculated using the inter-class
correlation coefficient (ICC). For these outcomes, missing val-
ues were imputed to be in between non-missing values, and were
analyzed using cumulative logit mixed effects models, which
capture this ordering in the values and accounts for the cluster-
ing of readings into patients, and seizures within patients. Agree-
ment across readers for onset region was calculated using a Fleiss
kappa and treating the missing values as a category of response.
Errors are given as standard error of the mean (s.e.m), unless
otherwise specified.

Results

Implementation of the AR2 method

We applied the AR2 method developed at UCLA to the 23 seizures
in the dataset. The method was automatic and unsupervised and
separated the high-pass filtered (> 16 Hz) scalp EEG recordings
into putative neurogenic and myogenic components (Figure 1).
After pruning the putative myogenic components, the putative neu-
rogenic components were reconstituted with the low-pass filtered
(< 16 Hz) scalp EEG (Figure 2). The AR2 and AR1 processed scalp
EEG recordings were subsequently inspected by the 26 specialists
(Figure 3).
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Figure 1. The AR2 method automatically separates independent components containing myogenic from neurogenic potentials. The
AR2 method automatically separates independent components containing myogenic from neurogenic potentials in the beta and gamma band
on the basis of spatial topography and explained variance. A. Unprocessed scalp ictal EEG recording that was deemed uninterpretable.
B. The same epoch after applying a low pass (<16 Hz) filter demonstrating a lack of a convincing ictal rhythm. C. The ictal epoch after
applying a high pass (> 16 Hz) filter demonstrating dense muscle artifact. D. An example of a mutual information adjacency matrix calculated
during an epoch of artifact in the high pass (> 16 Hz) filtered scalp EEG recording. Three scalp electrode recordings exhibited relatively low
mutual information with all other electrodes and were designated poor quality and excluded from further processing to optimize INFO-MAX
ICA based artifact reduction. E. The normalized inverse weight matrix of all independent components across scalp electrode recordings for
the seizure in panel A. Independent components 1-13 exhibited strong focality and were designated as containing myogenic potentials, while
independent components 14 and above were designated neurogenic.
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Figure 2. Ictal onset is revealed with reconstitution of the low pass (<16 Hz) ictal scalp EEG with the high pass (>16 Hz) neurogenic
independent components. Reconstitution of the low pass (<16 Hz) ictal scalp EEG with the high pass (>16 Hz) neurogenic independent
components reveals a clear ictal onset. A. The tentative neurogenic independent components (A1) and myogenic independent components
(A2) derived from INFOMAX ICA processing of the high pass (> 16 Hz) filtered ictal scalp EEG recording are shown. The largest amplitude
activity in the neurogenic components are evident frontally and in the left hemisphere. B. The low pass filtered ictal scalp EEG suggests a
possible left frontal onset but a convincing ictal rhythm is lacking. C. Reconstitution of the low pass EEG with the neurogenic high pass (>
16 Hz) independent components results in an ictal EEG that demonstrates a more convincing left frontal onset consisting of beta-gamma
oscillations with some clear phase reversals in F3 and F7.
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Figure 3. A comparison of the results of artifact reduction methodologies. Ictal scalp EEG recording from seizure 18 prior to artifact
reduction processing (top), after processing with artifact reduction methodology 1 (AR1, middle), and after processing with artifact reduction
methology 2 (AR2, bottom). Only processing with AR2 reveals a right hemispheric onset followed by clear spread to right frontal regions.
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Identifying time of seizure-onset

Across the 23 seizures considered previously uninterpretable with
digital filtering (Table 1) two-thirds of the readers were able to
delineate the time of seizure-onset for 10 of the 23 using AR1, and
15 of the 23 using AR2 (Figure 4A, n=23, paired t-test p<0.01,
t=3.83). Across the 23 seizures, the mean confidence measure for
the determination of seizure-onset was 2.68 +/- 0.19 (probable-not
confident) when AR2 was utilized and 2.19 +/- 0.18 (not confident)
with AR1 (Figure 5A, d.f.=22, paired t-test, p<0.01, t=4.33). The
inter-class coefficient (ICC) was 0.26 (95% Confidence Interval
(CI) 0.21-0.30) with AR2, and 0.15 (95% CI 0.11-0.18) with AR1
(cumulative logit mixed effects models, p=0.333).

Lateralizing and localizing seizure-onset

Compared with identifying the time of seizure-onset, fewer
readers could lateralize seizure-onset after either AR1 or AR2
(Figure 4B, d.f.=22, paired t-test, p<0.01, t=8.08 ARI1, t=8.56
AR2). However, more readers were able to lateralize seizure-
onset using AR2 compared to AR1 (Figure 4B, d.f.=22, paired
t-test, p<0.01 t=3.30) and readers were more confident with AR2,
although both methods did not produce high levels of confidence.
The mean confidence measure for seizure-onset lateralization was
1.87+/- 0.198 (not confident-unlikely) for AR2 and 1.54+/- 0.176
(not confident-unlikely) for AR1 (Figure 5B, d.f.=22, paired
t-test, p<0.01, t=2.85). The ICC was equivalent (cumulative
logit mixed effects models, p=0.501) for AR1 (ICC=0.33 95%
CI 0.30-0.37) and AR2 (ICC=0.28 95% CI 0.25-0.31). For local-
izing the region of seizure-onset reader confidence (Figure 5C), and
agreement was very low (Figure 6, AR1 Fleiss’ kappa = 0.1199,
95% CI = 0.116-0.124, AR2 Fleiss’ kappa = 0.121, 95% CI =0.118-
0.125). For one of the seizures, the laterality assignments were
different when AR2 was used as compared to AR1 (Figure 4B,
McNemar p<0.05).

Comparison of seizure-onset lateralization assignments
with other clinical findings

We identified the patients with at least two consistent clinical
findings that lateralized the suspected seizure-onset zone (SOZ).
Compared to AR1, more readers were able to render seizure-onset
laterality assignments using AR2, and these assignments were more
often congruent with other clinical data (Table 2). These clinical
findings included seizure semiology, onset of seizures without
EEG obscuration, structural MRI, PET, or SPECT findings. If any
of the clinical findings were contradictory with respects to the lat-
erality of the suspected SOZ, the SOZ was designated unknown.
Overall, 4 patients (#1,4,5,6) had clinical findings that supported a
left-hemispheric SOZ, and 1 patient (#7) had clinical findings that
supported a right-hemispheric SOZ (Table S1). Among the 5 patients
with clinical seizure onset lateralization based on independent data,
if the reader lateralized the seizure-onset to the left using AR2 they
were correct in 95.9% (95% CI 85.7-98.9%) of cases, but using
ARI they were correct in 91.9% (95% CI 77.0-97.5%) of cases
(Table 3, p<0.0607).

Discussion
In this study, we present a new artifact reduction software, AR2,
and its application compared with a commercially available tool,

F1000Research 2017, 6:30 Last updated: 12 APR 2017

AR1. 26 neurologists used the two methods to interpret 23 ictal
EEG recordings that were uninterpretable due to muscle artifact
when reviewed with conventional filtering. The major findings
from this study include: 1) the utilization of artifact reduction
software results in non-uniform interpretation of ictal EEG, with
many readers not able to render assignments; 2) when readers
did render seizure-onset laterality assignments it often agreed
with other clinical findings; 3) although the study size was small,
the AR2 software method increased the number of readers that
rendered assignments, and reader confidence suggesting it aids in
diagnosis.

Both ARl and AR2 are digital signal processing software
tools™'>*" that may confound accurate ictal EEG interpretation
by altering the appearance of the EEG. Digital filtering also can
mislead’. One concern about AR1 and AR2 relates to the uncer-
tainty that myogenic activity was fully removed, and neurogenic
components were unaffected during waveform alteration. Specifi-
cally, the readers were not confident in their interpretations, and the
determination of seizure lateralization sometimes differed between
the AR1 or AR2 methods. As such, the artifact reduction methods
may introduce false positive findings. This demonstrates the limits
of EEG artifact reduction approaches and puts the advantages into
perspective.

The reliability of localization by ictal scalp EEG in the absence
of artifact is between 65-75% for lateralization*’. Neurologists
disagree more on the interpretation of ictal EEG processed with
artifact reduction software, however the seizure-onset laterality
assignments rendered by a quorum are often correct. Further refine-
ment of this technology may successfully improve the efficiency
of video-EEG monitoring and the utilization of epilepsy surgery;
however, correlation with epilepsy resective surgery outcomes will
be required for further validation.

With regard to AR2, the novel software method developed for
this study, the slight improvement seen in ictal EEG interpret-
ability after applying the method suggests that the algorithm can
(1) sometimes produce signals that are, exclusively or mainly, EEG
or EMG, and (2) identify which signals are of brain origin and
which are contaminant. The effectiveness of AR2 could possibly
be improved by utilizing autocorrelations to identify the myogenic
independent components'’

One explanation for AR2’s ability to isolate myogenic from neu-
rogenic activity may be related to the respective dipole generators
of each. ICA produces independent components that may resem-
ble single equivalent dipoles'*. Presumably, networks of myocytes
exhibit shorter distance connectivity then networks of neurons that
produce beta and gamma oscillations, and thus the two generators
can be distinguished on the basis of the focality'’ of the independent
components topography.

Data and software availability

All software code for the new AR2 software developed by S.A.W. is
openly and permanently available at https://github.com/shennanw/
AR2.
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Figure 4. More readers could lateralize seizure onset utilizing AR2 as compared to AR1. More readers could visualize the time of seizure
onset, and assign laterality to seizure onset utilizing AR2 as compared to AR1, and the assigned laterality of seizure onset sometimes differed
between the two methods. A. Bar plot of the number of readers whom visualized the time of onset for each seizure utilizing AR1 (blue) or
AR2 (red). Across seizures more readers visualized seizure onset utilizing AR2 compared with AR1 (p<0.01). Asterisks indicate statistically
significant differences between the two methods in individual seizures (McNemar, p<0.05, Bonferroni-Holm corrected). B. Stacked bar plot
of the number of readers selecting a left- or right-sided seizure onset utilizing AR1 (light blue, left; light yellow, right) or AR2 (dark blue, left;
yellow, right). Across seizures more readers lateralized seizure onset utilizing AR2 compared with AR1 (p<0.01). Asterisks indicate statistically
significant differences in individual seizures (McNemar, p<0.05, Bonferroni-Holm corrected), number sign indicates a significant change in
the determination of laterality utilizing AR2 compared to AR1 (McNemar, p<0.05, Bonferroni-Holm corrected).
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Figure 5. Confidence in the interpretation of ictal EEG onset improves with utilization of AR2 as compared to AR1. A. Bar plot of the
mean confidence scale values for visualizing the time of seizure onset for the 23 seizures interpreted utilizing AR1 (blue), and AR2 (red).
Across seizures, confidence scale values were greater when AR2 was utilized as compared with AR1 (p<0.01). Asterisks indicate differences
in confidence values in individual seizures (p<0.05, Bonferroni-Holm corrected). Error bars are calculated as s.e.m. B. The respective mean
confidence scale values for seizure onset lateralization. C. The respective mean confidence scale values for seizure focus localization. Across
seizures, confidence scale values for lateralizing seizure onset, and identifying the seizure focus were greater when AR2 was utilized as
compared with AR1 (p<0.05).
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Figure 6. Differences in ictal onset region assignments using AR1 or AR2. Stacked bar plot of the ictal onset region assignments using
either AR1 (lighter colors) or AR2 (darker colors) for all 23 seizures. Overall, across seizures, more readers were able to render an assignment
using AR2 as compared to AR1 (p<0.05). Inter-reader agreement using for assigning the ictal onset region was marginal using either AR1

or AR2.

Table 2. Contingency table of agreement between assigned seizure onset laterality
and other clinical findings. Contingency table of the agreement between seizure-onset
laterality using AR1 (left), and AR2 (right) and the laterality of seizure-onset assigned on the
basis of other clinical data for all the study patients and seizures. Note that clinical seizure-
onset lateralization was not available for all patients, and when readers rendered a laterality
decision that matched the laterality based on other clinical data, the assignments “agreed”.

AR1

EEG seizure-onset
lateralization

Y N
o . Agree Disagree
S_2 Y s 32 187
S9N
_— =
R
(4]
T € N 83 151
(3]

Archived source code as at time of publication: doi, 10.5281/
zen0do.2298932!

License: GNU Public License 3.

The raw scalp ictal EEG files that were analyzed in this study using
AR2, as well as the scalp ictal EEG files following processing

AR2

EEG seizure-onset
lateralization

Y N
o . Agree Disagree
2L Y 17 39 154
588
E 5§ N 107 127
(8]

using AR2 are available from Zenodo”*: Dataset 1. Validity of two
automatic artifact reduction software methods in ictal EEG
interpretation. Doi, 10.5281/zen0do.221095%  (https://www.
zenodo.org/record/221095#.WF63m7YrLdR)

The raw data used for the comparative assessments are
available from Zenodo™: Dataset 2. Validity of two automatic
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Table 3. Agreement between seizure-onset laterality and other clinical
findings. Agreement between seizure-onset laterality assignments using
either AR1 or AR2 and the suspected laterality of the SOZ assigned on
the basis of other clinical data. Parentheses indicate the 95% confidence
interval. “n” refers to the number of subjects.

Artifact Reader Assignment
Reduction of Seizure-Onset
Method Laterality
AR1 Right

Unknown

Left
AR2 Right

Unknown

Left

artifact reduction software methods in ictal EEG interpretation.
Doi. 10.5281/zenodo.223329 (https://zenodo.org/record/2233294.
WHN-HLY1LdQ)
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| appreciate the Authors' efforts to address most of my major concerns/suggestions. | approve this
manuscript to pass peer review, however | believe it would still benefit from these minor corrections:

Specific comments
4. "ICA derives spatial features that can remove artifacts that have static scalp topographies and time
courses of activity that are distinct from that of EEG sources." | believe that what the Authors mean is "ICA

derives spatial features that can be used to identify artifacts that...". Please confirm.

5. | believe that the Authors forgot to include this relevant reference: Urigiien, J.A., Garcia-Zapirain, B.,
2015. EEG artifact removal—state-of-the-art and guidelines. J. Neural Eng. 12, 31001". Please confirm.

6. | feel that further details are still needed regarding AR1 because presently, it is not clear the rationale
underlying AR1, nor its differences in relation to AR2.
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The Krembil Neuroscience Centre, Toronto, ON, Canada

The authors have provided a thoughtful revision that has address all my major suggestions/concerns. |
think the current version of the manuscript is a positive contribution to the literature and approve it.

Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 16 March 2017

doi:10.5256/f1000research.11390.r20245

?  David M. Groppe
The Krembil Neuroscience Centre, Toronto, ON, Canada

In this manuscript, Weiss and colleagues present a novel algorithm for removing electromyographic
(EMGQG) artifacts from ictal EEG recordings, called AR2. Moreover, they evaluate the performance of the
algorithm on data from 8 patients and compare it to a similar commercial algorithm, AR1 (i.e., Persyst
v12’s artifact correction software), using readings by 26 neurologists. The data chosen were so corrupted
by EMG artifacts that they were not interpretable using conventional frequency-based filtering. Both AR1
and AR2 rely on independent components analysis (ICA) to remove EMG artifacts via spatial filters that
are learned from the data. There is strong evidence that ICA is effective at removing EMG (and other
EEG-artifacts) from data acquired in controlled, research settings[ref1]-2. However, there may be too
many EMG sources in highly polluted ictal recordings for ICA to work.

In general, the authors found that both algorithms (1) made around 50% of the seizures interpretable with
typically low levels of rater confidence and (2) produced very low-levels of inter-rater agreement.
Nonetheless, when compelling seizure-onset lateralization was available from other sources of data (e.g.,
PET, SPECT), the algorithms led to EEG interpretations that were in concordance in about 80% of
seizures (Table 2). Moreover, AR2 tended to slightly outperform AR1. Specifically, neurologists could
interpret more seizures and tended to have more confidence in their interpretations following AR2 artifact
correction. However, there was no statistically significant difference in inter-rater agreement between
algorithms. The authors conclude from this that their AR2 algorithm “may improve the validity of ictal EEG
artifact reduction.”

In general, | think the authors’ work is laudable and that it is a valuable contribution to the literature. AR2 is
well motivated given the evidence that ICA is successful at removing EMG (and other EEG artifacts) from
data acquired in controlled research settings and the approach they have taken to validate their algorithm
is generally sound. Moreover it is impressive that all of the seizures were read by a large number of
neurologists, (26; although it is not clear how many were board certified in epilepsy or clinical
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neurophysiology) and that they have made all of their code and data public.

However, there are some significant issues with this work that qualify their findings and should be
addressed in revisions or future work:

-As the authors note, the data for this study was obtained from a small number of patients (8, only 5 of
whom had lateralized seizure foci based on independent data). Thus, it is not clear how robust some of
their findings are (e.g., the small differences between AR1 and AR2 performance).

-Although AR2 is a fully automatic algorithm, there are some arbitrary parameters of the algorithm (e.g.,
the mutual information threshold used to include an electrode in the artifact correction procedure) that
must have been set based on exploratory analyses. If the data used to set these parameters are the same
data used to validate the algorithm, then the authors are surely over-estimating, to some extent, the
automatic performance of the algorithm. The authors need to specify what data were used to fix the
parameters of AR2.

-Itis important to note that the authors chose extremely contaminated data to evaluate AR1 and AR2 and
that these algorithms might be more useful when applied to less contaminated data.

-If  understand the text correctly, AR2 excludes non-artifact contaminated electrodes from its analysis.
You should include these electrodes in the ICA decompositions because they will help capture the
neurogenic signal you are trying to preserve.

-Since ICA necessarily removes some neurogenic signal along with EEG artifacts, it can help to quantify
this by applying your algorithm to non-artifact polluted data 2. Adding such an analysis to these findings
would help us to understand how and how much AR2 might be distorting EEG seizure activity. Electrodes
closest to muscles are likely most affected.

-For many statistical hypothesis tests the authors provide only p-values. It would be much more
informative if the authors provided test statistics (e.g., t-scores, degrees of freedom), named the type of
test (e.g., cumulative logit mixed effect model) and confidence intervals. In particular, confidence intervals
will be much better than p-values at communicating how important and robust these effects are °.
-Figures 4-5 report p<0.05 for the results of a large number of statistical tests (23 per subfigure) with no
correction for multiple comparisons. You should perform some type of correction (e.g., Bonferroni-Holm or
Benjamini & Hochberg's false discovery rate control algorithm).

-To interpret these results, it would greatly help to have inter-reader reliability and reader confidence
values for non-artifact contaminated data. Can you get these from the existing literature?

-1 think the primary finding of this work is that neither AR1 nor AR2 provide robust artifact correction when
applied to such heavily contaminated data and need to be improved. You should discuss what
improvements (if any) you think could be made. For example, using higher-density EEG recordings could
greatly help. With more electrodes, ICA’s performance should improve (given sufficient training data).

In addition to those major points, here are some additional suggestions and points of
consideration/clarification:

The abstract should specify the consistency of AR1-derived lateralization with behavioural,
neurophysiological, and neuro-radiological findings. Currently, only the consistency with AR2-derived
lateralization is reported.

-[pg 3]: Saying “ICA removes artifacts based on source-related features instead of frequencies.” is too
vague to be informative. You might consider providing more details, such as “ICA derives spatial filters
that can remove artifacts that have static scalp topographies and time courses of activity that are distinct
from that of EEG sources. ICA artifact correction is necessarily imperfect and will remove some
neurogenic components of the EEG as well*. However, the degree of EEG distortion may be negligible
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and ICA has proven effective at removing EMG and ocular artifacts from EEG data recorded from
neuronormal individuals in laboratory settings?.”

-The introduction should note why ICA might not be able to correct for EMG-ictal artifact, even though it
has proven useful for less artifact-polluted research data. Specifically, it may fail because the number of
EEG artifact sources may be much greater in ictal data.

-You should include the article by De Vos et al. (2011)° in your review of previous algorithms for
correcting EEG artifacts in clinical epilepsy data with ICA.

-You say that EEG readings were provided by “26 neurologists with a specialization in EEG.” Please
specify how many were board certified in epilepsy or clinical neurophysiology.

-It appears that AR2 is applied to epochs that are not contaminated with EMG (pg 3, bottom left). Why try
to correct artifacts that aren’t there?

-Instead of saying “independent components of greatest order,” | think it is more conventional to say
“independent components that account for the most variance.”

-Please provide the specifications of the analog filter used to acquire the data.

It would help to explicitly report the number of data points per electrode fed to ICA. The reliability of ICA is
a function of this®.

-It might help to clearly state that the AR1 and AR2 processed data were both read using the same
graphical user interface (i.e., Persyst’s). It took me a little while to figure this out and it’s great that you did
this.

-It would help to add titles to subfigures (if it is permitted by F1000’s formatting guidelines).

-In Figure 1 there is no point to showing both the non-normalized ICA and normalized mixing matrix since
the mixing matrix column scale is arbitrary. Just show the normalized mixing matrix. It would also help to
view the mixing matrix weights as scalp topographies to see both the quality of the putative neurogenic
and EMG ICs.

-[pg 4] You say “Compared to AR1, more readers were able to render seizure-onset laterality assignments
using AR2, and these assignments were more often congruent with other clinical data (Table 2).”
However in Table 2, 82% of the seizures that were lateralizable with AR1 (i.e., 145/177) agree with clinical
findings in contrast to 81% of seizures using AR2 (i.e., 171/210). | think percentage of agreement is more
important than the number of seizures in agreement.

-[pg 11] You say “Among the 8 patients, if the reader lateralized the seizure-onset to the left using AR2
they were correct in 95.9%....”. Do you mean “Among the 5 patients” with clinical seizure onset
lateralization based on independent data?

-1 think your statement “With regard to AR2, the novel software method developed for this study, the slight
improvement seen in ictal EEG interpretability after applying the method suggests that the algorithm can
(1) reliably produce signals that are, exclusively or mainly, EEG or EMG, and (2) identify which signals are
of brain origin and which are contaminant.” is overly strong. | think “sometimes” is more accurate than
“reliably” given the low reader confidence and inter-reader agreement.

-I don’t understand your statement “One explanation for AR2’s ability to isolate myogenic from neurogenic
independent components may be that scalp EEG electrodes record weighted and summated far-field
signals from all brain and muscle sources, as well as near-field electrode noise generated at the
electrode/skin interface.” ICA can separate myogenic from neurogenic activity because they have distinct
scalp topographies and largely independent time courses of activity.

-It is fantastic that you have made both AR2’s code and your data publicly available. However, there is not
enough documentation on your GitHub repo for me to be able to easily understand how to use it (what is
scalp_input_matrix.mat?). A little bit more documentation would greatly help.

References
1. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ: Removing
electroencephalographic artifacts by blind source separation.Psychophysiology. 2000; 37 (2): 163-78
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Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Author Response 28 Mar 2017
Shennan Weiss, Thomas Jefferson University

Dear Dr. David Groppe,

We are grateful for your insightful and thoughtful comments and suggestions. Appended below are
answers to your inquiries, and changes we have made to the manuscript.

-As the authors note, the data for this study was obtained from a small number of patients (8, only 5
of whom had lateralized seizure foci based on independent data). Thus, it is not clear how robust
some of their findings are (e.g., the small differences between AR1 and AR2 performance).

-- The authors agree that this study is underpowered. Our findings are exploratory at best.

-Although AR2 is a fully automatic algorithm, there are some arbitrary parameters of the algorithm
(e.g., the mutual information threshold used to include an electrode in the artifact correction
procedure) that must have been set based on exploratory analyses. If the data used to set these
parameters are the same data used to validate the algorithm, then the authors are surely
over-estimating, to some extent, the automatic performance of the algorithm. The authors need to
specify what data were used to fix the parameters of AR2.

-- You are correct that we used the experimental dataset to define the threshold values and thus
we are likely over-estimating the performance of the algorithm. We clarify on (pg.3) and (pg.4) that
the thresholds were defined using visual inspection of the experimental dataset in the revised
manuscript.

-It is important to note that the authors chose extremely contaminated data to evaluate AR1 and
AR2 and that these algorithms might be more useful when applied to less contaminated data.

Page 19 of 30


http://www.ncbi.nlm.nih.gov/pubmed/10731767
http://www.ncbi.nlm.nih.gov/pubmed/20636297
http://dx.doi.org/10.1111/j.1469-8986.2010.01061.x
http://www.ncbi.nlm.nih.gov/pubmed/28000255
http://dx.doi.org/10.1111/psyp.12616
http://cogsci-online.ucsd.edu/6/6-1.pdf.
http://www.ncbi.nlm.nih.gov/pubmed/21705269
http://dx.doi.org/10.1016/j.clinph.2011.04.026
http://www.ncbi.nlm.nih.gov/pubmed/19162199
http://dx.doi.org/10.1016/j.neuroimage.2008.12.038

FIOOOResearch F1000Research 2017, 6:30 Last updated: 12 APR 2017

-- On (pg.2) we now specify “Ictal scalp EEG recordings present extraordinary challenges to ICA
artifact reduction algorithms because the number of EMG artifact sources increases.”

-If I understand the text correctly, AR2 excludes non-artifact contaminated electrodes from its
analysis. You should include these electrodes in the ICA decompositions because they will help
capture the neurogenic signal you are trying to preserve.

-- We apologize for the lack of clarity. We only excluded electrodes that had suspected increases
in impedance. We specify on (pg.3) “Prior to performing ICA to remove muscle artifact, the
algorithm first identified epochs of the scalp EEG record contaminated by muscle artifact and
determined the electrodes that were suspected of having high recording impedance during that
epoch. The purpose of these calculations was to exclude these electrodes from the ICA
calculations.”

-Since ICA necessarily removes some neurogenic signal along with EEG artifacts, it can help to
quantify this by applying your algorithm to non-artifact polluted data 2. Adding such an analysis to
these findings would help us to understand how and how much AR2 might be distorting EEG
seizure activity. Electrodes closest to muscles are likely most affected.

-- We agree that this analysis would be helpful and should be a focus of future study. Unfortunately,
the EEG reviewers who participated in this study are not available to review non-ictal scalp EEG
recordings.

-For many statistical hypothesis tests the authors provide only p-values. It would be much more
informative if the authors provided test statistics (e.g., t-scores, degrees of freedom), named the
type of test (e.g., cumulative logit mixed effect model) and confidence intervals. In particular,
confidence intervals will be much better than p-values at communicating how important and robust
these effects are °.

-- As you suggested we now provide t-scores, degrees of freedom, and have named the type of the
test in the results. We provide confidence intervals for the cumulative logit mixed effects models
results, and the correlation with other clinical data. S.E.M values are provided for the other
comparisons in the figures included in the manuscript. The authors are in agreement the
confidence intervals are essential to convey effect size3

-Figures 4-5 report p<0.05 for the results of a large number of statistical tests (23 per subfigure)
with no correction for multiple comparisons. You should perform some type of correction (e.g.,
Bonferroni-Holm or Benjamini & Hochberg’s false discovery rate control algorithm).

-- We have used your Matlab code to perform the Bonferroni-Holm correction on the p values
obtained for the individual seizures. The results have been revised accordingly (see methods,
statistical analysis).

-To interpret these results, it would greatly help to have inter-reader reliability and reader
confidence values for non-artifact contaminated data. Can you get these from the existing
literature?

-- We agree and the following sentence has been added to the discussion (pg. 13): The reliability
of localization by ictal scalp EEG in the absence of artifact is between 65-75% for lateralization2®.
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-1 think the primary finding of this work is that neither AR1 nor AR2 provide robust artifact correction
when applied to such heavily contaminated data and need to be improved. You should discuss
what improvements (if any) you think could be made. For example, using higher-density EEG
recordings could greatly help. With more electrodes, ICA’s performance should improve (given
sufficient training data).

-- Thank you for this helpful suggestion, we have added the following sentence to the discussion
(pg. 13): The effectiveness of AR2 could possibly be improved by utilizing autocorrelations to
identify the myogenic independent components. We hope that this method can be optimized for
10/20 standard scalp EEG.

In addition to those major points, here are some additional suggestions and points of
consideration/clarification:

The abstract should specify the consistency of AR1-derived lateralization with behavioural,
neurophysiological, and neuro-radiological findings. Currently, only the consistency with
AR2-derived lateralization is reported.

-- We have provided the results for AR1 in the abstract as you suggested.

-[pg 3]: Saying “ICA removes artifacts based on source-related features instead of frequencies.” is
too vague to be informative. You might consider providing more details, such as “ICA derives
spatial filters that can remove artifacts that have static scalp topographies and time courses of
activity that are distinct from that of EEG sources. ICA artifact correction is necessarily imperfect
and will remove some neurogenic components of the EEG as well*. However, the degree of EEG
distortion may be negligible and ICA has proven effective at removing EMG and ocular artifacts
from EEG data recorded from neuronormal individuals in laboratory settings?.”

-- Thank you for your suggestion we have made these verbatim changes to the introduction (pg. 2)

-The introduction should note why ICA might not be able to correct for EMG-ictal artifact, even
though it has proven useful for less artifact-polluted research data. Specifically, it may fail because
the number of EEG artifact sources may be much greater in ictal data.

-- We have addressed this issue as mentioned in a prior comment to you.

-You should include the article by De Vos et al. (2011)° in your review of previous algorithms for
correcting EEG artifacts in clinical epilepsy data with ICA.

-- done as suggested

-You say that EEG readings were provided by “26 neurologists with a specialization in EEG.”
Please specify how many were board certified in epilepsy or clinical neurophysiology.

Page 21 of 30


https://f1000research.com/articles/6-30/v1#rep-ref-20245-4
https://f1000research.com/articles/6-30/v1#rep-ref-20245-2
https://f1000research.com/articles/6-30/v1#rep-ref-20245-5

FIOOOResearch F1000Research 2017, 6:30 Last updated: 12 APR 2017

-- 20 of the readers were board certified as now specified on (pg.4.)

-It appears that AR2 is applied to epochs that are not contaminated with EMG (pg 3, bottom left).
Why try to correct artifacts that aren’t there?

-- As specified in the methods we performed the ICA on 120 second trials irrespective of the
beginning and end of the ictal EMG artifact. We used this approach in order to allow the algorithm
to function in an automated and unsupervised manner.

-Instead of saying “independent components of greatest order,” | think it is more conventional to
say “independent components that account for the most variance.”

-- We have made this modification as you suggested (pg. 3)

-Please provide the specifications of the analog filter used to acquire the data. It would help to

explicitly report the number of data points per electrode fed to ICA. The reliability of ICA is a
function of this®.

-- We now specify 24,000 data points in the methods (pg.4)

-It might help to clearly state that the AR1 and AR2 processed data were both read using the same
graphical user interface (i.e., Persyst’s). It took me a little while to figure this out and it’s great that
you did this.

-- We have modified the methods as follows (pg. 5): The AR1 and AR2 processed data were
reviewed in Persyst v12 without video by 26 neurologists with a specialization in EEG, 20 of whom
were board certified.

-It would help to add titles to subfigures (if it is permitted by F1000’s formatting guidelines).

-- As far as | know this is not possible.

-In Figure 1 there is no point to showing both the non-normalized ICA and normalized mixing matrix
since the mixing matrix column scale is arbitrary. Just show the normalized mixing matrix. It would
also help to view the mixing matrix weights as scalp topographies to see both the quality of the
putative neurogenic and EMG ICs.

-- We have changed the figure as you suggested and modified the legend.

-[pg 4] You say “Compared to AR1, more readers were able to render seizure-onset laterality
assignments using AR2, and these assignments were more often congruent with other clinical data
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(Table 2).” However in Table 2, 82% of the seizures that were lateralizable with AR1 (i.e., 145/177)
agree with clinical findings in contrast to 81% of seizures using AR2 (i.e., 171/210). | think
percentage of agreement is more important than the number of seizures in agreement.

-- Thank you for this insightful point. The numbers do not refer to the number of seizures in
agreement but rather to the number of observations i.e. assignments made that agreed with the
laterality defined by other clinical data. Thus, more readers were able to render observations that
agreed with other clinical data using AR2 as compared to AR1. However, as you point out the
percentage of readers that made rendered a laterality decision that did not agree with the other
clinical data using AR2 was comparable to AR1.

-[pg 11] You say “Among the 8 patients, if the reader lateralized the seizure-onset to the left using
AR2 they were correct in 95.9%....”. Do you mean “Among the 5 patients” with clinical seizure
onset lateralization based on independent data?

-- You are correct and we apologize for the lack of clarity. We have modified the results as follows
(pg. 12): Among the 5 patients with clinical seizure onset lateralization based on independent data,

-1 think your statement “With regard to AR2, the novel software method developed for this study,
the slight improvement seen in ictal EEG interpretability after applying the method suggests that
the algorithm can (1) reliably produce signals that are, exclusively or mainly, EEG or EMG, and (2)
identify which signals are of brain origin and which are contaminant.” is overly strong. | think
“sometimes” is more accurate than “reliably” given the low reader confidence and inter-reader
agreement.

-- We agree and have modified the sentence as you suggested (pg.13).

-I don’'t understand your statement “One explanation for AR2’s ability to isolate myogenic from
neurogenic independent components may be that scalp EEG electrodes record weighted and
summated far-field signals from all brain and muscle sources, as well as near-field electrode noise
generated at the electrode/skin interface.” ICA can separate myogenic from neurogenic activity
because they have distinct scalp topographies and largely independent time courses of activity.

-- Thank you for pointing out that this sentence lacks clarity. We have modified this paragraph as
follows (pg.13): One explanation for AR2’s ability to isolate myogenic from neurogenic activity may
be related to the respective dipole generators of each. ICA produces independent components that
may resemble single equivalent dipoles'4. Presumably, networks of myocytes exhibit shorter
distance connectivity then networks of neurons that produce beta and gamma oscillations, and
thus the two generators can be distinguished on the basis of the focality!” of the independent
components topography.

-It is fantastic that you have made both AR2’s code and your data publicly available. However,
there is not enough documentation on your GitHub repo for me to be able to easily understand how
to use it (what is scalp_input_matrix.mat?). A little bit more documentation would greatly help.
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-- We are in the process of improving the documentation of AR2 on GitHub thank you for reviewing
the source code.
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University of Lisbon, Lisbon, Portugal

Referee report
The manuscript needs careful revision by a native English speaker within the scientific community.

Although | feel that the performance measures used by the authors are adequate, and that a substantial
number of EEG specialists quantified them, the overall results are poor, particularly in terms of the
specialists’ confidence in their assessment. It would be therefore useful to compare the performance with
additional methods, for instance, as to understand the behavior of the proposed performance measures
across a larger set of methods.

Specific Comments
Title:

1. The title should mention that this novel method specifically addresses EEG artifacts induced by
myogenic activity.
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Abstract:
2. (Results) The authors should include the consistency value also for AR1.
Introduction:

3. (page 3, first paragraph) “Each of these tests adds undesired time and cost to the evaluation”. | would
say that the necessity of using additional imaging techniques depends on how precise one wants
seizure-onset zone delineation to be, as scalp EEG has a poor spatial resolution and localization power.
Please elaborate and/or re-phrase the sentence accordingly.

4. (page 3, second paragraph) “ICA removes artifacts based on source-related features instead of
frequencies”. What do Authors mean with “source-related features”? Actually, there are several studies
that use frequency-based criteria for the selection and subsequent removal of artifact-related
sources...Please explain.

5. (page 3, second paragraph) Please add more recent reviews/papers on the automatic IC selection for
EEG cleaning, such as: Chaumon, M., Bishop, D.V.M., Busch, N. a., 2015. A Practical Guide to the
Selection of Independent Components of the Electroencephalogram for Artifact Correction. J. Neurosci.
Methods. or Urigiien, J.A., Garcia-Zapirain, B., 2015. EEG artifact removal—state-of-the-art and
guidelines. J. Neural Eng. 12, 31001."

6. (page 3, fourth paragraph) Authors refer to AR1 as a commercially available software, and in fact,
detailed information about it is provided in reference [17]. However, the Authors should provide a brief
description of the method because: 1) it is the only method which they compare their novel one with; and
2) so that future readers do not need to go through [17] in order to understand the overall rationale of AR1.

Methods:

7. (page 3, Implementation, first paragraph) “(...) a power spectral density algorithm to find extended
intervals of elevated high frequency power across electrodes”. The Authors provide no information about
how this algorithm works, nor references; thus, it is presently not possible to reproduce this part of the
study.

8. (page 3, Implementation, first paragraph) The Authors need to justify their choices in general;
particularly, why only compute the adjacency matrix between the epoch of greatest duration across all
electrodes? Why compute the adjacency matrix in the first place, and not any other discriminative feature
for the presence of muscle artifacts? Why only assign the maximum pairwise Ml value in the adjacency
matrix to a given electrode and ignore all the rest? How was the Ml threshold determined?

9. (page 3, Implementation, second paragraph) Again, the Authors need to provide more details overall.
Why segment EEG into consecutive epochs of 120 s? How exactly was the variance threshold derived?
Also, | did not understand why should be there any order associated with myogenic and neurogenic
components (“We assumed that the last myogenic component and first neurogenic component (...)").

10. (page 3, Implementation, second paragraph) | understand that one of the expected features of ICs
reflecting muscle artifacts is having a focal spatial topography; however, bad channels are also reflected
in ICs exhibiting this feature. Thus, | have severe concerns about false positives when using this criterion,
as other myogenic-unrelated ICs are probably being selected as well, which may hinder a true
assessment of the impact of muscle artifact correction.
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11. (page 3, Implementation, third paragraph) What does reconstitute mean in this context?

12. (page 4, Statistical analysis) Since the performance of AR1 and AR2 is being assessed by 4 different
performance measures obtained from 26 EEG specialists, it would be more accurate to use a 2-way
repeated measures ANOVA (or its non-parametric equivalent, in the case of the samples not being
normally distributed), followed by multiple comparison testing if necessary.

Results:

13. The first three figures have very poor quality. In particular, it is nearly impossible to follow the overall
(quite detailed) description of Figure 2 (and it is panel A; on the top, left hand-side, and not A,). Also, the
three panels in Figure 3 should be overlaid to facilitate the direct comparison between the two algorithms.

14. Although AR2 outperforms AR1 for most of the performance measures, the results are still poor,
making me wonder if either of these methods is suitable for EEG muscle artifact correction.

Discussion

15. (page 12, first paragraph) What do the Authors mean with “One concern about AR1 and AR2 relates
to the lack of understanding of the waveform alteration”?

16. (page 12, fourth paragraph) “(...) (1) reliably produce signals that are, exclusively or mainly, EEG or
MEG (...)". Please clarify and elaborate on this claim.

References
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| Publisher Full Text

Competing Interests: No competing interests were disclosed.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

Author Response 28 Mar 2017
Shennan Weiss, Thomas Jefferson University

Dear Dr. Figueiredo and Dr. Abreu,

Thank you very much for your thoughtful and helpful comments and suggestions. We have
substantially revised the manuscript according to your feedback as follows:

1. The title should mention that this novel method specifically addresses EEG artifacts induced by
myogenic activity.

-- The title of the paper has been modified to “AR2, a novel automatic muscle artifact reduction
software method for ictal EEG interpretation: Validation and comparison of performance with
commercially available software”
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Abstract:

2. (Results) The authors should include the consistency value also for AR1.

-- As you suggested we have added the consistency values for AR1 to the abstract.
Introduction:

3. (page 3, first paragraph) “Each of these tests adds undesired time and cost to the evaluation”. |
would say that the necessity of using additional imaging techniques depends on how precise one
wants seizure-onset zone delineation to be, as scalp EEG has a poor spatial resolution and
localization power. Please elaborate and/or re-phrase the sentence accordingly.

-- We have modified the introduction as follows (pg. 3): The inability, or lack of precision, to discern
the seizure-onset zone from scalp EEG often necessitates additional testing, ...

4. (page 3, second paragraph) “/CA removes artifacts based on source-related features instead of
frequencies”. What do Authors mean with “source-related features”? Actually, there are several
studies that use frequency-based criteria for the selection and subsequent removal of
artifact-related sources...Please explain.

-- Thank you for this instructive feedback. We have modified the introduction as follows (pg.3): ICA
derives spatial features that can remove artifacts that have static scalp topographies and time
courses of activity that are distinct from that of EEG sources.

5. (page 3, second paragraph) Please add more recent reviews/papers on the automatic IC
selection for EEG cleaning, such as: Chaumon, M., Bishop, D.V.M., Busch, N. a., 2015. A Practical
Guide to the Selection of Independent Components of the Electroencephalogram for Artifact
Correction. J. Neurosci. Methods. or Uriglien, J.A., Garcia-Zapirain, B., 2015. EEG artifact
removal—state-of-the-art and guidelines. J. Neural Eng. 12, 31001."

-- Thank you for suggesting the inclusion of this important methods article. We now cite this article
in the introduction and discussion.

6. (page 3, fourth paragraph) Authors refer to AR1 as a commercially available software, and in
fact, detailed information about it is provided in reference [17]. However, the Authors should
provide a brief description of the method because: 1) it is the only method which they compare
their novel one with; and 2) so that future readers do not need to go through [17] in order to
understand the overall rationale of AR1.

-- Although the complete methods for AR1 are not included in reference 17 we have modified the
introduction as follows (pg.3): The goal of this study was to assess the validity of a commercially
available EEG artifact reduction tool (AR1) that uses different montages and within electrode
analysis to identify artefactual independent components2®, and compare its validity to a novel
automatic artifact reduction tool (AR2)...
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Methods:

7. (page 3, Implementation, first paragraph) “(...) a power spectral density algorithm to find
extended intervals of elevated high frequency power across electrodes”. The Authors provide no
information about how this algorithm works, nor references; thus, it is presently not possible to
reproduce this part of the study.

8. (page 3, Implementation, first paragraph) The Authors need to justify their choices in general;
particularly, why only compute the adjacency matrix between the epoch of greatest duration across
all electrodes? Why compute the adjacency matrix in the first place, and not any other
discriminative feature for the presence of muscle artifacts? Why only assign the maximum pairwise
Ml value in the adjacency matrix to a given electrode and ignore all the rest? How was the Ml
threshold determined?

-- We agree with your comments #7 and #8. We now specify in the methods that the reason we
performed this analysis was (pg.3): “Prior to performing ICA to remove muscle artifact, the
algorithm first identified epochs of the scalp EEG record contaminated by muscle artifact and
determined the electrodes that were suspected of having high recording impedance during that
epoch. The purpose of these calculations was to exclude these electrodes from the ICA
calculations.”

The method used to determine the artifact epoch had actually been modified prior to submission of
version 1 of the manuscript. We now better describe this algorithm as “We then calculated the
normalized instantaneous amplitude of the band-pass filtered signal using a Hilbert transform. This
signal was smoothed using moving averaging, and the algorithm identified the longest epoch in
which the time series remained greater than one standard deviation.”

9. (page 3, Implementation, second paragraph) Again, the Authors need to provide more details
overall. Why segment EEG into consecutive epochs of 120 s? How exactly was the variance
threshold derived? Also, | did not understand why should be there any order associated with
myogenic and neurogenic components (“We assumed that the last myogenic component and first
neurogenic component (...)").

-- We agree with your comment and apologize for the lack of clarity. We now specify that (pg.4): A
120 second trial length was chosen to optimize processing time.

In addition, the method have been modified as follows (pg. 4): “We assumed that the last myogenic
component and first neurogenic component can be differentiated on the basis of the inverse weight
matrix, which provides the spatial distribution of each component, and identifying the independent
component that account for the most variance with a focal spatial topography 17 defined on the
basis of exceeding a normalized threshold of two standard deviations in at least one electrode of
the inverse weight matrix. This threshold was chosen on the basis of visual inspection of the EEG
in the experimental dataset and resulting independent components.”

10. (page 3, Implementation, second paragraph) | understand that one of the expected features of
ICs reflecting muscle artifacts is having a focal spatial topography; however, bad channels are also
reflected in ICs exhibiting this feature. Thus, | have severe concerns about false positives when
using this criterion, as other myogenic-unrelated ICs are probably being selected as well, which

Page 28 of 30



FIOOOResearch F1000Research 2017, 6:30 Last updated: 12 APR 2017

may hinder a true assessment of the impact of muscle artifact correction.

-- We agree with your concerns however in the algorithm we already excluded bad channels using
the algorithm described with reference to comments #7 and #8.

11. (page 3, Implementation, third paragraph) What does reconstitute mean in this context?

-- We now specify in implementation (pg.4) that: the resulting low pass filtered EEG was
reconstituted by addition of the waveforms with the high pass (>16 Hz) filtered EEG

12. (page 4, Statistical analysis) Since the performance of AR1 and AR2 is being assessed by 4
different performance measures obtained from 26 EEG specialists, it would be more accurate to
use a 2-way repeated measures ANOVA (or its non-parametric equivalent, in the case of the
samples not being normally distributed), followed by multiple comparison testing if necessary.

-- We appreciate this helpful feedback. Dr. David Groppe the other reviewer of the manuscript
suggested that we use paired t-tests and provide the t-value in order to convey effect size to the
reader. We have followed his recommendations. Including both 2-way repeated measures ANOVA
and paired t-tests would confuse the reader.

Results:

13. The first three figures have very poor quality. In particular, it is nearly impossible to follow the
overall (quite detailed) description of Figure 2 (and it is panel A, on the top, left hand-side, and not
A,). Also, the three panels in Figure 3 should be overlaid to facilitate the direct comparison
between the two algorithms.

a) We have made grammatical changes to figure 2, and corrected the figure A1 vs. A2 labeling. We
apologize for this oversight.

b) We attempted to overlay the panels of figure 3 but the result was confusing and not visually
appealing. Therefore, we cannot provide this suggested change.

14. Although AR2 outperforms AR1 for most of the performance measures, the results are still
poor, making me wonder if either of these methods is suitable for EEG muscle artifact correction.

-- We agree and point out in the discussion that the readers were not confident in their
interpretations using either AR1 or AR2 in the discussion (pg. 13).

Discussion
15. (page 12, first paragraph) What do the Authors mean with “One concern about AR1 and AR2
relates to the lack of understanding of the waveform alteration”?

-- This sentence has been modified to provide more clarity (pg.13): “One concern about AR1 and
AR2 relates to the uncertainty that myogenic activity was fully removed, and neurogenic
components were unaffected during waveform alteration.”
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16. (page 12, fourth paragraph) “(...) (1) reliably produce signals that are, exclusively or mainly,
EEG or MEG (...)". Please clarify and elaborate on this claim.

-- We agree with your comment that this sentence is unclear. This paragraph has been modified in
the revision and now reads as follows: “One explanation for AR2’s ability to isolate myogenic from
neurogenic activity may be related to the respective dipole generators of each. ICA produces
independent components that may resemble single equivalent dipoles'4. Presumably, networks of
myocytes exhibit shorter distance connectivity then networks of neurons that produce beta and
gamma oscillations, and thus the two generators can be distinguished on the basis of the focality”

of the independent components topography.”
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