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A multi-scale eco-evolutionary model of
cooperation reveals how microbial adaptation
influences soil decomposition
Elsa Abs 1,2✉, Hélène Leman3,4✉ & Régis Ferrière2,5,6✉

The decomposition of soil organic matter (SOM) is a critical process in global terrestrial

ecosystems. SOM decomposition is driven by micro-organisms that cooperate by secreting

costly extracellular (exo-)enzymes. This raises a fundamental puzzle: the stability of

microbial decomposition in spite of its evolutionary vulnerability to “cheaters”—mutant

strains that reap the benefits of cooperation while paying a lower cost. Resolving this puzzle

requires a multi-scale eco-evolutionary model that captures the spatio-temporal dynamics of

molecule-molecule, molecule-cell, and cell-cell interactions. The analysis of such a model

reveals local extinctions, microbial dispersal, and limited soil diffusivity as key factors of the

evolutionary stability of microbial decomposition. At the scale of whole-ecosystem function,

soil diffusivity influences the evolution of exo-enzyme production, which feeds back to the

average SOM decomposition rate and stock. Microbial adaptive evolution may thus be an

important factor in the response of soil carbon fluxes to global environmental change.
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M icroorganisms drive critical ecosystem processes, such
as nutrient mineralization and the decomposition of
organic matter1. Many of these processes depend on the

conversion of complex compounds into smaller products that
microbes can assimilate for growth and maintenance. Except in
environments where simple nutrients are abundant, microbes rely
on extracellular enzymes (exoenzymes) to perform this conver-
sion2. By doing so, they face a “public good spatial dilemma”3,4.
The “spatial dilemma” arises because the public good involves
costly compounds (exoenzymes) that are secreted outside the cell;
the products of decomposition may diffuse away from the
enzyme-secreting microbe and therefore benefit not only the
individuals producing exoenzymes, but also neighboring cells5,6.
Evolutionary theory predicts that producers of public goods are
vulnerable to cheating by individuals that receive the benefits
without paying the cost of production. Without some mechanism
to stabilize cooperation against cheating7, the evolutionary loss of
public goods production is expected. The problem is made even
worse by diffusion3,4. Nonetheless, the microbial world provides
ubiquitous examples of diffusive public goods, e.g. siderophores
that scavenge iron8–11, polymers that enable biofilm formation12,
and allelopathic compounds that reduce competition13. Condi-
tions must exist that promote the evolution of exoenzyme pro-
duction in spite of diffusion.

Evolutionary game theory provides a powerful framework for
investigating conditions that favor exoenzyme production14–16.
Evolutionary game-theoretic models have been developed to
address competition between exoenzyme-producing and non-
producing strains17–20. Considering the diffusivity of products,
these models have highlighted the importance of ecosystem
spatial heterogeneity for the evolution of the production
mechanism. For example, organic substrates, microbes, and
mineral particles form a three-dimensional matrix of aggregates
and pore spaces of different sizes in soils21. For enzyme-
dependent microbes, the soil structure should influence the
movement of substrates, enzymes, and usable products22, and, as
a consequence, the fate of cheating microbes17,23,18.

Our understanding of the evolutionary stability of diffusive
public goods in general, and of degradative enzyme production in
particular, remains incomplete. One limitation of previous
models is their focus on two-way competition between two
strains, typically a producing strain and a non-producing or “pure
cheater” strain. A key issue here is that mechanisms that promote
stability of producers against pure cheaters might fail to prevent
“erosion” of cooperation by mutant strains that produce slightly
less of the public good than the wild-type, or resident strain24.
Pure cheaters may go locally extinct when they do not receive
enough resource produced by cooperators; however, strains that
produce less, rather than none, of the public good should be less
sensitive to the harm they inflict to the community25. On the
other hand, producers may be vulnerable to pure cheaters and yet
resist invasion by strains that invest only slightly less into the
common good. We thus expect conditions for the evolutionary
stability of cooperation to be different when considering the
recurrent events of mutation of small effects and selection that
shape the evolutionary trajectory of exoenzyme production.

To predict the outcome of selection on small-effect variants, we
need to evaluate the population growth rate of initially rare
mutant types interacting with any given resident type. To achieve
this, previous models of microbe-enzyme systems need to be
revisited and extended, so that invasion fitness of small-effect
mutants can be computed26,27. To describe the interaction of
resident strains with mutant cells, which, initially at least, occur in
small, spatially localized populations, individual-level modeling of
microbe-enzyme systems is required. Previous microbe-enzyme
ecological models (reviewed in refs. 28,29) are phenomenological,

rather than derived by scaling up from microscopic processes
acting locally at the level of individual entities. The main difficulty
here is to address the extremely different scales that characterize
the entities (cells, enzymes, substrates, products) and processes
that entangle them. Here we derive a hybrid, stochastic-
deterministic model that takes this multiplicity of scales into
account. By applying the hybrid model to a spatially structured
habitat, we elucidate conditions that promote the evolutionary
convergence and stability of exoenzyme production. We show
that resource diffusivity is a strong control of the selection gra-
dient of exoenzyme production, which feeds back ecologically to
determine the average soil decomposition rate and carbon stocks
of the whole system. These results suggest that the adaptive
evolution of microbial exoenzyme production may be an
important factor in the response of soil decomposition to envir-
onmental changes that affect soil properties.

Results
Model overview. To construct a spatially explicit model of
microbe-enzyme decomposition, we focus on cells and unpro-
tected soil organic carbon (SOC)30 and we assume nitrogen and
phosphorus to be non-limiting. Space is modeled as a two-
dimensional lattice of microsites, with each microsite potentially
occupied by a population of cells. Decomposition is seen as a
microbial public good game, whereby individual microorganisms
invest resources into the production of degradative exoenzymes.
Exoenzyme molecules bind SOC molecules and catalyze the
depolymerization of SOC into dissolved organic carbon (DOC)
molecules. DOC molecules occurring in a microsite may be
uptaken and metabolized by cells present in the microsite,
resulting in cell growth and exoenzyme production. The fraction
of uptaken DOC that is invested by a cell into exoenzyme pro-
duction, as opposed to cell biomass production, is denoted by φ.
This is the focal trait that characterizes the microbial phenotype,
for which we assume heritable variation, originating in
mutation31,32.

Ecosystem dynamics at microsite scale. We assume that cells,
enzymes, substrates (SOC), and products (DOC) are well mixed
within each microsite. Processes operating at the level of indivi-
dual entities are cell division, determined by accrued and stored
resources reaching a threshold within the cell; cell death and
enzyme degradation, at constant rates; cell carbon consumption
to cover the structural and energetic costs of producing cell tis-
sues and enzyme molecules; SOC–enzyme complex formation
followed either by dissociation into one SOC and one enzyme, or
by depolymerization yielding the equivalent number of DOC
molecules and releasing the enzyme (i.e. successful decomposi-
tion). Additional processes operating at the level of microsites are
external inputs of SOC and DOC, losses of SOC and DOC
(leaching), diffusion of DOC, and random extinction of the local
population. The extinction of a local population is modeled as the
simultaneous death of all the individuals within the microsite; the
dead organic matter is then partly leached and partly recycled
into SOC and DOC, as it is for individual cell death. Local
extinction events account for environmental stochasticity at
microsite scale, which is known to contribute to the evolutionary
stability of dispersal33–36.

We measure the abundance of all entities in units of carbon
mass. The local dynamics of decomposition within a microsite
involves fluxes in and out of five local compartments: SOC (C),
DOC (D), cells (biomass M), enzymes (Z), and SOC–enzyme
complexes (X) (Fig. 1a). To scale up the dynamics of decom-
position from microscopic, stochastic processes, we take the
following steps:
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● Step 1: We define the stochastic processes acting at the level of
C, D, M, Z, X entities (molecules, cells) that make the
“CDMZX” model (Fig. 1a and subsection “Construction of
the five-compartment model” of “Methods”).

● Step 2: We apply appropriate rescaling on the rates of
complex (X) formation, dissociation or decomposition, to
express that complex dissociation and complex decomposi-
tion are much faster than complex formation. By doing so, we
reduce the stochastic model to four-state variables (C, D, M,
Z) that make the “CDMZ” model (Fig. 1b and Supplementary
Information 3.1).

● Step 3: We rescale the reduced stochastic model into a
stochastic-deterministic model, in which only M is treated as
an integer-valued variable. This is consistent with the
assumption that a cell is of the order of 107 times larger in
units of carbon mass than one enzyme or substrate (SOC)
molecule, and 1010 times larger than one product (DOC)
molecule; and that in a given volume, the number of cells is
between 10−5 and 10−10 times smaller than the number of
molecules of SOC, DOC or enzyme. As a consequence, the
events affecting C, D, and Z are much faster and more
frequent than events affecting M, allowing us to treat the
dynamics of C, D, and Z as deterministic over time bouts of
constant cell population size. We denote deterministic state
variables with lower case, c, d, and z. Mathematically, the
resulting stochastic-deterministic model is a Piecewise
Deterministic Markov Process, or “PDMP” (Supplementary
Information 3.2).

● Step 4: Finally, we simplify the PDMP model further by
noting that the growth of individual cells is driven by events
(resource uptake) that occur on the same timescale as the
events affecting SOC, DOC, and enzymes in the stochastic
CDMZ model defined at step 2. Then the consumption of
DOC by cells is no longer a stochastic process but instead
depends on M deterministically. Cell production thus
becomes nearly deterministic, and the only remaining
stochastic process is cell death (which is why we retain the
M notation for cells). Even though the rigorous proof of step 4
is beyond the scope of the paper, we will adopt the
approximation—that we call the “hybrid” model—as we
develop the spatially explicit extension of the model. Note that
all the simulations presented in this article (Figs. 2–5) are
based on the hybrid model and its spatial extension described
in the next subsection.

In the hybrid model, the ecosystem dynamics are driven by
jumps of the finite number of cells M (corresponding to the cell
death events), interspersed with periods of continuous cell growth

and change in the abundance of SOC, DOC, and enzyme. Cell
death occurs at random times, at rate dM. When a cell dies, it is
removed from the system and its carbon content is recycled into
SOC and DOC. Birth events occur deterministically once the cell
has experienced enough resource uptake events to assimilate and
store the amount of DOC corresponding to one cell. Step 4 allows
us to model the amount Si of biomass stored within cell i as
governed by

dSiðtÞ
dt

¼ ð1� φÞγMVmax
d

Km þ d
ωM ;

where d measures the rescaled dynamics of DOC, in carbon mass
unit, and ωM is the carbon mass content of a cell that does not
store additional carbon for upcoming division. Once Si reaches
ωM, the cell divides and both mother and daugther cells’ reserve is
set back to 0. The other parameters are φ (see Supplementary
Fig. 2 for the effect of φ on dynamics of c, d, M, z), the fraction of
investment in exoenzyme production vs. cell growth; γM, the
microbial carbon mass production fraction, or microbial growth
efficiency (MGE); Vmax and Km, the maximum uptake rate and
uptake half-saturation constant, respectively, of the
Michaelis–Menten uptake function.

For a given number of cells,M, the change in enzyme, SOC and
DOC are governed by

_cðtÞ ¼ IC � lCc� θzc;
_dðtÞ ¼ ID � lDd þ θzcþ ð1� lÞdZz � Vmax

d
Km þ dωMM;

_zðtÞ ¼ φγZVmax
d

Km þ dωMM � dZz;

8><
>:

where c, d, z are in units of carbon mass, IC and ID are the external
inputs of SOC and DOC, respectively, from litter, lC and lD are the
leaching rates of SOC and DOC to deeper soil layers, θ, which is
proportional both to the encounter rate of enzymes and SOC and
to the decomposition rate (see its exact biological interpretation
in Table 1), l is the fraction of deactivated z that is leached instead
of recycled, γZ is the enzyme carbon mass production fraction,
and dZ is the rate at which one enzyme carbon gram permanently
loses its capacity to bind to SOC (deactivation rate). We assume
litter inputs and leaching to be homogeneous at the spatial scale
considered here (cm3). The different notations, uppercase for cells
and lower case for SOC, DOC, and enzymes, are meant to
indicate that cell abundance is stochastic and in number of
individuals, while the latter measure the rescaled continuously-
varying amounts in carbon mass unit.

Spatial extension of ecosystem dynamics to lattice scale. In
order to model the process of mutant invasion in a resident

Fig. 1 Microbe-enzyme-driven decomposition of soil organic matter: agents and processes. a Five-compartment model, with soil organic carbon (SOC,
C), dissolved organic carbon (DOC, D), microbial cells (M), enzymes (Z), and SOC–enzyme complexes (X). (b), Four-compartment model, without the
SOC–enzyme complexes (X). Plain arrows indicate carbon fluxes among compartments and in and out of the system. Dotted arrows indicate the
exoenzyme concentration dependence of the decomposition rate.
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population of cells, we extend the hybrid model to a spatially
explicit, spatially homogeneous square regular lattice of micro-
sites. Spatial homogeneity means that all microsites have the same
volume and the same abiotic parameters, IC, ID, lC, lD, and l. We
couple hybrid models among microsites by accounting for the
diffusion of products (DOC) and dispersal of cells between
adjacent microsites. The DOC diffusion between microsites is
modeled by approximating a continuous diffusion with a Euler
scheme in which time is discretized with a fixed time step interval,
τdiff. At each time, a step of the Euler scheme associated with the
diffusion equation

d
dt

dðx; tÞ ¼ σdiffΔdðx; tÞ

is realized for the variable d, where x is the spatial position and
σdiff is the DOC diffusion coefficient. Space discretization in the
Euler scheme is chosen to match the habitat lattice structure. Cell
dispersal may occur following birth events. The daughter cell
disperses with probability pdisp to one of the four neighboring
microsites, or it is added to the mother cell population with
probability 1− pdisp. If one or more of the adjacent microsites is
empty, the dispersing cell moves to one of them with equal
probability. If all neighboring microsites are occupied, there is a
probability popen that a micro-disturbance of the soil strikes and
opens one of the microsite by killing the local cell population
therein, which then becomes occupied by the dispersing cell; the

corresponding SOC and DOC released by the dead cells are
recycled locally. If no microsite opens (with probability 1−popen),
the dispersal event is unsuccessful and the daughter cell remains
in its maternal microsite. The dynamics of each microsite is
recalculated between two diffusion steps and after each cell birth
or death event. See “Methods” (subsection “Simulation algorithm
for the hybrid spatial model”) for further detail.

Eco-evolutionary dynamics. Adaptive evolution of the exoen-
zyme allocation fraction trait, φ, is modeled by considering trait
mutations that cause the trait of daughter cells to differ from the
maternal trait value. The value of a mutated trait is assumed to be
normally distributed around the maternal value, with small var-
iance to represent mutations of small effect. Cells that have the
same φ value belong to the same “strain”; relative to a given
strain, we call “cheaters” mutants that invest less in exoenzyme
production (smaller φ) and “cooperators” mutants that invest
more in exoenzyme production (larger φ). Any new mutant strain
arises in an ecological environment (characterized by the abun-
dance of SOC, DOC, and exoenzymes) that has been shaped by
all other co-occurring strains. Selection occurs because strains
with different φ will differentially succeed at acquiring the DOC
resource for which they compete. The direction and strength of
selection on the evolving trait is then predicted by invasion fitness
(intrinsic population growth rate from low density) of a mutant
strain competing against a resident strain27,26.

Fig. 2 Dynamics of the cell population size and microbial trait φ, with and without mutation. a Cell population dynamics without mutation. Due to
demographic stochasticity, the populations fluctuate around the deterministically predicted steady state of 10 individuals. b Cell population dynamics with
mutation, with probability pmut = 0.1. As populations evolve, they reach the minimum viable value of the enzyme production trait, φ, and go extinct in most
of the 10 runs. c Evolution of enzyme allocation fraction, φ in one of the simulations from (b). In (a) and (b), 10 simulation runs are shown. All simulations
are for a finite microbial population in a single microsite. In all simulations, initial cell population was monomorphic with φ = 0.5, and the four variables c, d,
M, z were initialized at the steady state values predicted by the deterministic model with φ = 0.5. All constant parameters are set to the default values
(Table 1), except Tmax ¼ 108.
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Based on the mathematical theory of adaptive dynamics37,38,
the system’s eco-evolutionary dynamics may converge in the long
run towards a stable distribution of trait values. If mutation
effects are small enough, theory predicts conditions under which
selection is stabilizing; when that is the case, the evolved trait
distribution will typically have a narrow range, with the expected
mean predicted as an attractive “evolutionarily stable strategy”
(ESS). An ESS is a trait value that no nearby mutant can invade.
When mutants closer to the ESS outcompete their resident
progenitor, then the ESS is attractive and the system’s eco-
evolutionary dynamics converge to the ESS. In this case, the
(attractive) ESS predicts the outcome of the full eco-evolutionary
dynamics under the assumption of mutations of small effects37.

First, we analyze the evolutionary model at the microsite scale,
in which all entities are being well mixed and birth occurs with
mutation. This analysis shows that cooperation (enzyme produc-
tion) is always counter-selected in favor of cheaters (Fig. 2). Next
we analyze the model at the lattice scale. To determine the
direction of selection on enzyme allocation (Figs. 3, 4), we run
invasion assays of a given mutant introduced at low density in the
lattice occupied by a stationary population of a resident strain
(without mutation). Compared to the microsite scale, the lattice
scale adds diffusion of DOC molecules, cell dispersal, and micro-
disturbances that kill cell populations in randomly targeted
microsites. From these invasion assays we can predict the
outcome of enzyme allocation evolution at lattice scale. Finally,
to determine the decomposition rate and equilibrium SOC stock

corresponding to the adapted value of enzyme allocation (Fig. 5),
we run the spatial model with the adapted strain and no
mutation.

Eco-evolutionary dynamics at single-site scale: extinction. In a
single, isolated microsite occupied by a large population, eco-
system dynamics can be approximated by the deterministic
“cdmz” model (equation S.5 in Supplementary Information 3.3),
and the selection gradient of the exoenzyme allocation trait can
easily be derived. At the (non-trivial) ecological equilibrium (c, d,
m, z) of a resident population with trait value φ, the growth rate
of a mutant strain with trait value φ0 is
ð1� φ0ÞγMVmax

d
Km þ d � dM , hence the selection gradient of φ

(derivative of the mutant long-term growth rate with respect to
the mutant trait, evaluated at the resident trait value) is equal to
�γMVmax

d
Km þ d. For any parameter combination and value of the

DOC resident equilibrium d, this quantity is always negative:
investing in exoenzyme production is always selected against.
Thus, any initial level of microbial cooperation will be gradually
eroded by the process of mutation-selection, driving the popu-
lation towards the threshold trait value at which extinction occurs
—an instance of evolutionary suicide39–41.

In finite populations, mutant success or failure becomes
probabilistic. Due to random genetic drift, cheater phenotypes
may fail to invade, and cooperator mutants may occasionally go
to fixation. Long-term adaptive dynamics driven by rare mutation

Table 1 Parameters of the deterministic model in biomass.

Parameter Unit Description Default value

V cm3 Unit soil volume of one cell 10−9

k System size 10
k × V cm3 Volume of one microsite 10−8

L × L Lattice size in number of microsites 10 × 10
φ Enzyme allocation fraction [0, 1]
γM Microbial carbon biomass production fraction 0.3
γZ Enzyme carbon mass production fraction 0.4
ωM mg Mass of 1 cell 10−9

ωZ mg Mass of 1 enzyme molecule 10−16

ωC mg Mass of 1 SOC molecule 10−16

ωD mg Mass of 1 DOC molecule 10−19

α Structural cost in DOC of 1 cell 1010

α0 Energetic cost in DOC of 1 cell 2.33 × 1010

β Structural cost in DOC of 1 SOC molecule 103

ρ Structural cost in DOC of 1 enzyme molecule 103

ρ0 Energetic cost in DOC of 1 enzyme molecule 1.5 × 103

dM h−1 Microbial carbon biomass death rate 2 × 10−4

dZ h−1 Enzyme carbon mass deactivation rate 2 × 10−3

Vmax h−1 Maximum uptake rate (in carbon mass) 0.42
θ mg−1 h−1 (Encounter probability of two given SOC and enzyme molecules) ×

(decomposition rate)
7 × 105

Km mg Uptake half-saturation constant 3 × 10−10

IC mg h−1 External input of SOC 5 × 10−13

ID mg h−1 External input of DOC 0
lC h−1 SOC leaching rate 10−6

lD h−1 DOC leaching rate 10−6

l Fraction of dead cell and deactivated enzyme leached instead of recycled 0
p Fraction of recycled dead cell flowing into SOC (remaining fraction flows

into DOC)
0.5

Tmax h Maximum simulation time 106

pdisp Probability of dispersal of a new cell 0.3
popen Probability of local extinction due to a micro-disturbance 0.01
pmut Probability of mutation per cell division event between 1/(Kln(K)) and 1/K2

σmut Standard deviation of mutation effect [0.01−0.1]
σdiff DOC diffusion rate between 2 microsites [1 × 10−7–5 × 10−5]
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and selection in finite populations have been studied in a general
framework by Champagnat et al.42. They showed that the
evolutionary trait dynamics can be described mathematically as a
diffusion process whereby a Brownian motion (white noise) is
added to a trend driven by the deterministic selection gradient.
To illustrate these general results, Fig. 2 shows simulations of a
finite microbial population in a single microsite, without and with
adaptive evolution of exoenzyme production. In the absence of
evolution, simulated populations tend to persist over the total
computation time. With evolution, simulated populations gen-
erally go extinct within that same time frame. In spite of
fluctuations due to random genetic drift, adaptive evolution
drives the exoenzyme production trait towards the threshold at
which the microbial population becomes non-viable.

Eco-evolutionary dynamics at lattice scale: stability. We address
the evolution of exoenzyme production in spatially extended
ecosystems using the spatial version of the hybrid model. On a
lattice, exoenzyme producers may resist invasion by non-
producer mutants because of the non-uniform distribution of
cell types that emerges across microsites, due to local cell dis-
persal. We ran simulations of the spatial model to test the con-
sequences of this mechanism for the evolution of exoenzyme
production as a continuous trait, as opposed to an all-or-nothing
character (as in previous studies).

Spatial segregation of resident and mutant strains across
microsites is key to the evolutionary stability of exoenzyme
production. If dispersal were to mix resident and mutant strains
within microsites, any slightly cheating mutant would always

Fig. 3 Spatio-temporal dynamics of invasion of a mutant cooperator (φmut = 0.8) into the ecosystem established by a resident strain investing slightly
less in exoenzyme production (φres = 0.75). From top to bottom: temporal dynamics of the mutant cell population (Mmut), resident cell population (Mres),
enzyme (Enz), DOC (DOC), SOC (SOC). Units are number of cells forMmut andMres, and mg for enzyme, DOC and SOC. Columns 1–4: example simulation
run of the spatial hybrid stochastic-deterministic model over a 10 × 10 lattice of microsites, snapshots from time t = 0 to t = 5 × 105. Color-coded scales
were chosen to span the whole range of the corresponding variables over the whole simulation. Columns 5 and 6 show the total number of cells and total
mass over time. Column 5: Same simulation run as Columns 1–4. Column 6: Mean trajectories averaged over 20 replicated simulation runs (red line), and
variance (gray area). All constant parameters are set to the default values (Table 1). The lattice was initialized with all microsites occupied by residents,
except for five microsites occupied by mutants at the center of the lattice. All ecosystem variables z, c, d, and M were fixed at the steady state determined
by the established resident strain. See “Methods” (subsection “Simulation algorithm for the hybrid spatial model”) for simulation detail.
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Fig. 4 Patterns of selection on exoenzyme production at different soil diffusion rates. Each graph shows the mutant invasion fitness across pairwise
resident-mutant competing strains. Invasion fitness is measured as the product of the mutant survival probability and the average long-term growth rate of
growing mutant populations among stochastic simulation replicates, rescaled by multiplying by Tmax. The survival probability is estimated as the fraction of
simulations with a non-extinct mutant population at Tmax. The long-term growth is calculated as the average of ð1=TmaxÞlog finalmutant population size

initialmutant population size among the
20 runs for each pairwise competition test, with Tmax ¼ 106. Pink bars show invasion fitness of the cheater strain taken as mutant (with the lower φ value
in the competing pair); blue bars show invasion fitness of the cooperator strain taken as mutant (with the higher φ value in the competing pair). Positive
invasion fitness of cheater mutants (pink bars) indicate selection against exoenzyme production. Positive invasion fitness of cooperator mutants (blue
bars) indicate selection in favor of exoenzyme production. For each diffusion rate, the ESS is bracketed between the maximum φ value for which the
cooperator mutant has positive invasion fitness, and the minimum φ value for which the cheater mutant has positive invasion fitness. All constant
parameters are set to the default values (Table 1). Mutant initial population size is set to 5% of the abundance of the resident population in the central
microsites. We tested values of σdiff between 10−8 and 10−4 and report results for σdiff between 10−7 and 5 × 10−5 as variation of σdiff outside this range
had no effect.
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invade and spread across the lattice. This is because the diffusion
of DOC creates local conditions (within microsites) that are even
more unfavorable to the resident strain than in the case of a
single, isolated microsite. The long-term consequence is evolu-
tionary suicide, as in the case of a well-mixed population. In
contrast, with dispersal tied to micro-disturbances, resident and
mutant strains do not mix within microsites. Thus, the local
resource pool (DOC) to which cells of a given strain have access is
entirely determined by their own exoenzyme production, and the
diffusion of DOC from nearby microsites. The local growth of a
strain then determines its chance of colonizing nearby empty
microsites and spreading across the lattice.

Depending on the DOC diffusion rate, spatial segregation of
strains at microscale can promote the persistence of exoenzyme-
producing strains against invasion by cheater strains that produce
slightly less (negative selection against cheating); and favor
invasion by even stronger exoenzyme producers (positive selection
for cooperation). Figure 3 shows an example of the latter. To
further evaluate the effect of diffusion on the selection gradient of
exoenzyme production, we measured the invasion fitness of
mutant strains in pairwise competition with slightly different
resident strains, across a range of soil diffusion rates, σdiff.

In Fig. 4, pairwise competition simulations run across the trait
range 0.05–0.25, in increments of 0.05, and under different values
of the soil diffusion rate, show a clear pattern of directional
selection for increasing exoenzyme production when soil
diffusion is low (cooperator mutants have positive fitness), and
directional selection for decreasing φ towards zero when soil
diffusion is high (cheater mutants have positive fitness).
Supplementary Fig. 3 shows that we obtain the same trend with
different lattice size.

ESS values can be approximated from the numerical results
reported in Fig. 4. For a given value of the soil diffusion rate, the
ESS is bracketed between the maximum φ value for which the
cooperator mutant has positive invasion fitness, and the
minimum φ value for which the cheater mutant has positive
invasion fitness. For example, for σdiff = 3 × 10−6, the ESS is
bracketed in (0.1–0.15); for σdiff = 7.5 × 10−6, the lower and
upper values of the interval are equal to 0.1, which is the
approximated value of the ESS. ESS approximated for different
values of soil diffusion are shown in Fig. 5a. For high diffusion,
exoenzyme production is counter-selected across the whole range
of φ values. For intermediate to low diffusion, there exists a viable
exoenzyme production ESS and starting from very low exoen-
zyme production, the system is predicted to evolve towards the
ESS. The lower the soil diffusion rate, the larger the exoenzyme
production ESS.

Fig. 5 Effect of soil diffusion on the evolution of exoenzyme production
and lattice-scale feedback on ecosystem function (decomposition rate
and soil carbon stock), predicted by the spatial hybrid model. a Bars,
Enxoenzyme allocation ESS as a function of diffusion. Continuous line,
Exoenzyme allocation fixed at ESS predicted for intermediate diffusion rate
(σdiff = 5 × 10−6), with no adaptation to the other diffusion rate values.
b Bars, Feedback of exoenzyme allocation adaptation to lattice-scale
decomposition. Continous line, Lattice-scale decomposition as a function of
diffusion, without microbial evolutionary adaptation. c Bars, Feedback of
exoenzyme allocation adaptation to lattice-scale carbon stock. Continuous
line, Lattice-scale carbon stock as a function of diffusion, without microbial
evolutionary adaptation. In (a), for each diffusion rate the ESS estimation is
bounded between the maximum φ value for which the cooperator mutant
has positive invasion fitness, and the minimum φ value for which the
cheater mutant has positive invasion fitness (see Fig. 4). In (b) and (c), for
each diffusion rate the exoenzyme allocation fraction is fixed at its
corresponding ESS from (a). We then ran simulations of a monomorphic
microbial population at ESS and calculated the decomposition rate (total
enzyme mass multiplied by parameter θ, which is proportional to the
decomposition rate, see its exact biological interpretation in Table 1) and
the SOC mass per microsite averaged across the lattice and over time
(between time 2 × 105 and Tmax ¼ 106, to remove the initial transient).
Error bars measure variation of the minima and maxima among simulations
due to process stochasticity. All constant parameters are set to the default
values (Table 1). See “Methods” (subsection “Simulation algorithm for the
hybrid spatial model”) for simulation detail.
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Microbial adaptation and feedback to decomposition. In nat-
ure, parameters such as the diffusion rate may depend on
environmental features such as soil properties and precipitation,
that can vary widely across ecosystems. We find that diffusion has
a strong influence on the selection gradient of exoenzyme pro-
duction (Fig. 4). To further characterize this influence and
investigate its ecosystem-level functional consequences, we
extracted the pattern of variation of the exoenzyme production
ESS for several values of diffusion rates (Fig. 5a) and computed
the corresponding decomposition rate (Fig. 5b) and SOC equili-
brium stock (Fig. 5c) per microsite averaged across the lattice.
The different values of diffusion could represent spatial variation
across ecosystems, or a temporal sequence driven by some
external environmental factor, e.g. a gradual change in
precipitation.

Figure 5 shows a clear departure of all three outputs from the
non-adaptive scenario (continuous horizontal line) at low and
high diffusion. Decreasing diffusion from 10−5 to 10−7 drives a
ten-fold evolutionary increase in allocation to enzyme produc-
tion, from 0.02 to 0.2. The evolutionary response of exoenzyme
production to varying diffusion feeds back to the ecological state
of the whole lattice and alters ecosystem-level function: the
decomposition rate averaged across the lattice rises more than
four-fold as exoenzyme production adapts to reduced diffusion
(Fig. 5b), driving an 80% drop in the soil C stock per microsite
averaged across the lattice (Fig. 5c). Note that the patterns in
Fig. 5b and c closely match the response of the exoenzyme
allocation ESS to varying diffusion (Fig. 5a), and that the error
bars reflecting differences in the average values among simula-
tions are very small compared to the differences caused by the
change in φ. This shows that the process of evolutionary
microbial adaptation can drive much larger variation in the
lattice-scale ecosystem properties (decomposition rate, soil C
stock) than demographic and environmental stochasticity at the
microsite scale.

Discussion
Soil microbial decomposition involves the production of exoen-
zymes and uptake of the products of enzyme-driven depoly-
merization of dead organic matter. These products form a
diffusive public good, which is vulnerable to exploitation by
cheaters. To elucidate conditions under which decomposition, as
an outcome of microbial cooperation, is evolutionarily stable
against mutations of small effects, we constructed a spatial model
of soil microbe-enzyme decomposition which accounts for the
finite size of microbial populations at the microscopic scale of
microbial interactions.

Deterministic models of microbe-enzyme-driven decomposi-
tion were first introduced by Schimel and Weintraub15 for “well-
mixed” systems. Here we develop a rigorous mathematical fra-
mework to show that Schimel and Weintraub’s15 model and
subsequent variants (reviewed in ref. 28) are consistent with
microscopic processes acting at the level of individual entities
(cells, molecules). Starting from a five-compartment model
including SOC and DOC molecules, cells, enzyme molecules, and
enzyme–SOC molecular complexes, we found that the population
size of cells and molecules and some of the stochastic process
rates could be rescaled to yield15 four-compartment deterministic
cdmz model. Note that we could not find further or alternate
rescaling to reduce the dimension of the system to three com-
partments (cdm or cmz or dmz). Furthermore, for even simpler
two-compartment models, one can prove that the equilibrium
with positive cell population size is always unstable, which means
that the population of cells either goes extinct or grows
unboundedly (results not shown). Thus, the four-compartment

structure seems to be the simplest that is consistent with the
individual-level processes under consideration.

The deterministic cdmz model, however, cannot be used to
capture the dynamics of a spatially explicit system in which a
finite number of cells and molecules interact within their local
neighborhood. From the stochastic CDMZ model we obtained
the stochastic-deterministic PDMP model for local populations
and interactions by assuming that the size of the molecular
populations (C, D, Z) is typically much larger than the size of the
population of cells (M). A spatially explicit model can then be
assembled by coupling hybrid models to form a lattice of
microsites. Microsite and lattice-level parameters can be specified
to capture the millimeter and centimeter scale, respectively, which
distinguishes this model from previous individual-based simula-
tion models of decomposition17–20. In particular, the model can
accommodate changes in the strength of competition within a
population of individuals of the same phenotype by modifying
the size of microsites, and between colonies of different strains by
modifying the size of the lattice. By modeling the dynamics of the
cell population and decomposition within and between micro-
sites, we can take an evolutionary stance and address the effect of
spatially heterogeneous population size and growth on the
dynamics of invasion of a mutant genotype in the established
population of the wild-type (resident) strain.

It has long been known that environmental spatial structure
can promote cooperation by facilitating benefit-sharing among
cooperators. This was shown originally for pairwise interactions
and later in the case of diffusive public goods. However, early
models of diffusive public goods4,43,44 represented space only
implicitly and were therefore limited in their ability to identify
conditions for the evolutionary stability of cooperation. Using a
spatially explicit individual-based model of enzymatic litter
decomposition17, backed up the expectation that the rate of
products diffusion was key to the stability of cooperation. This
and subsequent related models18–20,23,45 however, focused on
competition between two or a small set of exoenzyme production
genotypes, e.g. a producing strain and a non-producing (“pure
cheater”) strain. Our analysis goes further by predicting the
evolutionary dynamics of exoenzyme production as a quantitative
trait, which varies continuously due to random mutation of small
effect.

Just like soil diffusion was identified as a critical factor for the
stability of a producing strain against invasion by non-
producers17,23, our model shows that the diffusion rate deter-
mines the evolutionarily stable investment in exoenzyme pro-
duction. The evolutionary stability of exoenzyme production
against mutation of small effects requires the segregation of
genotypes at the finest spatial scale, here the scale of microsites. In
our model such segregation occurs as a consequence of linking
dispersal to micro-disturbances that “open” microsites to colo-
nization. Using a continuous representation of space, Dobay
et al.23 also concluded that the limited diffusion of public goods
favors the stability of cooperative strains against “pure cheaters”.
Their continuous-space model assumes that dispersing cells
remain at the periphery of existing colonies, thus in effect pre-
venting mixing of different strains at the smallest model scale, as
in our model. Whether low diffusion might also promote coex-
istence of strains differing in exoenzyme production rate warrants
further investigation. Coexistence was not observed in our
simulations, but it might occur in regions of the parameter space
that we did not explore. Otherwise, instances of coexistence of
producing and non-producing strains reported by Allison17 and
Kaiser et al.19,20 would likely be evolutionarily unstable and/or
inaccessible to evolution by mutation of small effects.

Finally, our model shows how variation in evolutionarily stable
exoenzyme production feeds back to ecosystem macroscopic
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properties such as the decomposition rate and SOC stock at lat-
tice scale. The model predicts that if environmental change, such
as variation in soil physical properties or precipitation, drives
changes in soil diffusion, then the microbial community may
respond evolutionarily, and in return, the microorganisms’ evo-
lutionary, adaptive response may substantially impact ecosystem
function. Previous models investigated how soil functional
properties such as decomposition, heterotrophic respiration, and
carbon stock, respond to variation in soil moisture due to variable
precipitation46,47. Focusing on experimental data from semi-arid
savannah-type ecosystem subject to contrasted precipitation
regimes, Zhang et al.47 used model-data assimilation to demon-
strate the importance of water saturation as a control of enzyme
activity and DOC uptake, and of the accumulation and storage of
enzymes and DOC (that is temporarily inaccessible to microbes)
in the dry soil pores during dry periods. Our results show that
microbial evolution of exoenzyme production, in and of itself, can
drive strong ecosystem responses to variation in soil diffusion,
due e.g. to variation in soil moisture. Droughts that affect soil
diffusion may also elicit microbial physiological responses48 such
as higher investment in osmolyte production, possibly at the
expense of exoenzyme production49; extensions of our model
could evaluate the consequences for soil carbon loss. Additionally,
one could explore the relative effect on decomposition and het-
erotrophic respiration of microbial physiological46,47 and evolu-
tionary responses to the spatial heterogeneity of soil water
distribution. Elaborating on Melbourne and Chesson’s50 theory of
scale transition, recent work by Chakrawal et al.51 establishes a
powerful framework to incorporate soil heterogeneity in models
of decomposition. Their mathematical techniques could be used
for the further up-scaling of our model, from the lattice (centi-
metric) scale to larger soil patches, taking into account the abiotic
heterogeneity that exists at such larger scales.

We conclude that large ecosystem effects may result from the
evolutionary adaptive response of microbial populations to
changes in soil abiotic properties like diffusion. This calls for a
more general investigation of the large-scale ecosystem con-
sequences of soil microbial evolution in response to global
environmental change, such as climate warming. The thermal
dependence of microbe-enzyme biochemical processes involved
in decomposition can radically change the global projections of
soil C in response to climate warming52. Future research is
warranted to evaluate how microbial evolutionary adaptation to
warming may further alter global projections of terrestrial carbon
cycling.

Methods
Construction of the five-compartment model. Here we explain the construction
of the five-compartment model (Fig. 1a). This is step 1 among the four steps
described in “Results” section (subsection “Ecosystem dynamics at microsite
scale”). We use upper bars in our initial notations to indicate parameters prior to
rescaling.

The five-compartment model captures the stochastic processes acting at the
level of C, D, M, Z, X entities (molecules, cells) (Fig. 1a) within a microsite.
Dynamics of C, D, M, Z, X occur in continuous time. Mt is the number of cells at
time t. Ct, Dt, Zt are the numbers of SOC molecules, DOC molecules, and enzyme
molecules respectively. Xt is the number of complexes formed by an enzyme
molecule binding a SOC molecule. There are constant external sources of SOC and
DOC. When a cell dies, a fraction p of the molecules released are recycled into
SOC, while the rest is recycled into DOC. A fraction l of dead microbes and
deactivated enzymes may be lost due to leaching.

We denote by α the structural cost of a cell, which is the equivalent in number
of DOC molecules of one cell (without storage). We denote by α0 the energetic cost
of a cell, which is the number of DOC molecules consumed to produce the energy
needed for the synthesis reactions involved in the production of one cell. We
denote by β the equivalent in number of DOC molecules of one SOC molecule, and
the structural and energetic cost of producing one molecule of enzyme by ρ and ρ0 ,
respectively. We assume that the energetic costs are carbon released by cells as CO2

(cell respiration) that diffuses out of the system instantly. We define the biomass

production fraction and enzyme allocation fraction as

�γM :¼ 1
αþ α0

; �γZ :¼ 1
ρþ ρ0

: ð1Þ
The event times are given by independent exponential random variables whose

parameters are defined by event rates (Supplementary Tables 2–4). These event
rates give an approximation of the average frequency of each event. The rates of cell
growth and enzyme production depend on the trait φ. Once a cell has doubled its
initial size, reproduction occurs by releasing the mother cell at its initial size, and
the daughter cell at its same size. The cell must therefore take up and store its
structural and energetic cost, ðαþ α0Þ, in DOC molecules in order to reproduce.
We denote N the number of uptake events before reproduction. The number of
DOC molecules taken up at each uptake event is then ðαþ α0Þ=N , hence the
notation 1fD≥ ðαþα0 Þ=Ng which equals 1 if D≥ ðαþ α0Þ=N , and 0 otherwise. The
same notation, 1fD≥ ρþρ0g , is used for the production event of an enzyme molecule.
Uptake is stochastic, but reproduction is deterministic, which means that when a
cell has performed N uptake events, it reproduces with probability 1. A larger N
means a larger number of uptake events between 2 reproduction events, which also
means less DOC molecules taken up at each uptake event. The model tracks the
dynamics of the number of cells, SOC, DOC, enzyme molecules, and also of the
DOC stored in each cell.

Enzyme–substrate complexes form at rate �λ
k
as one enzyme molecule (e.g.

cellulase) bind one SOC molecule (e.g. cellulose). A complex may either dissociate
(with no decomposition) at rate �λ

ε
�1, or react at rate �μ

ε and convert the molecule of
SOC into β molecule of DOC while the enzyme is released and free again to react
with new molecules of SOC (Supplementary Table 3).

System size k does not appear in this system of equations, yet it enters the
volume-dependent parameters of the model, IC, ID, θ, and Km. We denote V the
unit volume of soil that contains on average one microbial cell and the
corresponding equilibrium of carbon mass of SOC, DOC and enzymes. The system
size k is the number of well-mixed unit volumes in one microsite, which determines
the number of cells sharing SOC, DOC, and enzymes. The volume of one microsite
is therefore k × V. Increasing k amounts to increasing microsite volume, the
number of cells sharing resources in one microsite, the amount of resources per
microsite, and the volume-dependent parameters, such as the amount of SOC
entering a microsite per unit of time, IC. In our analysis, the unit volume V is fixed,
and we vary k to investigate the effect of microsite volume on the system’s eco-
evolutionary dynamics. With very large k, the hybrid model can be approximated
by a fully deterministic model which takes the form of a system of four ordinary
differential equations (see Supplementary Information 3.3 and Supplementary
Fig. 1), similar to the microbial decomposition model first introduced by Allison
et al.53. However, empirical data suggest that k is of the order of 10–10054. When
k = 1, there is only one cell in the microsite, which volume is V defined as the unit
soil volume expected to contain a single cell. A value of k greater than 1 means that
each microsite contains k cells and k times the amount of SOC, DOC and enzyme
molecules of 1 cell; thus, the microsite volume is k × V, and volume-dependent
parameters are rescaled by k. Specifically, there are four volume-dependent

parameters: the external input of C, �IkC , the external input of D, �I
k
D , the half-

saturation constant of DOC uptake, �Kk
m, and the encounter intensity of two given

SOC and enzyme molecules, �λ
k
. The external inputs increase proportionally with

the volume of the microsite, while the encounter intensity of two given molecules
in a microsite decreases as its volume increases. The half-saturation is inversely
proportional to the affinity between a given cell M and a given DOC molecule d,
which decreases with increasing microsite volume. We thus obtain the following
scaling relationships:

�IkC ¼ k�IC ; �I
k
D ¼ k�ID; �λ

k ¼ λ

k
and �Kk

m ¼ k�Km: ð2Þ
In our simulations, we generally assume that k is equal to 10, to match the

empirical observation that (cells) in soil habitat tend to interact with 10 to 100
other cells at all time54.

Derivation of the hybrid model. In Supplementary Information 3, we present the
next two steps (2 and 3 in “Ecosystem dynamics at microsite scale” of “Results”
section) to derive the hybrid model on which all our results are based. In Sup-
plementary Information 3.1, we explain how the dynamics generated by the five-
compartment model can be captured with a reduced model with four-state vari-
ables (step 2). In Supplementary Information 3.2, we explain how the stochastic-
deterministic PDMP model can be derived from the stochastic four-state variable
model (step 3). In the hybrid model (step 4), only cell death remains stochastic, and
cell dynamics is measured in unit of number of individuals (M), while other entities
are now in carbon mass unit. The rescaled SOC, DOC and enzyme abundances are
denoted with lower case letters c, d, and z.

Simulation algorithm for the hybrid spatial model. One technical benefit of the
hybrid model is its much greater computational tractability. Here we describe the
algorithm used to perform simulations of the hybrid model. We ran the model on
single microsite to produce the simulations reported in Fig. 2. We ran the model on
a 10 × 10 lattice of microsites for the subsequent figures. The algorithm is based on
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the Gillepsie algorithm55 as used in Champagnat et al.37, Fournier and Méléard56,
which straightforwardly extends to the simulation of PDMPs.

To couple PDMP models across microsites, we account for the DOC and
dispersal of cells between adjacent microsites. The DOC diffusion between
microsites is modeled by approximating a continuous diffusion with a Euler
scheme in which time is discretized with a fixed time step interval, τdiff. τdiff is
chosen sufficiently small to provide a fine enough discretization of the DOC
diffusion.

A simulation starts with a given amount of M, z, c, and d in each microsite at
time t = 0, while the initial amount of DOC stored within each cell is determined
uniformly at random. Two stochastic events (death of a cell) may not occur at the
same time. Assume that the process has been computed until time ti; to continue
the computation to time ti+1, we proceed as follows.

First, we simulate T, an exponential random variable with parameter r
(ti) = dMM(ti), which corresponds to the death rate of the total cell population at
time ti (M(ti) being the total number of cells on the entire lattice). We then
compute

tiþ1 :¼ ti þmin T; τdiffð Þ:
To obtain c(ti+1), d(ti+1), and z(ti+1) in each microsite at time ti+1, and the

variation in amount of DOC stored within a cell in the corresponding microsite, we
use a Euler scheme that solves the dynamical system

_cðtÞ ¼ IC � lCc� θzc;
_dðtÞ ¼ ID � lDd þ θzcþ ð1� lÞdZz � Vmax

d
Km þ dωMM;

_zðtÞ ¼ φγZVmax
d

Km þ dωMM � dZz;

_ΔðtÞ ¼ ð1� φÞγMVmax
d

Km þ dωM ;

8>>>>><
>>>>>:

in each microsite between ti and ti+1, where M is the number of cells in the
microsite at time ti, Δ gives the amount variation of DOC stored within a cell, Δ
(ti) = 0 and the other initial conditions are the biomass of c, d, z in the
corresponding microsite at time ti.

Note that, within a microsite, the variation of stored DOC is the same for all cells
and corresponds to Δ(ti+1). Hence, this amount is added to the amount of DOC stored
within each cell living in the corresponding microsite. If, for a cell j, the resulting
amount Sj(Ti) + Δ(ti+1) is over ωM, a new cell appears. The amount of stored DOC
within the new cell and the mother cell is then updated: Sj(ti+1) = (Sj(Ti) +
Δ(ti+1)− ωM)/2. Otherwise, Sj(ti+1)= Sj(Ti)+ Δ(ti+1). To determine the position of the
new cell, the following steps are taken:

● A uniform random variable ϑ1 in [0, 1] is simulated.
● If ϑ1 < 1 − pdisp, the new cell is added to the mother cell microsite.
● Otherwise, the new cell disperses:

– If empty microsites are available in the four nearest microsites, the new
cell is added to one of them, drawn randomly.

– Otherwise, a uniform random variable ϑ2 in [0, 1] is simulated.

If ϑ2 < 1 − popen, the new cell is added to the mother cell microsite.
If ϑ2 ≥ 1 − popen, a micro-disturbance happens. That is, one of the four nearest
microsites is chosen at random and all cells in the microsite die. These cells are
removed from the population, an amount of (1 − l)(1 − p)ωMM is added to
variable d and an amount of (1 − l)pωMM is added to variable c in this microsite
(where M is the number of cells that died in the event). Finally, the new cell is
placed in this microsite.

If several birth events happen during the same time interval [ti, ti+1], the new cells
are relocated one after another in a randomly and uniformly drawn order.

At this point, no diffusion of DOC has yet taken place. The next step in the
algorithm therefore consists in calculating the diffusion of DOC as driven by a step
of the Euler scheme associated with the diffusion equation

d
dt

dðx; tÞ ¼ σdiffΔdðx; tÞ:

This is done by updating the computed DOC biomass dj,l(ti+1) in the microsite of
the jth column and the lth line and of the lattice by replacing it with

dj;lðtiþ1Þ þ
σdiff � τ
ðVkÞ2=3

�
djþ1;lðtiþ1Þ þ dj�1;lðtiþ1Þ þ dj;lþ1ðtiþ1Þ

þ dj;l�1ðtiþ1Þ � 4 � dj;lðtiþ1Þ
�
:

Finally we test for a cell dying at time ti+1:

● If ti+1 − ti = T, then a cell dies at time ti+1. It is chosen uniformly at random
among all alive cells and it is removed from the population. At the same time,
an amount of (1 − l)pωM is added to variable d and an amount of (1 − l)
(1 − p)ωM is added to variable c in the corresponding microsite.

● If ti+1 − ti = τdiff (i.e. T > τdiff), no cell dies.

All steps are then repeated until a set time is reached or all cells died.

Parameter values. We used default parameter values from previous modeling
literature. Most existing models of microbial decomposition are deterministic28,29;
therefore, to compare them and their parameters tothe hybrid model, we estab-
lished a fully deterministic version of our model, and then reversed the successive
renormalizations to obtain the hybrid model’s parameters as functions of the
parameters of the fully deterministic model. The derivation of the fully determi-
nistic model, called cdmz, from the stochastic CDMZ model is presented in
Supplementary Information 3.2 and takes the form of a system of differential
equations, see equations (S.5). Mapping these equations to similar models in
Allison53, German et al.57, Hagerty et al.58, Schimel and Weintraub15 provided us
with default parameter values listed in Table 1. In addition, the structural and
energetic costs (αs and ρs) are calculated from the masses (ωs) and production
fractions (γs) of the variables (see Supplementary Equation (S.3)).

The decomposition rate θ is calculated as
Vmaxdecomposition

Kmdecomposition

from Allison et al.’s53

model. We ignore the input of DOC to focus on the internal mechanism of DOC
production driven by microbial enzyme decomposition. Additionally, a sensitivity
analysis (see below, and Supplementary Table 1) of the deterministic
approximation cdmz model (Supplementary Information 3.3) shows that ID has
very little influence on the state variables, including the SOC stock, c. SOC and
DOC are assumed to leach out of the system at the same rate. Dead microbes and
deactivated enzymes are recycled half into SOC and the other half into DOC
(p = 0.5). The values of pmut and σmut reflect the assumption that mutations are
rare and small59.

For the change of unit from biomass to individual entities (ωs), we used Bacillus
subtilis or B. clausii, cellulase, cellulose and glucose as our baseline. We estimated
the mass of 1 DOC molecule with the mass of 1 molecule of glucose. We estimated
the mass of 1 SOC molecule from the approximation that 1 molecule of cellulose
contains about 103 molecules of glucose. We estimated the mass of 1 enzyme
molecule by assuming that 1 molecule of cellulase contains about as much carbon
as 1 molecule of cellulose. Finally, we estimated the mass of 1 cell based on the
results from biomass estimations of soil samples (with various methods, such as
CFI, CFE, SIR) that there are about 4 × 108 active cells in 1 cm3 of bulk soil, which
weigh 0.1 mg in carbon60.

Eco-evolutionary analysis. We perform extensive simulations of the resulting eco-
evolutionary dynamics (joint dynamics of the ecological variables and trait dis-
tribution) at the microscale of single sites.

At the lattice scale, we analyze the evolution of exoenzyme production by using
the spatial version of the hybrid model. To circumvent the issue of prohibitive
computation time, we predict the long-term stationary state of eco-evolutionary
dynamics by using an adaptive dynamics approach26,38. To this end, rather than
simulating the cell population with a continuous flow of new mutants, we
parallelize the simulations of an ensemble of pairwise contests between only two
slightly different strains at a time, one strain taken as resident (initially at stationary
state) and the other as the initially rare, mutant strain. The direction and strength
of selection on the evolving trait is then predicted by invasion fitness (intrinsic
population growth rate from low density) of the mutant strain competing against
the resident strain26,27. Based on the mathematical theory of adaptive dynamics in
finite populations42, a proxy for invasion fitness is given by the product of the
mutant probability of survival with the long-term population growth rate of
surviving mutant populations. The rationale is that deleterious mutants may
experience positive growth due to genetic drift, but their probability of survival is
low; in contrast, advantageous mutants that differ only slightly from the resident
strain tend to grow slowly, but their survival probability is high. An evolutionarily
stable strategy (ESS) can then be estimated from pairwise contest simulations, as a
trait value that no nearby mutant can invade, i.e. for which the estimated invasion
fitness proxy of nearby mutants is close to zero. When invasion fitness indicates
that for any given resident strain, mutants closer to the ESS outcompete the
resident, then the ESS is attractive and the system’s eco-evolutionary dynamics
converge to the ESS. In this case, the (attractive) ESS predicts the outcome of the
full eco-evolutionary dynamics under the assumption of mutations of small
effects37.

Simulation of resident-mutant interaction in the spatial model. We chose a
standard lattice size of 10 × 10 microsites (in their related but non-evolutionary
models, Allison17 and Kaiser et al.19,20 used lattices of 100 × 100 microsites) to
avoid the prohibitive computation time of slow population spread across larger
lattices. The observed patterns of spread conform to a relatively smooth invasion
front, which makes us confident that the invasion capacity of a mutant phenotype
is adequately captured by the dynamics following its introduction in a 10 × 10
lattice. The probability of invasion of a mutant might decrease with increasing
lattice size if a larger lattice tended to increase the risk of stochastic extinction by
drift; however, (1) extinction by drift is actually more likely to occur in the initial
phase of invasion, when the spread is still limited to a small part of the lattice, and
(2) even if this were the case, the consequence may be a flatter fitness landscape
around the ESS, but the direction of selection towards the ESS should not be
affected.

We start each simulation with a monomorphic population (all cells have the
same φ value). All four variables c, d, M, z are initialized at the steady state values
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predicted by the deterministic model (Supplementary Eq. (S.5)) with the
corresponding values of k and φ. Mutants are initially located at the center of the
lattice (changing the initial location does not modify the final fraction of mutants in
the lattice). On the edges of the lattice we impose Neumann boundary conditions
whereby there is no disappearance of dispersing cells or DOC diffusing out of the
lattice. Diffusion is then a transfer of c, d, z between the three (instead of four)
neighboring microsites (or two for corner microsites) and the center microsite.
Likewise, dispersing cells may move into one of three microsites (or two for corner
microsites) instead of four. Looking for edge effects, we carefully monitor the
potential accumulation of substrates or individuals at the boundary or in corners.
No substantial such effect manifested over the time span over which mutant
invasion develops.

To optimize simulation time, we assume that mutants occur initially at 5%
frequency in the introduction microsite. We run simulations for (resident, mutant)
pairs with ±0.05 difference in trait value φ. From the final frequency of mutants we
compute the mutant exponential growth rate, and average over 20 simulation
replicates. All simulations are different due to demographic stochasticity. The total
simulation time of all parallelized runs was 107 h (about 1000 years).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Code availability
The simulations and figures that support the findings of this study were coded with C++
and R. The code is available at https://zenodo.org/badge/latestdoi/21715154561.
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