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Abstract: Several tumor entities have been reported to overexpress KCa3.1 potassium channels due to
epigenetic, transcriptional, or post-translational modifications. By modulating membrane potential,
cell volume, or Ca2+ signaling, KCa3.1 has been proposed to exert pivotal oncogenic functions in
tumorigenesis, malignant progression, metastasis, and therapy resistance. Moreover, KCa3.1 is
expressed by tumor-promoting stroma cells such as fibroblasts and the tumor vasculature suggesting
a role of KCa3.1 in the adaptation of the tumor microenvironment. Combined, this features KCa3.1 as
a candidate target for innovative anti-cancer therapy. However, immune cells also express KCa3.1
thereby contributing to T cell activation. Thus, any strategy targeting KCa3.1 in anti-cancer therapy
may also modulate anti-tumor immune activity and/or immunosuppression. The present review
article highlights the potential of KCa3.1 as an anti-tumor target providing an overview of the current
knowledge on its function in tumor pathogenesis with emphasis on vasculo- and angiogenesis as
well as anti-cancer immune responses.

Keywords: KCa3.1; intermediate conductance calcium-activated K+ channel; BK; big conductance
Ca2+- and voltage-activated K+ channels; TRAM-34; (1-[(2-chlorophenyl) diphenylmethyl]-pyrazole;
1-EBIO; 1-Ethyl-1,3-dihydro-2H-benzimidazol-2-one; E2; 17β-estradiol

1. Introduction

The KCa3.1 channel, also known as SK4 or IK, is activated by a rise of the intracellular Ca2+

concentration [Ca2+]i. Co-assembly of four KCa3.1 pore-forming α subunits is required to form
a functional channel. The basis for their Ca2+ sensitivity is conferred by a constitutively bound
calmodulin in the C-terminal tail of each α subunit. Through binding to calmodulin, Ca2+ induces a
conformational change that permits channel opening. The single channel conductance of the KCa3.1
ranges between 20 to 80 pS, hence intermediary between the single channel conductance of related
Ca2+-activated K+ channels with either small (SK1-3 channels with 5–20 pS) or big conductance
(100–300 pS) [1–3]. KCa3.1 channels conduct K+ across the membrane of excitable and non-excitable
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cells, but they lack the typical features of a voltage-sensing domain. Additionally, KCa3.1 activity is
also regulated by histidine phosphorylation [4–6].

Under physiological conditions, KCa3.1 channels are expressed in epithelial, endothelial,
and hematopoietic cells [7], whereas their presence in excitable cells such as central neurons and
cardiomyocytes has only recently been recognized [8–10]. In secretory epithelia such as lung and
intestine, KCa3.1 channels contribute to the normal electrochemical gradient for transepithelial
secretion of Cl−, Na+ and H2O [11]. KCa3.1 currents were detected in vascular smooth muscle
cells derived from murine arteries subjected to the wire injury model of restenosis, but not in those of
uninjured control vessels. Importantly, neointima formation was significantly impaired after targeted
disruption of KCa3.1 [12]. Basic fibroblast growth factor- (bFGF) and vascular endothelial growth factor
(VEGF)-treated human endothelial cells also upregulated KCa3.1 implying a role in the formation
of new blood vessels [13]. Finally, a lack of KCa3.1 causes mild hypertension in the dark phase
suggesting a significant role in blood pressure control during physical activity [14]. With regard
to its role in the immune system, upregulation and activation of KCa3.1 in T cells in response to
antigens and mitogens are well established. In this context, KCa3.1 possibly acts upon a nucleoside
diphosphate kinase B-mediated histidine phosphorylation to promote T cell activation ultimately
resulting in their clonal expansion [15]. A number of additional KCa3.1 functions point to a role
in the migration of lipopolysaccharide-(LPS) activated dendritic cells (DCs) [16], proper mast cell
activation after IgE binding [17], the pathogenesis of airway inflammation and remodelling in allergic
asthma [18], the prevention of hyper-responsiveness to acute stress by modulating the release of
corticotropin from the anterior pituitary gland [19], the processing of pain induced by noxious chemical
stimuli [20], neuroinflammation in murine stroke models [21], and renal fibroblast proliferation induced
by unilateral urethral obstruction in mice [22]. Finally, a number of studies have revealed that KCa3.1
is involved in Ca2+-dependent K+ efflux from erythrocytes, which in combination with Cl− and H2O
movement mediates cell shrinkage, a phenomenon referred to as ‘Gardos effect’ [23].

It is becoming increasingly clear that KCa3.1-dependent signaling pathways affect the immune
system and mechanisms of cell proliferation and migration; hence, it is not surprising that KCa3.1
plays a role in cancer development and progression. While the details of tumor-related KCa3.1
functions are subject to continued investigation, KCa3.1 channels have emerged as promising targets
for immunomodulation in drug-resistant cancers. This review extends previous important works by
others [24–26] in highlighting the multitude of KCa3.1 physiological functions and their complex role
in cancer.

2. Tumor Cell-Specific Functions of KCa3.1

2.1. Molecular Markers and Regulation of KCNN4

Among the known influences that regulate the expression of the KCa3.1-encoding KCNN4 gene
are constitutional, epigenetic, and post-transcriptional variations. In this paragraph, we describe some
of these effects on KCNN4 expression as they have been reported for a number of different cancer types
including breast, lung, endometrial, and pancreatic cancer.

Sequence variations known as single nucleotide polymorphisms (SNP) may impact on gene
expression when located in regulatory sites such as non-coding regions. It is therefore of interest that the
SNP rs3760982 located at the intergenic region of KCNN4 and LYPD5 (LY6/PLAUR Domain Containing
5, metastasis-associated protein) on chromosome 19q13.31 has been shown to be associated with breast
cancer risk [27], a finding that was corroborated in large scale genome wide association studies (GWAS)
using data sets of more than 200,000 patients and controls (P = 1.4 × 10−16 [28]). Notably, the association
is strongest in patients with tumors expressing estrogen receptors (ER; P = 4 × 10−14) who are
predestined to receive anti-hormonal treatment. A number of KCNN4 SNPs reside within the first
intron of the gene, some of which may be associated as well with ER-positive breast cancer risk [29],
however, whether or not dysregulated KCNN4 expression is the cause of this risk association and
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which role the genetic control of the KCa3.1 channel plays for breast cancer development is not clear.
At the tumor level, the degree of KCNN4 mRNA expression is potentially useful to stratify breast cancer
patients into those with shorter and longer survival time. Data from The Cancer Genome Atlas suggests
no difference in KCNN4 mRNA expression between normal and breast tumor tissue [30] (Figure 1A),
however, higher KCNN4 expression in the tumor tissue might modify patient outcome as indicated by
the shorter overall survival in Kaplan–Meier analysis [31] (Figure 1B). In addition, high KCNN4-mRNA
levels were also associated with a lower overall survival, shorter progression-free survival, and a high
metastatic potential of patients with clear cell renal cell carcinoma (ccRCC) suggesting that KCa3.1 may
be of prognostic value in ccRCC [32].
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Figure 1. KCNN4 mRNA expression levels in breast cancer and their association with patient survival.
(A) mRNA expression levels of KCNN1-4 coding for SK1-SK3 and KCa3.1 were compared between
healthy and breast tumor tissues, measured by RNA sequencing as fragments per kilobase of transcript
per million mapped reads (FPKM). Data obtained from The Cancer Genome Atlas [30] revealed no
significant difference in a Kruskal–Wallis test with Dunn’s test for multiple comparisons (α = 0.05 for n
= 113 healthy and n = 1095 breast tumor tissues). (B) In the Kaplan–Meier plotter [31], significantly
prolonged overall survival (OS) was associated with low KCNN4 mRNA levels. Groups were
statistically compared by log-rank test (hazard ratio = 1.37 (confidence interval 1.08–1.72) for n = 1030
low and n = 372 high KCNN4-expressing tumors).

Epigenetically, the regulation of gene expression is influenced by chromatin modifications such as
acetylation or methylation as well as DNA methylation in the proximity of gene regions. In non-small
cell lung cancer, KCNN4 promoter hypomethylation has been observed particularly in advanced-stage
tumors. KCNN4 promoter hypomethylation was accompanied by an increase in mRNA expression
when compared to normal lung tissue, which was also associated with shorter progression-free and
overall survival. Notably, this observation in patients is supported by findings in a model of A549 lung
adenocarcinoma cells in which higher KCNN4 mRNA and KCa3.1 protein expression levels, as well as
aggressive tumor cell behavior, were observed. Functional tests revealed decreased proliferation and
migration upon KCa3.1 inhibition with TRAM-34. Moreover, A549 xenografts in nude mice showed
attenuated tumor growth when treated with the KCa3.1 inhibitor senicapoc [33].

The influence of post-transcriptional control via microRNAs (miRNAs) on the expression of KCa3.1
is not well understood. miRNAs are a large family of highly conserved, small non-protein-coding RNA
molecules that function as critical regulators of gene expression by triggering either translational
repression or degradation of their target mRNAs [34]. Individual miRNAs act either as tumor
suppressors by repressing oncogene expression or as oncogenes by repressing tumor suppressor genes.
Although KCa3.1 has been observed to be upregulated in pancreatic, breast, and endometrial cancers
which affects tumor progression [35–37], not much is known about the underlying dysregulation
of miRNAs. Yet, in angiosarcoma, miR-497-5p acts in a tumor-suppressive mode as it inhibited
cell proliferation and invasion via downregulation of KCa3.1, an observation that highlights both,
the regulatory miRNA and the targeted KCa3.1 channel as potential new treatment targets [38].
Similarly, miR-16-5p and miR-375 were identified to have the potential to modulate KCa3.1
expression [39]. MiR-16-5p was among the first downregulated miRNAs identified in chronic
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lymphocytic leukemia due to frequent deletions [40] and moreover gained wider attention as a
regulator of anti-apoptotic BCL2 in prostate and breast cancer [41,42] as well as breast cancer
development [43]. Notably, miRNA-16-5p was repressed in MCF-7 breast cancer cells upon
17β-estradiol (E2) treatment, an effect that could be rescued using mimics in order to inhibit E2-induced
cell proliferation [44]. The role of KCa3.1 in this process is currently not known. In summary,
the available information on KCa3.1 regulation in cancer deserves further attention.

2.2. Tumorigenesis

Cell division is a highly conserved and tightly controlled process that ensures the replication of
DNA and its segregation into daughter cells. In tumor cells, control elements of the cell cycle such as
growth factors and their receptors or growth-promoting cyclins are often dysregulated due to genetic
aberrations. In combination with genetic aberrations affecting tumor suppressor genes, a number
of alterations within a single cell may drive uncontrolled proliferation [45–47]. Important but often
neglected features of the cell cycle are changes in transmembrane ion flux causing fluctuations of the
electrical membrane potential or regulatory changes in cell volume. By modulating these processes,
KCa3.1 channels may contribute to the abnormal proliferation of tumor cells [47–49].

Changes in the cellular resting membrane potential (Vm) are essential for cell cycle progression.
When compared to excitable cells, Vm changes in tumor cells occurring during the cell cycle
are usually slower and smaller [48,50]. In contrast to proliferating cells, a constant resting Vm

is seen for example in striated muscle cells or neurons, which are usually associated with little
or no mitotic activity. Activation of K+ channels in the plasma membrane has been shown
to cause the more negative membrane potential necessary to initiate this G1/S transition [51].
Hyperpolarization of Vm is also required for G1/S transition, DNA synthesis, and progression
through S phase, while Vm depolarization precedes G2/M progression and mitosis entry [47,49].
Accordingly, altered expression and activity of certain K+ channels throughout the different cell cycle
phases have been observed [36,48,49,52–54]. Studies utilizing a number of K+ channel modulators
further emphasize that both temporal and spatial changes in K+ channel activity play a crucial role
for the transition from G0 into G1. For example, cell cycle progression was prevented upon blockade
of the ATP-sensitive K+ channel or the human Ether-A-Go-Go-Related Protein 1 (KCNH2) in MCF-7
breast tumor cells and in different leukemia cell lines [36,51,52,55–57]. With regard to KCa3.1 blockade
by the antifungal imidazole, clotrimazole induced MCF-7 cell depolarization and prevented G1/S
transition [36]. Furthermore, clotrimazole as well as its more specific analogue TRAM-34 arrested
HEC-1-A endometrial cancer cells in G0/G1 phase and suppressed tumor development in nude
mice [37]. Moreover, TRAM-34 as well as an RNAi-mediated depletion of KCa3.1 increased the
expression of the cyclin-dependent kinase inhibitor p21 important for blockade of G1/S transition
and thus suppressed the proliferation of different prostate cancer cell lines. In contrast, the KCa3.1
opener 1-EBIO evoked a clotrimazole-sensitive and concentration-dependent increase in the mitotic
cell division [58,59]. In HepG2 hepatocellular carcinoma cells, anti-tumor growth effects of TRAM-34
were linked to a downregulation of ERα and nuclear factor-κB [60,61]. Interestingly, an overexpression
of KCa3.1 in the human MDA-MB-231 breast cancer cell line promoted the oncogenic cell growth in
an in vivo xenograft model but not in vitro [62]. As the Vm of MDA-MB-231 cells was not altered by
KCa3.1 overexpression, pro-tumor functions of this channel in vivo seem to require a crosstalk with
microenvironmental factors and/or other signals from non-tumor cells.

The Ca2+ dependence of KCa3.1 activation directly links this channel to an important second
messenger and various Ca2+ effector proteins regulating proliferation [63,64]. Ca2+ oscillations occur
during G1 phase, G1/S and G2/M transitions as well as between metaphase and anaphase [64–67].
Cell cycle progression depends on regulated Ca2+ entry. Alterations in [Ca2+]i have, therefore, been
associated with abnormal activation of mitogenic pathways in various cancer cell types [65,68].
Through their effect on Vm, K+ channels such as KCa3.1 increase the driving force for Ca2+ influx
and thus generate robust [Ca2+]i signals to finally promote tumor cell proliferation [69]. Accordingly,
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in prostate and pancreatic cancer cells, the Ca2+ influx through transient receptor potential (TRP)
vanilloid subfamily member 6 (TRPV6) channels is abolished by blockade of hyperpolarizing KCa3.1
currents. In contrast, escalating extracellular Ca2+ used to artificially increase the driving force for Ca2+

entry stimulated cell proliferation even in the presence of KCa3.1 channel blockers [35,59]. In MCF-7
breast cancer cells, KCa3.1 and Ca2+-permeable canonical TRP subtype 1 (TRPC1) channels accumulate
during G1 phase allowing them to interact and regulate basal Ca2+ entry [36,70]. Serum-containing
growth factors evoked Ca2+ signals and transition to S phase was suppressed by pharmacological
or genetic KCa3.1 blockade in murine breast cancer cells [71]. Recent evidence suggests that ionizing
radiation (IR) activates IK channels in glioblastoma cells due to an increase in [Ca2+]i. Accordingly,
KCa3.1 inhibition by TRAM-34 suppressed the clonogenic survival of irradiated but not that of
unirradiated T98G and U87MG glioblastoma cells. In vivo, co-treatment with TRAM-34 increased the
response of an ectopic glioblastoma mouse model to fractionated cancer radiotherapy [72].

Finally, K+ channel pathways may be directly linked to mitogens such as cyclins and immediate
early genes. At least in parts, these non-canonical interactions seem to occur independently from
K+ permeability changes via yet unknown mechanisms [47–49,68,71,73–76]. In KCa3.1 gene-targeted
murine breast cancer cells stimulated with serum, we recently confirmed a significant suppression of
c-fos and c-jun mRNA levels. This finding is in accordance with the anti-proliferative and checkpoint
functions attributed to KCa3.1 activity [71]. However, K+ permeability and immediate early gene
expression have not been assessed directly in KCa3.1-positive versus -negative breast tumor cells and
thus the impact of this channel on non-canonical pathways remains largely unclear.

Some studies also challenge the anti-tumorigenic potential of targeting KCa3.1 and its critical role
for the proliferation of cancer cells [77,78]. However, it is one serious limitation of the available reports
that the applied pharmacological and/or siRNA approaches produce side effects owing to off-target
actions. Accordingly, concerns were raised regarding the use of TRAM-34 because this ‘specific’ KCa3.1
blocker was shown to stimulate the proliferation of breast cancer cells via the activation of ERs [79] and,
in addition, Agarwal and colleagues suggested that TRAM-34 in low micromolar concentrations may
also inhibit multiple cytochrome P450 isoforms [80]. We believe that these discrepancies regarding
the proliferative and pharmacological properties of KCa3.1 in cancer cells should be resolved by
proof-of-concept studies utilizing, for example, genetically engineered models allowing tumor cell-
and tissue-specific knockout or expression of conditionally targeted KCa3.1 alleles in vivo.

2.3. Tumor Cell Apoptosis and Survival

Besides cell cycle progression, the cell cycle control machinery acts to avoid mitotic abnormalities
and thereby DNA damage. The latter triggers either its repair or programed cell death ensuring
that cells with damaged DNA cannot pass on their genetic information. Tumor cells have developed
escape strategies allowing them to avoid cell cycle control and cell death by different mechanisms [81].
In various types of tumor cells, KCa3.1 signaling appears to interfere with apoptotic cell death triggered
by transmembrane death receptor and mitochondrial pathways [73,82,83]. Moreover, apoptotic cell
death of poorly differentiated triple-negative breast cancer cells was promoted by TRAM-34 [84].
In different melanoma cell lines, TRAM-34 by itself did not elicit apoptosis; however, when applied
together with tumor-necrosis-factor-related-apoptosis-inducing-ligand (TRAIL), it stimulated the
mitochondrial release of cytochrome c, thereby triggering a cascade of caspase activation. Intriguingly,
agonistic TRAIL death receptor expression was found to be upregulated by TRAM-34 suggesting
that KCa3.1 plays a key role in sensitizing melanoma cells to TRAIL-induced apoptosis [85]. KCa3.1
channel expression in mitochondria was shown for the HCT116 human colon carcinoma cell line and
in HeLa cells where KCa3.1-specific siRNA induced the release of apoptosis-initiating mediators of
the intrinsic pathway [78,86]. Apparently, KCa3.1 is also involved in K+ flux across the mitochondrial
membrane in tumor cells. As a classical stimulator of the intrinsic apoptotic pathway, staurosporine
induced a Ca2+ signal in D54-MG glioma cells that triggered plasma membrane K+ efflux via KCa3.1
resulting in caspase-3 activation and apoptotic volume decrease [83]. In contrast, caspase-3 activity after
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cisplatin treatment was inhibited by KCa3.1 blockade and amplified under 1-EBIO in epidermoid cancer
cells [87]. Kv1.3, a voltage-gated K+ channel that amongst others associates with KCa3.1 for immune
activation [88], was already shown to induce mitochondria-dependent apoptosis in lymphocytes [89]
but also in cancer cell lines as well as in vivo melanoma and pancreatic cancer models [90,91]. In our
previous work, we observed increased histone 2AX (H2AX) phosphorylation on serine 139, an indicator
for DNA damage, after irradiating T98G and U87MG glioma cells co-treated with TRAM-34. As KCa3.1
inhibition increased radiosensitivity of glioma cells in vitro and in ectopically growing gliomas in
nude mice, we concluded that this channel plays a role in DNA repair processes and thereby in cell
survival after radiotherapy [72,92]. In contrast, apoptosis was decreased or even abolished with KCa3.1
inhibition in thymocytes and erythrocytes [93,94]. This discrepancy suggests that KCa3.1 affects the
programed cell death either in a cell type-specific manner across cellular differentiation processes even
though the anti-apoptotic properties of KCa3.1 seem to dominate.

2.4. Cancer Invasion and Metastasis

One of the biggest challenges in tumor therapy is the local restriction of cancer growth, since
approximately 90% of all cancer patients die of secondary tumors [48,81,95]. Migration and infiltration
depend on haptotactical and chemotactical signals, Ca2+, cell volume and intracellular signaling
cascades modulating cytoskeletal dynamics [63]. K+ channel activity can control any of these
processes. As an example, enrichment of a specific splice variant of the big conductance Ca2+- and
voltage-activated BK K+ channel has been characterized as crucial factor for the pro-migratory and
pro-invasive properties in glioma [96–100]. Likewise, KCa3.1 function has been demonstrated to be
required for glioma cell migration and brain infiltration [101–107]. Beyond, motorizing migration
by locally changing the cell volume [108], BK and KCa3.1 K+ channels are part of the Ca2+ signaling
complex that programs glioblastoma cell migration [92,98,109,110]. Moreover, BK and KCa3.1 K+

channels are highly expressed in stem-like subpopulations of glioblastoma [111–113] where they
contribute to the high radioresistance [113] and pronounced migration [111,112] of these cells.
Similarly to glioblastoma, K+ channels including KCa3.1 contribute to cell migration and metastasis of
extracranial tumors [63,114–116].

In particular, KCa3.1 blockade or downregulation in Skov-3 human ovarian cancer cells prevented
ATP-induced cell migration possibly due to a loss of interaction between KCa3.1 and the purinergic
receptor P2Y2 [117]. Charybdotoxin impaired KCa3.1-mediated locomotion of human A7 and SKMEL28
melanoma cells and it decreased [Ca2+]i and in consequence the polymerization reaction of F-actin [118].
Interfering with KCa3.1 activity by different means resulted in a reduced migration rate of MDA-MB-231
breast cancer cells [84]. However, neither MDA-MB-231 cell division, migration or invasive behaviors
were affected by KCa3.1 overexpression or channel activation by 1-EBIO in vitro [62]. Tumor spread
in vivo requires a condition of multiple interactions between malignant cells and their environment.
Consistent with this understanding, a tumor-promoting microenvironment may amplify the oncogenic
properties of the KCa3.1.

3. KCa3.1 in the Tumor Microenvironment

3.1. Tumor Stroma

Cancer-associated fibroblasts (CAF) reportedly communicate with tumor cells and other cells
in order to promote tumor growth, angiogenesis, and metastasis [119]. Upregulation of the KCa3.1
by growth factors, especially bFGF and to a minor extent by transforming growth factor-β, was
observed in fibroblast-like cell lines, whereas the KCa3.1 status of CAFs is largely unclear so far.
In 10T1/2 cells, a murine embryo fibroblast cell line, growth factor-regulated KCa3.1 signaling was
linked to the Ras/MEK/ERK pathway and resulted in an accelerated pro-proliferative behavior but
diminished myogenic differentiation [120]. In renal fibroblasts, TRAM-34 mitigated the bFGF-induced
bromodeoxyuridine (BrdU) incorporation as a marker of cell cycle progression without affecting
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apoptosis. In a pre-clinical model of renal fibrosis, fibrotic kidneys highly upregulated KCa3.1
transcripts and protein compared to sham-operated kidneys. Furthermore, fibrotic kidneys from KCa3.1
knockout (KO) mice presented with less collagen deposition and fewer α-smooth muscle actin-positive
cells as well as a better preservation of functional renal tissue compared to control [22]. In the
angiotensin II-stimulated heart, augmented KCa3.1 mRNA and protein levels promoted accumulation
of cardiac fibroblasts, an effect which was fully antagonized by TRAM-34 [121,122]. In addition to these
growth- and proliferation-stimulating effects, expression and release of pro-inflammatory factors such
as interleukin-6 and interleukin-8, monocyte chemotactic protein 1, and matrix metalloproteinase-3
have been linked to KCa3.1 function in synovial fibroblasts that derived from rheumatoid arthritis
patients [123]. It needs to be determined how tumor aggressiveness is affected by KCa3.1 function in
CAFs. Based on the available studies from other disease models, KCa3.1 in this heterogeneous cell
population may have a negative impact on tumor progression and cancer therapy.

3.2. Angiogenesis

In contrast to healthy tissue, growing tumors secure their nutrient and oxygen supply by
the induction of angiogenesis, meaning that normally quiescent vessels sprout continuously as
part of the so-called angiogenic switch. The developing blood vessels are poorly organized,
immature, and not well perfused. Angiogenesis is mostly reached by unbalancing pro-angiogenic
and anti-angiogenic factors like VEGF, fibroblast growth factor (FGF) or thrombospondin-1,
respectively [81,95,115,124]. The exact mechanisms are poorly understood and possibly depend
on the tumor entity, although VEGF and VEGF receptor inhibitors are already applied for the treatment
of advanced solid tumors [81,95,125,126].

K+ channels are thought to coordinate angiogenesis by regulation of the Vm and [Ca2+]i as well as
by interaction with VEGF or FGF [115]. So far, KCa3.1 activity has not directly been linked to tumor
angiogenesis. However, abnormal levels of endothelial cell proliferation are commonly observed in the
tumor vasculature [81,95] and bone marrow-derived endothelial progenitor cells expressing KCa3.1 also
exhibit a clotrimazole-sensitive K+ current [127]. Furthermore, bFGF and VEGF upregulate KCa3.1 and
this was essential for proliferation of HUVEC and HMEC-1 endothelial cells and angiogenesis in vivo.
Importantly, bFGF-induced endothelial cell proliferation was sensitive to clotrimazole or TRAM-34,
which points to KCa3.1 channels as an important downstream signaling molecule. In an in vivo
matrigel plug assay, continuous administration of TRAM-34 for two weeks suppressed angiogenesis in
mice [13,128]. KCa3.1 channels were also implicated as important regulators of endothelial cell Vm in
human mesenteric endothelium in situ. In the same study, mesenteric arteries from patients with colon
cancer showed an increase of endothelial cells expressing KCa3.1 [129]. In response to epidermal growth
factor (EGF), both transcriptional and protein levels of KCa3.1 increased in HUVECs, whereas TRAM-34
interfered with the EGF-induced proliferation response, counteracted migration, tube formation,
matrix metalloproteinase-2 upregulation and, consequently, it suppressed EGF-mediated angiogenesis
in vivo [130]. Upregulation of KCa3.1 promoted platelet-derived growth factor (PDGF)-induced
proliferation in vascular smooth muscle cells and, conversely, its modulation by TRAM-34 attenuated
the accumulation of cell proliferation markers [131]. Another characteristic of the angiogenic switch
refers to bone marrow-derived cells and primarily immune cells that contribute to the building of
new vessels via vasculogenesis for example by infiltrating premalignant lesions as well as progressed
tumors [81,95]. The potential role(s) of cancer-associated KCa3.1 channels in these cell types will be
explained in more detail within the following section. In summary, further evidence is required in
order to fully understand how vascular KCa3.1 activity contributes to the blood supply of a tumor
in vivo.

3.3. The Immune System

Immune surveillance and tumor-promoting inflammation on the one hand and immune
suppression in the tumor microenvironment that may result in tumor immune evasion on the other
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hand are hallmarks of cancer progression. Inflammation produces factors that stimulate growth
and survival, angiogenesis, and epithelial-mesenchymal transition. Additionally, radicals released
from immune cells may drive mutagenesis in tumor cells. With regard to immunoediting processes,
highly immunogenic tumor cells are detected and eliminated, whereas survival and growth of tumor
cell clones that are hardly recognized by the immune system are promoted subsequently. In this
context, tumor cells can develop different strategies to avoid immune cell recognition [95]. Both innate
and acquired immunity comprise complex mechanisms and a variety of cells that act in concert for
rapid and successful defense against foreign and abnormal structures. To this end, immune cells
circulate through the body and chemotaxis allows specific immune cell subsets to be recruited to sites
of inflammation. Cells of the acquired immune response are primed against an antigen, which is
driving their maturation and expansion.

The prominent role of the KCa3.1 channel for proper development and function of the immune
system has been recognized by many studies over the last two decades. Together with Kv1.3, KCa3.1
channels are of crucial importance for function of the different T and B cell subsets substantiated by
the notion that KCa3.1 channel expression is low in naïve and memory B cells but strongly increases
upon their activation [132–134]. In primary CD4+ helper T cells expressing tagged KCa3.1, antigen
presentation induced recruitment of KCa3.1 to the immunological synapse where it was important for B
cell-stimulated [Ca2+]i increase [135]. The effector memory T cell subtype is important for the induction
of a rapid secondary immune response. Interestingly, these cells show a low KCa3.1 expression profile
in their active state compared to naïve or the central memory T cells [136]. Similar to naïve T cells,
regulatory T cells show a rather low KCa3.1 expression [137]. Accordingly, in a murine model of T
cell-mediated colitis, the KCa3.1 KO genotype was associated with impaired Ca2+ influx and cytokine
production of particular Th0, Th1, and Th2 subsets but had no influence on regulatory T cells or Th17
cells [138].

Moreover, Ca2+ oscillations-mediated TRP melastatin-7 (TRPM7) channel activity has been linked
to KCa3.1 function both affecting T cell migration [139]. In addition, KCa3.1 seems to be necessary for the
Ca2+-induced apoptotic volume decrease, which is followed by the appearance of phosphatidylserine
at the cell surface resulting in T cell depletion [93]. Antigen-dependent differentiation of B cells
and germinal center formation require function of the tissue-specific transcriptional coactivator
OCA-B and KCNN4 is one of the target genes of OCA-B. Accordingly, OCA-B KO B cells were
shown to proliferate less in response to B cell receptor ligation, an effect that involved a strong
OCA-B-dependent upregulation of KCNN4 transcription [140]. Additionally, a patient of common
variable immunodeficiency carried a KCNN4 gene hypermethylation, whereas its healthy monozygotic
twin had no changes regarding KCNN4 methylation status [141]. Another example is provided by a
study on chronic lymphocytic leukemia where KCa3.1 mRNA and protein expression were associated
with the high proliferation rate of these cells, which could be diminished by TRAM-34 [142].

Regarding antigen-presenting cells, we and others could show that the KCa3.1 contributes to the
migration of DCs. Sensitization and stimulation with ovalbumin increased KCa3.1 protein expression
in DCs, whereas their chemotaxis in response to the lymphoid chemoattractants CCL19 and CCL21
was abolished with TRAM-34. Accordingly, [Ca2+]i raises were observed upon stimulation of the DCs
with either the KCa3.1 activator 1-EBIO, CCL19, or CCL21 [143]. Similarly, KCa3.1 was involved in
LPS-derived [Ca2+]i increase, cell swelling and migration of bone marrow-derived DCs in mice [16].
Besides migration, the DC maturation markers CD25 and CD83 were modified by TRAM-34, however,
with no impact on the ability of DCs to activate T cells [144]. In addition to antigen presentation,
macrophages patrol in the body and degrade foreign structures by phagocytosis. These cells are
usually stimulated by factors released by immune cells and they secrete cytokines in order to
modulate inflammatory processes. Extracellular ATP, as secreted by many cells during inflammation or
infection, was described to provoke KCa3.1-dependent [Ca2+]i oscillations in macrophages. In addition,
macrophage stimulation by ATP resulted in transcription of the interleukin-6 (IL-6) gene [145].
Interestingly, LoVo colon cancer cell invasion was stimulated by IL-6 and IL-8, and invasiveness
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of these cells was enhanced in the presence of tumor-associated macrophages. Most importantly,
cancer cell invasion was decreased with depletion of KCa3.1 expression levels in the tumor-associated
macrophages [146].

Specialized monocytic cells such as microglia, which are located throughout the brain and
spinal cord, show much higher amounts of KCa3.1 mRNA as compared to neurons and astrocytes.
LPS stimulation of microglia did not change KCa3.1 expression, but activated their neurotoxic
activity, which was sensitive to TRAM-34 [147]. Microglial migration was not promoted by LPS
but by IL-4, and this again was blocked by TRAM-34 [148]. In glioma, the grade of malignancy
correlates with macrophage and resident microglia infiltration into the tumor and in particular
with the presence of M2 macrophages. These cells do not produce pro-inflammatory cytokines,
which affects the equilibrium between immune recognition and immune suppression promoting
disease progression [149,150]. Along those lines, microglia cultured in glioma-conditioned medium or
microglia derived from glioma-bearing mice or human biopsies polarized into an anti-inflammatory
and therefore tumor-promoting phenotype. The anti-inflammatory microglia expressed high amounts
of KCa3.1 mRNA, and TRAM-34 switched the anti-inflammatory phenotype back to microglia with
pro-inflammatory anti-tumor capacity [151].

Natural killer (NK) cells are specialized cytotoxic cells that express both Kv1.3 and KCa3.1 channels
with levels independent from their maturation status. Non-adherent NK cells predominantly express
Kv1.3, whereas increased KCa3.1 levels are observed in adherent NK cells. TRAM-34 reportedly
promoted NK cell proliferation of adherent and non-adherent NK cells and degranulation in adherent
NK cells. In vivo, TRAM-34 enhanced the anti-tumor activity of adherent, but not that of non-adherent
NK cells. Regarding chemokine receptor expression essential for chemotaxis, a depletion of CX3CR1
was apparent in non-adherent NK cells in the presence of TRAM-34, whereas related receptors
such as CCR1, CCR2, CCR5, CXCR3, or CXCR4 as well as cell migration were unaltered in both
adherent and non-adherent NK cells [152]. Recently, KCa3.1 mRNA expression was also confirmed in
neutrophils, in which the KCa3.1 channel affects cell volume and chemotaxis. KCa3.1 KO mice showed
a less effective recruitment of neutrophils to the inflammation site after LPS delivery in the airways.
However, TRAM-34 did neither influence Ca2+ entry nor the production of reactive oxygen species in
neutrophils [153]. We and others could find evidence for functional KCa3.1 expression in mast cells.
Based on β-hexosaminidase as well as histamine release, their degranulation was dependent on KCa3.1
channels. Accordingly, in vivo analysis of KCa3.1 KO mice revealed a lower antigen-provoked decline
in body temperature upon IgE challenge as a measure of anaphylactic reaction, when compared to
the wildtype mouse [17,154]. Finally, human mast cell migration towards different chemoattractants,
but not their proliferation rate, declined with pharmacological KCa3.1 blockade [155].

A comprehensive analysis of peripheral blood revealed no significant difference in blood cell
counts between KCa3.1 KO and wildtype mice. Cells tested included erythrocytes as well as total and
differential leukocyte count including lymphocytes, eosinophils, neutrophils and monocytes [153].
Importantly, CD19+ B cells, CD4+, and CD8+ T cells as well as CD4+CD25+FOXP3+ cells representing
regulatory T cells were not altered by the absence of KCa3.1 [138]. In our recently investigated
MMTV-PyMT breast tumor model [71] (Figure 2A), we identified breast tumor-infiltrating leukocytes
by using the CD45 pan leukocyte marker. Consistently, a much higher number of CD45+ cells was
present in the tumor-surrounding stroma as compared to the tumor itself (Figure 2B). In tumor sections
derived from MMTV-PyMT KCa3.1 KO mice, however, CD45+ cells were not detected in the tumor and
very rare in the stroma. Together, these data support the notion that inadequate levels of KCa3.1 activity,
although not affecting total and differential leukocyte count in vivo, show influence on immune cell
maturation and thereby perturb a proper immune cell infiltration of the tumor.
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Tumor-free survival (TFS) and overall survival (OS) were studied in spontaneous breast cancer-prone
MMTV-PyMT wildtype (WT) and KCa3.1 KO mice. At a diameter of 15 mm, tumors were harvested
for investigating immune cell infiltration. (A) As previously reported [71], tumorigenesis and tumor
progression measured by TFS and OS, respectively, were not dependent on MMTV-PyMT WT or KCa3.1
KO genotypes (n = 6 each). (B) Staining against the CD45 pan leukocyte marker revealed moderate
immune cell infiltration in WT tumors (green), which was absent in KCa3.1 KO. Immune cells were
generally more abundant in the tumor-surrounding stroma of WT mice, but mostly absent in KCa3.1
KO tumor samples. DAPI labelling was performed to visualize nuclei. Results are presented as means
± SEM for n = 4 stroma sections and n = 5 tumor sections of MMTV-PyMT WT (black squares) or
KCa3.1 KO (red squares) genotypes. Unpaired t-tests differentiated between groups with ** p < 0.01
and *** p < 0.001.

3.4. Anti-Cancer Therapy with KCa3.1 Modulators

As shown with numerous examples in the previous sections, KCa3.1 inhibition is a powerful
approach to interact with malignant cell cycle progression and thus tumor growth, cell migration,
and other tumor-promoting features. The pharmacology of the different KCa3.1 inhibitors including
the new benzothiazone NS6180 [156] or the most commonly used inhibitors—clotrimazole, TRAM-34,
and senicapoc—which are described in more detail in the following sections, is well-known.

Clotrimazole (1-[(2-Chlorphenyl)diphenylmethyl]-1H-imidazol) is a small molecule, which was
primarily designed as an anti-mycotic drug. However, further investigations indicated an inhibition of
various cytochrome P450 enzymes, in particular CYP3A4 [157], and blockade of the KCa3.1 channel
with an IC50 of 70 nM [156,158]. As already mentioned in the previous sections, clotrimazole reduces
cell proliferation in a dose-dependent manner in e.g., human melanoma and glioblastoma cell
lines [159,160]. Although clotrimazole has inhibitory effects on cancer cells, other inhibitors not
interfering with the cytochrome P450 system and more selective for KCa3.1 should be preferred in
experimental and pre-/clinical research [59,161].

One of these agents with improved properties is TRAM-34 (1-[(2-chlorophenyl)
diphenylmethyl]-1H-pyrazole) [84], which is a modified triarylmethane pyrazole analogue of
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the clotrimazole molecule [59,80,134]. TRAM-34 is currently not in clinical use, but indicates a
solid KCa3.1 affinity in animals like rats and mice (IC50 20-25 nM) [80,156,162]. Depending on its
concentration, TRAM-34 can almost completely inhibit tumor proliferation of pancreatic ductal
adenocarcinoma cells and many other tumor cell types as outlined in the previous chapters of this
review [35,163,164]. Senicapoc or ICA-17043 (2,2-bis(4-fluorophenyl)-2-phenylacetamide) is similar
to TRAM-34 in its chemical structure, but has a higher affinity for KCa3.1 (IC50 11 nM) [165,166].
An advantage is the oral bioavailability of senicapoc, whose half-life of 12.8 days is also much higher
than that of TRAM-34 (2 h) [165,167,168]. So far, senicapoc has been mostly investigated as a possible
drug in sickle cell anemia treatment, i.e., phase I and II clinical studies on safety and efficacy have been
completed [169]. Senicapoc went into randomized phase III clinical trials where it showed beneficial
effects by decreasing certain disease markers, e.g., lactate dehydrogenase and bilirubin. Despite these
promising effects, the study was terminated ahead of schedule due to a lack of efficacy in the patient
cohort [169,170]. Besides, senicapoc has been proven as effective KCa3.1 inhibitor in experimental
cancer research. After a six-day therapy in vivo, intrahepatic cholangiocarcinoma tumor volume and
weight of the mice were significantly reduced [164]. Together with its safety profile, further research
with senicapoc in cancer is indicated.

Besides KCa3.1 inhibition, its activation especially with regard to immune cell functions in general
and in the immune cell’s control of malignant diseases also needs further exploration. The classic KCa3.1
channel opener is 1-EBIO (1-ethyl-2-benzimidazolinone) (EC50 30 µM), which was first described in
1996 [171,172]. It shows a proper effect on some Ca2+-activated K+ channels and could for example
rescue ionomycin-induced cell death in head and neck squamous cell carcinoma cells shown by Yin et
al. [173]. More potent analogues are DC-EBIO (5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one)
(EC50 1 µM) [174], NS-309 (3-Oxime-6,7-dichloro-1H-indole-2,3-dione) (EC50 20 nM) [172] and SKA-31
(naphtho[1,2-d]thiazol-2-ylamine) (EC50 250 nM) [175]. Except for SKA-31, all these compounds are not
completely KCa3.1-selective [176] and need a minimum of Ca2+ to be effective [171,175,177]. Interestingly,
clotrimazole and TRAM-34 could abolish 1-EBIO-induced cell proliferation in hepatocellular and in
prostate cancer cells [58,178].

4. Conclusions

It has only recently been recognized that KCa3.1 contributes to the malignant cell behaviors seen
in cancer. Based on the available data, “oncochannels” such as KCa3.1 as well as dysregulated signaling
pathways that depend on these channels may be promising candidates in the therapy of various
solid tumors including, among others, glioblastoma, endometrial, prostate, breast, hepatocellular,
and cervical carcinoma. Such considerations seem justified, as an effective inhibition of KCa3.1 by
genetic and pharmacological means markedly reduces the proliferation of tumor cells and it may also
alter the susceptibility of the tumor towards established cancer therapies. In this respect, senicapoc,
which proved safe in clinical trials on sickle cell anemia, represents a repurposable candidate drug
for future investigations into the anti-tumor action of KCa3.1 inhibition. So far, targeting of KCa3.1
by senicapoc is suggested in combination with existing chemoradiotherapy regimes to tackle the
therapy-resistant cancer (stem) cells [102,109,113,179].

Besides adverse effects of KCa3.1 action stemming from the tumor cell itself, KCa3.1 might also
be important for the supply of the tumor with pro-tumorigenic factors from cells interacting with the
tumor. To adequately and accurately meet the specific challenges of cancer, it will be necessary to
better characterize the tumor environment with respect to KCa3.1 channel functions in stromal cell
types, tumor microvasculature, and in the immune system. A dysregulation of KCa3.1 in the latter may
impair both detection and destruction of aberrant cells, which is in support of the establishment of
a tumor in its niche rather than its elimination. Paradoxically, tumor cells that acquire the ability to
escape immune recognition further progress by responding to pro-inflammatory factors secreted from
invading immune cells. Therefore, it is also tempting to speculate that KCa3.1 inhibition might delay
the progression of such immune-evaded tumors (Figure 3).
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Figure 3. Role of the KCa3.1 channel in tumor-associated cells. Tumors from different entities and
various microenvironmental cell types, i.e., immune cells, vasculature, fibroblasts (not shown) express
functional KCa3.1 channels. Physiological roles and tumor behaviors of KCa3.1 are cell type-dependent,
but involve proliferation, migration and cancer progression. KCa3.1 channel expression seems to be
a crucial determinant of cancer risk and, in established cancers, KCa3.1 upregulation at the end of
G1 phase of the cell cycle was seen in various tumor cell types [36]. By its interaction with [Ca2+]i

via its constitutively bound calmodulin (CaM), with other ion channels such as TRP or STIM/Orai,
with changes in the membrane potential (Vm), and with apoptotic pathways, KCa3.1 may further
contribute to aberrant tumor cell signaling. Beyond that, tumor-promoting KCa3.1 activity in stromal
cells has been described. Several studies find evidence for KCa3.1 expression in endothelial and in
activated smooth muscle cells of the vasculature pointing to its role in tumor angiogenesis and/or
vasculogenesis. Moreover, growth factor signaling was linked to KCa3.1 in fibroblasts to promote
epithelial-mesenchymal transition in breast cancer (not depicted) [84]. Proper activation and function
of various immune cell subsets requires KCa3.1. Therefore, perturbed KCa3.1 signaling may prevent
cancer progression and disturb e.g., the immune cell´s pro-angiogenic program, but also its activity to
recognize and eliminate tumor cells. Apparently, the impact of a tumor and stromal versus immune
cell KCa3.1 inhibition on tumor progression and therapy success and thus also interaction between the
different cell types, as indicated by dotted lanes, requires further investigations.

Finally, we should make every effort to intensify the genomic/epigenomic and transcriptomic
profiling of putative “oncochannels” within population- and patient-based screenings because this
will allow estimations if and how these channels affect cancer development and progression, as well
as sensitivity to drug treatment. To this end, such comprehensive data sets should provide important
information for the prediction of patient outcome in order to facilitate personalized drug treatments.
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