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Summary
BackgroundMaintaining a healthy lifestyle to reduce type 2 diabetes (T2D) risk is challenging and additional strate-
gies for T2D prevention are needed. We evaluated several lipid control medications as potential therapeutic options
for T2D prevention using tissue-specific predicted gene expression summary statistics in a two-sample Mendelian
randomisation (MR) design.

Methods Large-scale European genome-wide summary statistics for lipids and T2D were leveraged in our multi-
stage analysis to estimate changes in either lipid levels or T2D risk driven by tissue-specific predicted gene expres-
sion. We incorporated tissue-specific predicted gene expression summary statistics to proxy therapeutic effects of
three lipid control medications [i.e., statins, icosapent ethyl (IPE), and proprotein convertase subtilisin/kexin type-9
inhibitors (PCSK-9i)] on T2D susceptibility using two-sample Mendelian randomisation (MR).

Findings IPE, as proxied via increased FADS1 expression, was predicted to lower triglycerides and was associated
with a 53% reduced risk of T2D. Statins and PCSK-9i, as proxied by reduced HMGCR and PCSK9 expression,
respectively, were predicted to lower LDL-C levels but were not associated with T2D susceptibility.

Interpretation Triglyceride lowering via IPE may reduce the risk of developing T2D in populations of European
ancestry. However, experimental validation using animal models is needed to substantiate our results and to moti-
vate randomized control trials (RCTs) for IPE as putative treatment for T2D prevention.
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Research in context

Evidence before this study

Previous studies have employed the Mendelian ran-
domisation (MR) method to evaluate the putative causal
association between an exposure and outcome. Many
studies have also incorporated expression quantitative
trait loci (eQTL) data in the genetic instruments used in
the MR analysis. However, studies combining the MR
approach with gene expression data to proxy current
medications are limited. One study examined angioten-
sin-converting enzyme (ACE) expression in lung tissue
as a proxy for anti-hypertensive medication via ACE-
inhibitors on risk of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection.

Added value of this study

Our study estimated tissue-specific gene expression sum-
mary statistics using S-PrediXcan which leveraged exist-
ing lipid genome-wide association studies (GWAS) and
eQTL information from the Genotype-Tissue Expression
(GTEx) project. To identify potential repurposing opportu-
nities for type 2 diabetes (T2D) prevention via these lipid
control medications, we utilized these gene expression
summary statistics as instruments in a MR analysis. The
estimated gene expression summary statistics were used
to proxy three lipid control therapies: LDL-C lowering via
statins and proprotein convertase subtilisin/kexin type-9
inhibitors (PCSK-9i), and triglyceride lowering via icosa-
pent ethyl (IPE).

Implication of all the available evidence

Using our in silico approach, we observed a potential
opportunity for T2D primary prevention with triglycer-
ide lowering IPE. Along with experimental validation,
we hope our approach may serve as an initial step for
identifying potential repurposing opportunities for
existing therapies.
Background
The burden of type 2 diabetes (T2D) is high with nearly
1.5 million new cases diagnosed in the United States
(US) in 2018.1 Cardiovascular disease (CVD)
complications, such as heart disease, stroke, and high
blood pressure, may worsen after a T2D diagnosis.1 Cur-
rent T2D management strategies are centered upon gly-
cemic control. However, many individuals either do not
achieve adequate blood glucose control, do not benefit
from glucose reduction, or experience undesirable side
effects from glucose-lowering medications.2 The com-
plexity of T2D treatment and high prevalence of comor-
bidities emphasizes the importance of prevention.
Lifestyle changes including improved diet and increased
physical activity have been shown to reduce T2D risk.3

However, maintaining a healthy lifestyle is challenging,
necessitating additional T2D prevention strategies.

Statins are commonly prescribed to lower low-density
lipoprotein cholesterol (LDL-C) to reduce CVD risk. How-
ever, individuals on statins may have residual CVD risk or,
in some populations, have increased risk for T2D.4 Hyper-
triglyceridemia is a possible culprit for the increased risks
observed among statin users.5 Thus, triglyceride lowering
strategies using long-chain omega-3 polyunsaturated fatty
acid eicosapentaenoic acid (EPA) have been evaluated for
CVD prevention.6 In a randomized control trial (RCT)
conducted among a high-risk population, compared with
patients prescribed a mineral oil placebo, patients pre-
scribed icosapent ethyl (IPE), a purified version of EPA,
had lower triglycerides and reduced CVD risk.7 Moreover,
EPA metabolites have been shown to prevent hyperglyce-
mia and hyperinsulinemia in humans,8 and in mice IPE
is protective against high-fat diet-induced glucose intoler-
ance, insulin resistance, and b-cell dysfunction.9 We there-
fore hypothesized that IPE could perhaps be used for T2D
prevention. While researchers have rightfully focused on
identifying agents for CVD prevention, discovering new
putative therapies for T2D prevention could help lower
T2D burden and ensuing complications, including CVD.

Mendelian randomisation (MR) utilizes single nucle-
otide polymorphisms (SNPs) as instrumental variables,
or proxies, for exposures of interest. This approach
allows for potential causal inference if the instrumental
variable satisfies a set of strict MR assumptions.10 In
our analysis, we expand upon the traditional two-sample
MR approach by incorporating genetically predicted tis-
sue-specific gene expression as the instrumental vari-
able (Figure 1). Gene expression summary statistics for
specific genes coding proteins targeted by lipid medica-
tions were used as instrumental variables in our MR
www.thelancet.com Vol 80 Month June, 2022
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Figure 1. Directed acyclic graphs representing Mendelian randomisation (MR) approach undertaken in this analysis to evaluate the
potential effect of lipid therapies on type 2 diabetes (T2D). Panel a represents the total effect of drug on T2D risk via changes in the
primary indication or trait (i.e., lipids) via genetically predicted gene expression (GPGE). Panel b represents the effect of drug on
T2D risk adjusted (indicated using a box) for the potential pleiotropic influence of other traits on T2D risk using multivariable MR
(MVMR). Panel c represents the effect of drug on T2D risk via changes in glucose/insulin traits adjusted for the drug’s primary thera-
peutic effect. Panel d represents the effect of statins on T2D risk via lowering LDL-C. Panel e represents the effect of PCSK-9 inhibi-
tors (PCSK-9i) on T2D risk via lowering LDL-C. Panel f represents the effect of icosapent ethyl (IPE) on T2D risk via lowering
triglycerides.
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Lipid
control
medication

Gene expression to
proxy medication
effect

Lipid trait (primary
indication listed
first)

GTEx tissues (eQTLs
used in S-PrediXcan)a

Random-effects meta-analysis of
GPGE changes in lipid trait across tissuesb

mg/dL change Std Err P

Statins Decreased

HMGCR

expression

LDL-C 5 (126) -0¢14 0¢07 0¢10

Total cholesterol 4 (116) -0¢15 0¢08 0¢15
PCSK-9i Decreased

PCSK9

expression

LDL-C 6 (54) -0¢31 0¢17 0¢13

HDL-C 2 (4) 0¢10 0¢05 0¢31
Triglycerides 2 (13) -0¢10 0¢09 0¢47
Total cholesterol 7 (56) -0¢28 0¢12 0¢06

IPE Increased

FADS1

expression

Triglycerides 23 (307) -0¢11 0¢01 9¢8 £ 10�10

LDL-C 23 (306) 0¢12 0¢01 6¢4 £ 10�10

HDL-C 23 (309) 0¢09 0¢01 9¢5 £ 10�10

Total cholesterol 23 (307) 0¢12 0¢01 4¢2 £ 10�10

Table 1: Random-effects summary of genetically predicted gene expression (GPGE) on changes in lipid traits representing the therapeutic
action of statins and icosapent ethyl (IPE) on lowering LDL-C and triglycerides, respectively.

a Number of statistically significant tissues (P < 0.05) from each lipid-specific GPGE model, and the number of eQTLs used to estimate GPGE in S-PrediX-

can. No statistically significant tissues were observed forHMGCR GPGE for HDL-C and triglycerides.
b Random-effects meta-analysis quantitatively summarizing the statistically significant tissue-specific GPGE per lipid trait. Summarized GPGE represent

predicted changes in lipid levels (mg/dL) per standard deviation decrease in HMGCR and PCSK9 gene expression. Summarized GPGE represent predicted

changes in lipid levels (mg/dL) per standard deviation increase in FADS1 gene expression.
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analysis. The following lipid control medications were
considered: statins, IPE, proprotein convertase subtili-
sin/kexin type-9 inhibitors (PCSK-9i), Neimann-Pick
C1-like 1 inhibitors (NPC1L1i), and fibrates.

We sought to identify drug repurposing opportunities
for T2D prevention by combining causal inference MR
methodology with tissue-specific predicted gene expression
to proxy therapeutic effects in a multi-stage in silico design.
We examined the following: (1) the total effect of proxied
medication on T2D risk using two-sample MR; (2) the
effect of proxied medication on T2D risk accounting for the
potential pleiotropic effects of other lipids on T2D risk
using multivariable MR (MVMR); and (3) the effect of
proxied medication on T2D risk via predicted changes in
canonical T2Dmarkers.
Methods

Summary statistics
We utilized summary statistics from independent
GWAS for lipids and T2D. For lipids, summary statis-
tics from the Global Lipids Genetics Consortium
(GLGC) were used for LDL-C, high density lipoprotein
cholesterol (HDL-C), triglycerides, and total choles-
terol.11 For T2D, summary statistics from the European
component of the largest trans-ethnic T2D genome-
wide association study (GWAS) were leveraged and
details of which are published elsewhere.12 The T2D
GWAS included non-overlapping European participants
from DIAMANTE, Million Veteran Program (MVP),
Penn Medicine Biobank, Malmo Diet and Cancer Study,
MedStar, and PennCath. Overall, 148,726 T2D cases
and 965,732 controls were included in the European
T2D GWAS utilized in our study. DIAMANTE and
MVP contributed over 98% of participants included in
the T2D GWAS, among whom 59% were male, with
mean age of 55¢7 years (SD=11¢8), mean BMI of 27¢2
kg/m2 (SD=3¢9), 37% were hypertensive, and 30% had
dyslipidemia. Summary statistics from a Finnish popu-
lation (FinnGen) including 29,166 T2D cases and
183,185 controls were used for replication.
Genetically predicted gene expression (GPGE)
Using S-PrediXcan, GPGE effects on changes in lipid
traits and T2D risk were estimated using summary statis-
tics from the GLGC andMVP T2D GWAS. Details regard-
ing S-PrediXcan are published elsewhere.13 Briefly, using
an elastic net framework, independent effects of expres-
sion quantitative trait loci (eQTL) were used to predict
changes in a particular trait driven by gene expression in
48 different tissues. S-PrediXcan combines weights from
gene expression prediction models from the Gene-Tissue
Expression Project (GTEx v7), covariances from a refer-
ence set (i.e., 1000 Genomes), and SNP-specific effect esti-
mates and standard errors from GWAS summary
statistics. This information is used to predict tissue-
www.thelancet.com Vol 80 Month June, 2022



Figure 2. Genetically predicted gene expression (GPGE) driven changes in circulating lipids for decreased HMGCR, decreased PCSK9,
and increased FADS1 expression in 48 GTEx tissues. Depicted above are tissues with GPGE resulting in either increased lipid levels
(green rectangles), decreased lipid levels (red rectangles), or no effect (grey rectangles). Statistically significant (P < 0¢05) GPGE
effects are bolded with a black border. Detailed GPGE summary statistics are provided in Supplementary Tables 1-3.
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specific changes in a particular trait per standard deviation
(SD) increase in gene expression. Using random-effects
meta-analysis, GPGE effects were summarized across tis-
sues for proxied statin, PCSK-9i, and IPE medications
(Table 1). Tissue-specific GPGE forHMGCR, PCSK9, and
FADS1 gene expression with changes in lipid traits are dis-
played for all GTEx tissues (excluding placental tissue) in
Figure 2. Detailed GPGE summary statistics for proxied
lipid control medications, European T2D GWAS, and
FinnGen used in this analysis are provided in Supplemen-
tary Tables 1�3. These GPGE summary statistics were
used as instrumental variables in our MR analysis.
Selection of proxy genes
Genes coding proteins known to be either directly tar-
geted by lipid medications or involved in lipid metabo-
lism were selected as proxies for the lipid control
therapies examined in our analysis. Statins lower LDL-C
by inhibiting the rate-limiting 3-Hydroxy-3-Methylglu-
taryl-CoA reductase (HMGCR).14 The LDL-C lowering
effect of reduced HMGCR expression was also observed
in our S-PrediXcan result (GPGE= �0¢14 mg/dL, P=
0¢10; Table 1). Thus, reduced HMGCR expression was
chosen to proxy the LDL-C lowering effects of statins.
We also proxied LDL-C lowering via PCSK-9i. These
LDL-C lowering medications are known to influence
downstream levels of these proteins, and reduced
PCSK9 gene expression was selected to proxy PCSK9i.15

We also observed that one SD decrease in PCSK9
expression was predicted to decrease LDL-C levels
(GPGE= �0¢31 mg/dL, P= 0¢13; Table 1).

The effect of FADS1 on increasing EPA levels has
been demonstrated in FADS1-knockdown mice,16 and
triglyceride lowering has been observed in subjects sup-
plemented with purified EPA.17 To identify the best pos-
sible gene to proxy IPE, we estimated GPGE effects for
circulating EPA for five genes (i.e., FADS1, FADS2,
ELOVL2, PTGS1, and PTGS2) involved in polyunsatu-
rated fatty acid metabolism. Compared to other genes
involved in the pathway, we observed that increased
FADS1 expression resulted in the largest increase in cir-
culating EPA (0¢20 percent EPA increase; P=
5¢2 £ 10�09; Supplementary Table 4. Also, increased
FADS1 expression was predicted to lower triglycerides
by 0¢11 mg/dL (P= 9¢8 £ 10�10; Table 1), which further
supported our decision to proxy the triglyceride-lower-
ing IPE via increased FADS1 expression.

Triglyceride lowering achieved by fibrates [peroxi-
some proliferator-activated receptor a (PPARa) ago-
nists] and LDL-C lowering via NPC1L1i were also
considered. However, MR analyses were not conducted
for fibrates and NPC1L1i due to the limited number of
tissue-specific GPGE summary statistics estimated
using S-PrediXcan.
Mendelian randomisation (MR)
Tissue-specific GPGE effects for HMGCR and FADS1
gene expression that met our threshold for statistical
significance (P < 0¢05) were utilized as the MR instru-
ment. To perform MR, S-PrediXcan-derived tissue-spe-
cific GPGE summary statistics were estimated for T2D
in the European T2D GWAS and FinnGen. S-PrediXcan
summary statistics were harmonized to proxy the phar-
macologic action of each lipid control medication.
Reduced HMGCR and PCSK9 expression were used to
proxy statins and PCSK-9i, respectively. Whereas
increased FADS1 expression was used to proxy IPE. The
T2D GPGE used were harmonized according to the
medication proxied (i.e., for statins and PCSK-9i, all
T2D GPGE represented predicted T2D risk per SD
decrease in either HMGCR or PCSK9 gene expression;
for IPE, all T2D GPGE represented predicted T2D risk
per SD increase in FADS1 gene expression). A fixed-
effects inverse-variance weighted (IVW) MR analysis
was performed using ‘TwoSampleMR’18 in R to esti-
mate the total effect of lipid lowering medications on
T2D risk (proxied by HMGCR, PCSK9, and FADS1
driven lipid changes; Figure 1d�f). Briefly, for each
gene and t number of GTEx tissues, GPGE summary
statistics for lipids and T2D were combined to calculate
the IVWMR association as follows:

b̂MR�IVW ¼
Pt

i ¼ 1 blipidbT2DsbT2D
�2Pt

i ¼ 1 blipid
2sbT2D

�2
; se b̂MR�IVW

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Pt
i ¼ 1 blipid

2sbT2D
�2

s
;

where blipid represents GPGE per lipid trait; and bT2D

and sbT2D represent T2D GPGE and standard error,
respectively. Corresponding odds ratios (ORs) and 95%
confidence intervals (95% CI) were calculated using
b̂MR�IVW and seðb̂MR�IVWÞ.

We conducted several analyses to test the robustness
of our MR results including assessing instrument
strength and validity, examining bias due to population
stratification, and the potential mediatory effects of
FADS1 expression on T2D susceptibility via changes in
circulating EPA. Details regarding these sensitivity analy-
ses are provided in the Supplementary Materials. Of
note, MR Egger was conducted to evaluate bias due to
directional pleiotropy at the tissue level,19 with statisti-
cally significant regression intercepts (P < 0¢05) as an
indication of directional pleiotropy (suggesting the pres-
ence of unknown indirect pathways towards T2D). Fur-
thermore, given lipids are highly correlated with one
another, a multivariable MR (MVMR) was conducted to
estimate the adjusted MR effects for lipids.20,21 Physical
activity has also been shown to affect lipid levels,22 thus
we additionally adjusted for total physical activity using
S-PrediXcan derived tissue-specific GPGE representing
changes in total physical activity using GWAS summary
www.thelancet.com Vol 80 Month June, 2022
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statistics.23 For IPE only (since the MVMR estimate for
statins and PCSK-9i with T2D susceptibility were impre-
cise), we estimated the effect of increased FADS1 expres-
sion on T2D susceptibility potentially driven by changes
in glucose and/or insulin traits (Figure 1c; Table 3).
MVMR estimates for the effect of glucose and/or insulin
traits on T2D susceptibility were adjusted for FADS1 pre-
dicted changes in triglycerides (the primary indication
for IPE) and for FADS1 predicted changes in LDL-C
(which was the only other FADS1 predicted lipid associ-
ated with T2D susceptibility in the MVMR analysis;
MVMR OR=0¢40, 95% CI=0¢32, 0¢48, P=5¢7£ 10�09).
Role of the funding source
The funding sources listed at the end of the manuscript
did not have a role in the study design, analysis, inter-
pretation, or writing of the manuscript. The decision to
submit the manuscript for publication was made solely
by the authors listed.
Ethics
Our analysis utilized only summary statistics and ethi-
cal approval was not required for this study.
Findings

Genetically predicted gene expression (GPGE)
S-PrediXcan identified seven GTEx tissues for which
reduced HMGCR expression (to proxy statins) resulted in
LDL-C changes, six tissues for reduced PCSK9 expression
(to proxy PCSK-9i) resulted in LDL-C changes, and 23 tis-
sues were identified for triglyceride changes resulting
from increased FADS1 expression (to proxy IPE; Figure 2).
One SD reduction in HMGCR expression was predicted
to lower LDL-C by nearly 0¢14 mg/dL (summarized using
random-effects meta-analysis over five tissues) and lower
total cholesterol by approximately 0¢15 mg/dL (summa-
rized over four tissues). One SD decrease in PCSK9
expression was predicted to lower LDL-C by 0¢31 mg/dL
(summarized over six tissues) and decrease total choles-
terol by 0¢28 mg/dL. One SD decrease in PCSK9 expres-
sion in two tissues were predicted to affect changes in
HDL-C (0¢10 mg/dL increase) and triglycerides
(0¢10 mg/dL decrease). One SD increase in FADS1 expres-
sion (summarized over 23 tissues) was predicted to
increase LDL-C by approximately 0¢12 mg/dL, increase
HDL-C by 0¢09 mg/dL, and increase total cholesterol by
0¢12 mg/dL. For triglycerides, one SD increase in FADS1
expression was predicted to lower levels by 0¢11 mg/dL
(Table 1).
Mendelian randomisation (MR)
The MR analyses estimating the total effect of proxied
medications on T2D risk are presented in Table 2. In
www.thelancet.com Vol 80 Month June, 2022
the European T2D GWAS, statins were associated with
63% increased T2D risk via HMGCR-predicted LDL-C
lowering (IVW MR= 1¢63, 95% CI= 1¢44, 1¢85; P=
7¢2 £ 10�15). After accounting for other lipids in the
MVMR analysis, the increased T2D risk associated with
HMGCR-predicted LDL-C lowering was attenuated and
less precise (MVMR= 1¢36, 95% CI= 0¢82, 2¢26;
P = 0¢36; physical activity adjusted MVMR= 0¢85, 95%
CI= 0¢43, 1¢68, P=0¢72). For PCSK-9i, LDL-C lowering
per SD decrease in PCSK9 expression indicated a mod-
est T2D risk reduction (IVW MR= 0¢92, 95% CI= 0¢85,
0¢99; P=0.04). However, after adjustment for other lip-
ids and physical activity, no association between proxied
PCSK-9i medication and T2D was observed. IPE
proxied via FADS1-predicted triglyceride lowering was
associated with an increase in T2D risk (IVWMR= 1¢44,
95% CI= 1¢29, 1¢61; P = 1¢9 £ 10�10). However, after
accounting for putative pleiotropic effects of FADS1 on
HDL-C and LDL-C in the MVMR, FADS1-predicted tri-
glyceride lowering was associated with an approximately
54% reduced T2D risk (MVMR = 0¢46, 95% CI= 0¢24,
0¢87; P = 2¢7 £ 10�02), which was also consistent in the
physical activity adjusted MVMR analysis
(MVMR=0¢47, 95% CI=0¢25, 0¢89; P=3¢1 £ 10�02).
Although tissue-specific pleiotropic effects of varying
magnitudes on T2D may still exist, there was no evi-
dence of directional pleiotropy assessed via MR Egger
regression (all Egger intercepts P > 0¢05). Furthermore,
MR results were robust across different MR sensitivity
analyses (Supplementary Table 5). Replication in Finn-
Gen resulted in similar magnitude of effects, however,
the confidence intervals were less precise.

In Table 3, MVMR results are presented for FADS1-
predicted changes in canonical T2D markers (i.e., fast-
ing glucose, fasting insulin, HOMA-B, and HOMA-IR;
Figure 1c). Proxied IPE resulted in increases in fasting
glucose (mmol/L), decreases in fasting insulin (log-
transformed mmol/L) and HOMA-B, and had no effect
on HOMA-IR (summarized using random-effects meta-
analysis across 23 different GTEx tissues; Supplemen-
tary Table 6). After adjustment for FADS1-predicted
changes in LDL-C and triglycerides, proxied IPE
resulted in reduced T2D risk in both the European and
FinnGen T2D GWAS. However, these MVMR esti-
mates were imprecise and were not statistically signifi-
cant.

We also examined the effect of FADS1-predicted
increases in circulating EPA on T2D risk (Supple-
mentary Table 7). FADS1-predicted increase in circu-
lating EPA was associated with a 23% T2D risk
reduction (IVW MR= 0¢77, 95% CI= 0¢74, 0¢81; P=
4¢3 £ 10�28), which was consistently observed in sev-
eral MR sensitivity analyses. Finally, our MR analysis
using natural hair colour as the negative control out-
come indicated that our results are unlikely to be a
consequence of population stratification bias (Supple-
mentary Table 8).
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Lipid control
medication

Gene expression to
proxy medic
ation effect a

Inverse-variance weighted
(IVW) MR b

Multivariable MR (MVMR) d MVMR adjusted for physical
activity e

OR 95% CI P Egger P c OR 95% CI P OR 95% CI P

European T2D GWAS f

Statins Decreased HMGCR expression 1¢63 1¢44, 1¢85 7¢2£ 10�15 0¢64 1¢36 0¢82, 2¢26 0¢36 0¢85 0¢43, 1¢68 0¢72
PCSK-9i Decreased PCSK9 expression 0¢92 0¢85, 0¢99 0¢04 0¢35 0¢82 0¢60, 1¢12 0¢30 1¢26 0¢59, 2¢69 0¢61
IPE Increased FADS1 expression 1¢44 1¢29, 1¢61 1¢9£ 10�10 0¢54 0¢46 0¢24, 0¢87 2¢7 £ 10�02 0¢47 0¢25, 0¢89 3¢1 £ 10�02

FinnGen T2D GWAS g

Statins Decreased HMGCR expression 1¢44 1¢16, 1¢80 1¢0£ 10�03 0¢68 2¢86 0¢97, 7¢60 0¢18 2¢97 0¢73, 12¢06 0¢37
PCSK-9i Decreased PCSK9 expression 0¢87 0¢73, 1¢04 0¢12 0¢52 0¢78 0.37, 1¢61 0¢55 2¢41 0¢55, 10¢51 0¢36
IPE Increased FADS1 expression 2¢27 2¢04, 2¢53 1¢5£ 10�50 0¢35 0¢44 0¢11, 1¢71 0¢25 0¢44 0¢11, 1¢72 0¢25

Table 2: Mendelian randomisation (MR) estimates for the association between one standard deviation change in genetically predicted gene expression (GPGE) for proxied lipid control medications
and type 2 diabetes (T2D).

a DecreasedHMGCR and PCSK9 expression was predicted to lower LDL-C, and increased FADS1 expression was predicted to lower triglycerides (Table 1).
b Inverse-variance weighted (IVW) Mendelian randomisation (MR) analysis for T2D estimating odds ratios (ORs) and 95% confidence intervals (CIs) per GPGE changes in lipid trait as proxied by standard deviation changes in

gene expression.
c Statistically significant Egger intercepts (P < 0.05) indicate potential for directional pleiotropy of the GPGE instruments used, suggesting potential alternative pathways from predicted gene expression to T2D.
d Multivariable MR (MVMR) analysis for T2D estimating adjusted odds ratios (ORs) and 95% confidence intervals (CIs) per GPGE changes in LDL-C or triglycerides (as proxied by reducedHMGCR and increased FADS1 expres-

sion, respectively). GPGE predicted changes in lipids are mutually adjusted for one another (e.g., LDL-C adjusted for HDL-C and triglycerides, triglycerides adjusted for LDL-C and HDL-C).
e Multivariable MR (MVMR) analysis additionally adjusted for total physical activity GPGE.
f Includes 148,726 T2D cases and 965,732 controls of European ancestry including non-overlapping participants from DIAMANTE, Million Veteran Program (MVP), Penn Medicine Biobank, Malmo Diet and Cancer Study,

MedStar, and PennCath.
g Includes 29,166 T2D cases and 183,185 controls from a Finland T2D GWAS.
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Gene expression to proxy IPE medication GPGE changes on glucose/insulin traits a Multivariable MR (MVMR)b

T2D OR 95% CI P

European T2D GWAS

Increased FADS1 expression Increased fasting glucose 0¢66 0¢34, 1¢30 0¢25
Decreased fasting insulin 0¢73 0¢26, 2¢04 0¢56
Decreased HOMA-B 0¢65 0¢20, 2¢09 0¢47
No change in HOMA-IR 0¢53 0¢18, 1¢61 0¢28

FinnGen T2D GWAS

Increased FADS1 expression Increased fasting glucose 0¢57 0¢13, 2¢49 0¢46
Decreased fasting insulin 0¢74 0¢06, 8¢54 0¢81
Decreased HOMA-B 0¢25 0¢02, 2¢97 0¢29
No change in HOMA-IR 0¢16 0¢02, 1¢63 0¢14

Table 3: Type 2 diabetes (T2D) risk per standard deviation increase in genetically predicted FADS1 expression (a proxy for the therapeutic
effect of icosapent ethyl, IPE) on changes in glucose and insulin traits estimated via multivariable Mendelian randomisation (MVMR).

a Summarized from GPGE effects presented in Supplementary Table 6.
b Multivariable MR (MVMR) odds ratios (ORs) and 95% confidence intervals (95% CIs) estimate the potentially causal effect of one standard deviation

increase in FADS1 gene expression (proxy for IPE) on changes in glucose and insulin traits on T2D risk, while adjusting for the effects of FADS1 gene expres-

sion on changes in triglycerides and LDL-C.

Articles
Discussion
We examined the potential for repurposing lipid control
medications for primary T2D prevention by combining
publicly available GWAS and eQTL data to estimate
genetically predicted gene expression which were then
incorporated as instruments in an MR analysis examin-
ing T2D susceptibility. Triglyceride lowering via IPE
was proxied by increased FADS1 expression and was
associated with a 53% reduced T2D risk in the MVMR
analysis, which was adjusted for the putative pleiotropic
effects of FADS1 gene expression on LDL-C, HDL-C,
and physical activity on T2D risk. Similar risk reduc-
tions were observed for IPE in both the European and
FinnGen T2D GWAS populations. In the IVWMR anal-
ysis, statins proxied via reduced HMGCR expression,
was suggested to increase T2D risk; whereas PCSK-9i,
proxied via reduced PCSK9 expression, were suggested
to reduce T2D risk. However, the MVMR results for sta-
tins and PCSK-9i were imprecise and inconsistent
across adjustment sets. Furthermore, our analysis sug-
gested that the T2D risk reductions observed for proxied
IPE were not explained by FADS1-predicted changes in
canonical T2D markers.

Statins reduce LDL-C levels to an extent which
depends upon the statin type and dosage,24 and this
LDL-C lowering effect has been shown to reduce CVD
risk by approximately 30%.25 However, in a meta-analy-
sis of 17 RCTs, statin therapy was reported to increase
risk of new-onset diabetes.26 The biologic mechanism
by which statins may increase T2D risk may be related
to reduced insulin sensitivity.27 Our lipid-adjusted
MVMR results indicating an increased T2D risk
observed for statins proxied via reduced HMGCR
expression corroborate the evidence from existing
RCTs. However, after additional adjustment for physical
www.thelancet.com Vol 80 Month June, 2022
activity in the MVMR, statins were no longer associated
with increased T2D risk. Similarly, in a meta-analysis
for various PCSK9 monoclonal antibodies no associa-
tion was observed with T2D risk.28

Among patients using statins in the Reduction of
Cardiovascular Events with Icosapent Ethyl � Interven-
tion Trial (REDUCE-IT), IPE lowered triglycerides and
reduced the hazard of first cardiovascular event by 30%
compared to placebo.29 One possible benefit of IPE as
observed in our analysis was the striking 53% T2D risk
reduction. In REDUCE-IT, among patients without
T2D at baseline, no effect was observed for IPE com-
pared to placebo for new onset T2D (HR= 1¢04; 95%
CI= 0¢73, 1¢47). However, estimating the effect of IPE
on primary prevention of T2D in REDUCE-IT would
have been difficult given 60% of the participants had
diabetes at baseline and T2D was evaluated as a tertiary
endpoint. The Japan EPA Lipid Intervention Study
(JELIS) RCT also observed benefits of EPA ethyl ester
compared to placebo for prevention of coronary events
(HR= 0¢81; 95% CI= 0¢69, 0¢95).30 However, when
examining increased blood sugar as an adverse event,
no association for the EPA ethyl ester intervention
group compared to placebo was observed (risk differ-
ence= 0¢12%; 95% CI=�0¢05% to 0¢29%). It is possible
that the reduced T2D risk associated with IPE is only
observed in the context of a high-fat diet, such as was
observed in mice.9 Despite the null associations
reported for IPE in primary T2D prevention, a substan-
tial CVD risk reduction (RR= 0¢77, 95% CI= 0¢66,
0¢88; P= 3¢0 £ 10�4) was observed among REDUCE-IT
participants with baseline T2D who were treated with
IPE compared to placebo � indicating the potential
interaction (perhaps synergistic effect) between statins
and IPE on CVD prevention.31
9
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The biologic rationale for T2D risk reductions
observed in our analysis of IPE is unknown. One puta-
tive mechanism is reduced hyperglycemia through the
EPA-derived resolvin E1 metabolite.8 However, as indi-
cated in our MVMR results, IPE may act independently
of predicted changes in glucose and/or insulin to reduce
T2D risk. One possible hypothesis relates to the preser-
vation of membrane fluidity achieved via integration of
EPA into the phospholipid bilayer.6 Increased erythro-
cyte membrane fluidity has been shown to facilitate glu-
cose transport, and improve insulin signaling and
control.32 Similarly, FADS1 protein has been shown to
increase integration of polyunsaturated fatty acids in
hepatic cell membranes in an omega-3 rich environ-
ment.16 It is plausible that IPE acts via similar biologic
mechanisms to reduce T2D risk by enhancing erythro-
cyte membrane fluidity. Our sensitivity analysis examin-
ing the independent effect of FADS1-predicted increases
in circulating EPA on reducing T2D risk may provide
additional evidence in support of this hypothesis. Exper-
imental studies in mice also point to other potential
mechanisms for the beneficial effects of IPE including
G-protein coupled receptor binding to improve insulin
sensitivity, and protecting changes to the gut micro-
biome due to a high-fat diet.9

Previous studies examined lipid-associated SNPs
with T2D risk. Two studies incorporated targeted
approaches by examining LDL-C lowering variants in
HMGCR in relation to T2D risk.33,34 Lotta et al. reported
a 40% increase in T2D risk (OR= 1¢39, 95% CI= 1¢12,
1¢73; P= 0¢003) associated with genetically predicted
decreases in LDL-C incorporating three variants in
HMGCR. Using a similar approach, Swerdlow et al.
reported a 2-6% increase in T2D risk per LDL-C lower-
ing allele for two SNPs located in HMGCR (rs17238484
and rs12916). The results are similar to ours when con-
sidering the direction of the reported T2D associations.
Others examined the association between statin
response and T2D susceptibility in a bi-directional MR
in which no effect was observed for statin response and
T2D risk35 and the effect of statin-induced methylation
on T2D susceptibility.36 A previous MR study utilizing
four LDL-C lowering PCSK9 variants were associated
with 30% increased T2D risk37, which is consistent with
the increased T2D risks suggested in our PCSK9i physi-
cal activity adjusted MVMR result. However, these prior
studies examined the association between SNPs in spe-
cific genomic regions with T2D susceptibility, rather
than examining tissue-specific gene expression which
makes direct comparison to our results difficult.

Causal inference in MR assumes: (1) the instrument
(i.e., GPGE) is associated with the trait (i.e., lipids); (2)
the instrument only affects the outcome (i.e., T2D sus-
ceptibility) via the trait; and (3) the instrument is not
associated with any confounders of the trait-outcome
association.10 We incorporated variants from a large
lipid GWAS, and the largest T2D GWAS to date
conducted among Europeans, to derive GPGE tissue-
specific summary statistics via S-PrediXcan. All GPGE
included in each lipid-specific instrument were associ-
ated with lipids as evidenced by their high prediction
performance [i.e., FADS1 tissue-specific R2 range from
2-42%; HMGCR tissue-specific R2 range from 1-20%;
PCSK9 tissue-specific R2 range from 2-36%], and all
were deemed valid instruments (I2 > 0¢9; Supplemen-
tary Table 9).

Although several sensitivity analyses were under-
taken to test the robustness of MR results and we
adjusted for total physical activity in the MVMR analy-
sis, we cannot rule out the potential for bias due to
unknown pleiotropy of SNPs included in S-PrediXcan
GPGE models and are unable to assess potential off-tar-
get effects of predicted gene expression. Compared to
the IVW MR, the magnitude of the IPE result was oppo-
site after adjustment for correlated lipids and physical
activity in the MVMR analysis. We attempted to recon-
cile these different results by conducting a sensitivity
analysis examining the effects according to different
GPGE adjustment sets (Supplementary Table 10).
While our sensitivity analysis showed that holding pre-
dicted LDL-C constant resulted in a consistent T2D risk
reduction for IPE, we still believe our results should be
interpreted with caution. The possibility for bias due to
unknown pleiotropic effects of FADS1 predicted gene
expression on potential confounders of the other lipids
and T2D remains (i.e., bias due to potential unmea-
sured confounding of the mediator and outcome). Nev-
ertheless, we believe our IPE result is interesting given
the IPE results (with LDL-C adjustment) could poten-
tially reflect the effect of an intervention in which IPE is
administered to patients currently taking statins.

Our negative control MR analysis indicated that pop-
ulation stratification bias was not a major concern in
our study. Given that our analysis utilized two different
European GWAS (i.e., European T2D GWAS with repli-
cation in the FinnGen T2D GWAS), our results are gen-
eralizable only to individuals of European ancestry. The
efficacy of IPE therapy in other populations may differ
due to potential T2D heterogeneity across populations.
Additional research should be conducted to elucidate
the putative effects of IPE on primary T2D prevention
in diverse populations. Finally, GPGE estimates were
not identified in tissues fundamental to lipid metabo-
lism (e.g., liver), which is likely due to the limited num-
ber of high integrity samples available for various
tissues in GTEx. We considered multiple lipid control
medications in our analysis. However, due to limited
availability of GPGE summary statistics, we were only
able to identify adequate proxies for three current medi-
cations (i.e., statins, PCSK-9i, and IPE). However, the
three lipid control medications analysed in this manu-
script are typically used as first-line treatment options
for dyslipidemia, are effective strategies for reducing
CVD risk, have limited side effects, and are generally
www.thelancet.com Vol 80 Month June, 2022
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lower in cost.15,38 Thus, our analysis focused on the
most promising candidates for drug repurposing given
these medications are commonly prescribed and well-
tolerated in the patient population. Furthermore, future
analyses should consider proxying drug metabolism
rates to further understand the effectiveness of repur-
posing medications and how drug metabolism might
influence any beneficial effects observed.

Overall, using gene expression to proxy current ther-
apies, we identified a potential repurposing opportunity
for T2D prevention for the hypertriglyceridemia medi-
cation, IPE. Regrettably, comparing our IPE results to
current RCTs is difficult given that existing trials have
not examined T2D as a primary endpoint. Utilizing
gene-based approaches along with causal inference
methods for known therapeutic gene targets may help
illuminate avenues for possible drug repurposing. Com-
bining our approach with experimental biologic valida-
tion, may help to motivate future RCT initiation to
examine existing FDA-approved therapies with new pri-
mary endpoints.
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