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2Biologie du Développement et Reproduction; Institut National de la Recherche, Agronomique,

78350 Jouy en Josas, France

Abstract. Vaccination is one of the most efficient ways to eradicate some infectious diseases in
humans and animals. The material traditionally used as vaccines is attenuated or inactivated
pathogens. This approach is sometimes limited by the fact that the material for vaccination
is not efficient, not available, or generating deleterious side effects. A possible theoretical
alternative is the use of recombinant proteins from the pathogens. This implies that the
proteins having the capacity to vaccinate have been identified and that they can be produced in
sufficient quantity at a low cost. Genetically modified organisms harboring pathogen genes
can fulfil these conditions. Microorganisms, animal cells as well as transgenic plants and
animals can be the source of recombinant vaccines. Each of these systems that are all getting
improved has advantages and limits. Adjuvants must generally be added to the recombinant
proteins to enhance their vaccinating capacity. This implies that the proteins used to vaccinate
have been purified to avoid any immunization against the contaminants. The efficiency of a
recombinant vaccine is poorly predictable. Multiple proteins and various modes of adminis-
tration must therefore be empirically evaluated on a case-by-case basis. The structure of the
recombinant proteins, the composition of the adjuvants and the mode of administration of
the vaccines have a strong and not fully predictable impact on the immune response as well as
the protection level against pathogens. Recombinant proteins can theoretically also be used as
carriers for epitopes from other pathogens. The increasing knowledge of pathogen genomes
and the availability of efficient systems to prepare large amounts of recombinant proteins
greatly facilitate the potential use of recombinant proteins as vaccines. The present review is a
critical analysis of the state of the art in this field.
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Introduction

The pioneering work of E. Jenner, L. Pasteur and others made it possible the
eradication of smallpox from the earth by vaccinating a large number of
people. Other diseases like hepatitis B and gastroenteritis induced by rota-
virus might also be markedly reduced using vaccination.
The method commonly used to prepare vaccines consists of obtaining

sufficient amount of attenuated or inactivated pathogens and administering
this material to humans or animals. Attenuated forms of the pathogen are
generally obtained by natural mutation followed by a selection. The number
of random mutants may be increased by using mutagenic chemicals or
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irradiation. Alternatively, known virulent genes may be removed from the
pathogen genome using genetic engineering. The native pathogen may also be
inactivated by physicochemical treatment. This approach suffers from several
limitations. Attenuated exploitable forms of the pathogen may not be ob-
tained in all cases. The tools commonly used for that purpose are animal cell
lines and chicken eggs. The live vaccines obtained in this way are generally
potent but their composition is complex and they may induce severe dele-
terious effects precluding their use. This was the case for a live-attenuated
vaccine against rotavirus, which induced severe intestine inflammation (in-
tussusceptions) [1]. New vaccines still containing attenuated retrovirus are
under development with expected reduced side effects [2,3]. Even in case of
success, possible unknown side effects may persist with live vaccines. One is
that the vaccinated persons are effectively protected but still shedding wild
active viruses contributing to support the epidemic. Another problem gen-
erated by the use of attenuated or inactivated pathogen is that it is difficult
to make a distinction between animals or humans who are vaccinated and
those who are infected. Indeed, the same antibodies against the pathogens are
present in the blood of both categories of animals or people. The absence
of one gene of the pathogen may make the distinction possible between
vaccinated and infected individuals. Alternatively, serum antibody markers
resulting from the immunization by a foreign antigen added to the vaccine
may also distinguish vaccinated and infected individuals.
Viral vectors can be used to express genes coding for vaccinating proteins

from another pathogen. This system cumulates the advantage of using the
efficiency of the viral vector to transfer and express the foreign gene. Several
strains of vaccinia virus and adenoviruses from different origins are being
used successfully to vaccinate animals. Naked DNA under the form of
plasmids and harboring genes coding for vaccinating proteins is also a
simple, versatile and safe tool to vaccinate animals. This method still needs to
be improved before being approved for animals and humans.
A possible alternative consists of using subunits of the pathogens contain-

ing one or a few proteins organized as in the pathogens and forming virus-
like particle (VLP) in the case of viruses [4]. This approach is expected to be
safe as the material does not contain nucleic acids from the pathogen or from
the vectors used to carry the gene coding for vaccinating proteins, which may
be plasmids or viral vectors. This approach also makes it possible the dis-
tinction between vaccinated and infected individuals as antibodies are raised
against most of the pathogen proteins after infection and only against a few
of them after vaccination. The preparation of recombinant vaccines may be
efficient but not easy to implement. Indeed, a long study may be necessary
to define which proteins have a sufficient vaccinating capacity and ideally are
efficient against most if not all the forms of the pathogens. The proteins
cannot generally be obtained from the pathogen in sufficient quantity.
Systems capable of providing large amounts of recombinant proteins at a low
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cost must then be implemented. The isolated proteins are also generally less
potent to induce an immune response than the whole pathogens, mainly if
they are living. This implies the use of potent adjuvants, which must be
devoid of deleterious side effects. The vaccinating proteins must therefore
be purified to prevent any immune response against their contaminants. The
vaccinating potency of recombinant proteins is largely unpredictable and this
obliges experimenters to evaluate the efficiency of various modes of adminis-
tration with different adjuvants.
The increasing knowledge of pathogen genomes offers multiple possibilities

to identify proteins and even epitopes capable of inducing a protection
against the pathogens. It has become possible to test one by one the different
antigens of a pathogen. This approach implies the systematic cloning of
the genes coding for putative vaccinating proteins, the preparation of the
corresponding proteins and the evaluation of their capacity to be used as
vaccines. This brute-force method already resulted in an unprecedented burst
of new antigen discovery. A less laborious approach recently met a great
success to identify new antigens from group A Streptococcus. This method
consists of releasing fragments of the surface antigens by treating the bacteria
with proteases. The peptides were identified by mass spectrometry and the
corresponding genes were cloned to prepare and evaluate the corresponding
antigens. This method allowed the fast identification of antigens for vacci-
nation [5]. This method should be applied for a number of pathogens [6].
Several systems are becoming efficient to produce large amount of recom-

binant proteins including vaccines. Among these systems are transgenic
animals and plants.
A pathogen protein having potent vaccination properties may theoretically

be used as carriers for epitopes from other pathogens. In practice, the gen-
eration of fusion proteins harboring the epitopes and capable of inducing a
protection against the pathogen is not an easy task.
The present review examines the different steps in the preparation and the

evaluation of recombinant proteins to be used as vaccines.

The different systems to produce recombinant vaccines

Different systems are being implemented to produce recombinant proteins
for experimental use or for biotechnological applications. They include pep-
tide chemical synthesis, microorganisms, animal cells, plant cells, transgenic
plants and transgenic animals (Table 1).

Peptide chemical synthesis

A number of peptides covering a pathogen protein known to induce vac-
cination may be chemically synthesized and tested for their capacity to induce
a protection against a pathogen. This was achieved with the fragments of



Table 1. Comparison of the different systems for the production of recombinant proteins.

Production systems
(Points to consider)

Bacteria Yeast Insect
cells+baculovirus

Animal cells
(CHO cells)

Transgenic
plants

Transgenic
animals

Theoretical
production level

+++++ +++++ +++ + +++++ +++++

Practical production
level

++ (+) ++ (+) + + ++ ++++

Investment cost +++++ +++++ ++ + ++++ +++
Production cost +++++ +++++ ++ ++ +++++ ++++
Flexibility +++++ +++++ ++ + +++++ ++++
Line conservation +++++ +++++ +++ +++ +++++ +++++
Line stability +++++ +++++ ++++ +++ +++++ +++++
Delay for the first
production

+++++ +++++ +++ +++++ ++++ +++ (+)

Scaling up +++++ +++++ ++ + +++++ ++++
Collection +++++ +++++ +++++ +++++ +++++ ++++
Effect on organism +++ (+) +++ (+) +++ (+) +++ (+) +++ (+) +++
Post translational
modifications

+ ++ +++ ++++ +++ ++++

Glycosylation + ++ +++ ++++ ++ ++++
Stability of product +++++ +++++ +++ +++ ++++ ++++
Purification +++ +++ +++ ++++ +++ +++
Contaminant
pathogens

+++++ +++++ +++++ ++++ +++++ ++++

Dissemination in
environment

+++++ +++++ +++++ +++++ ++ +++++

Intellectual property ++++ +++ +++ ++ +++ +++
Products on the
market

++++ +++ +++ +++++ + ++

Note: The best parameters have the largest cross number.

6
8
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VP6 proteins from rotavirus [7,8]. Essential epitopes of a protein for vac-
cination may thus be determined. This also makes it possible the identifi-
cation of the mechanisms of the immune response induced by each epitope.
The peptides containing relevant epitopes may then be chemically synthesized
and chemically linked to carrier proteins. The resulting material may be
used as vaccine. Alternatively, fusion recombinant proteins containing the
epitopes of interest and a carrier protein known to induce vaccination may
be prepared (see below).

Microorganisms

Microorganisms were the first to be used to produce recombinant proteins.
Human insulin has been prepared for the last twenty years by bacteria.
Although highly efficient for some proteins, bacteria show limited possibili-
ties due to the fact that they cannot fold properly a number of proteins and
proceed to posttranslational modifications [9]. Bacteria may produce so high
amount of recombinant proteins that they form inclusion bodies precluding
an easy purification. Some proteins are toxic for bacteria and cannot be
prepared in this way. Interestingly, VP6 protein prepared from bacteria
proved to have vaccinating capacity almost similar to the protein prepared
from insect Sf9 cells infected by recombinant baculovirus harboring the cor-
responding viral gene [7,8–10,11].

Yeast may be easily transformed but they often produce limited amount of
recombinant proteins, which are not glycosylated or unduly glycosylated.
Interestingly, several genes coding for glycosylating enzymes have been
transferred into yeast, which has become capable of adding several of the
carbohydrates present in human proteins [12]. It is interesting to mention that
a part of the hepatitis B vaccine is prepared from recombinant yeast. It is also
important to note that the viral protein prepared from yeast does not
form correctly polymers by disulfide bridges. The protein must therefore be
chemically reduced to allow an appropriate formation of disulfide cross-links
and VLPs having full vaccinating potency.

Animal cells

Various animal cells are currently being used to prepare recombinant pro-
teins for experimental studies or for biotechnical applications [13]. It is
interesting to note that most of the recombinant proteins used as pharma-
ceuticals are being prepared from animal cells.

One of the cell systems frequently used in laboratories to prepare viral
proteins is the baculovirus-Sf9 cell system. This system is relatively simple to
use and it proved efficient to prepare well-assembled viral proteins forming
VLPs [4]. To reach this goal, the viral genes are introduced into baculovirus
by homologous recombination in insect Sf9 cells. The resulting viral particles



70
are used to infect a large number of Sf9 cells that produce high amounts of
viral proteins, which are not secreted but stored in cytoplasm to form spon-
taneously well-shaped VLPs. The VLPs can be isolated from cell lysate and
purified using different protocols. One of them consists of fractionating VLPs
in cesium chloride gradients. Several VLPs prepared in this way show struc-
ture similar to native corresponding viral complex as judged by electron
microscopy and biochemical analysis. The baculovirus system makes it pos-
sible the preparation of VLPs from a broad variety of viruses having or not a
simple or a double capsid and an envelope [4]. This tool allows the pre-
paration of VLPs in sufficient quantity to determine their structure and to
evaluate their vaccinating properties. The baculovirus-Sf9 system cannot be
easily scaled up to prepare vaccines at an industrial scale.

Mammalian cells can be used to prepare recombinant proteins. CHO
(Chinese Hamster Ovary) cells are most frequently used to prepare pharma-
ceutical proteins. One of the advantages of these cells is that they proceed to
most of the posttranslational modifications of proteins. However, glycosylat-
ion of recombinant proteins secreted by CHO may be incomplete due to a
saturation of the glycosylating enzymes. The extremity of the carbohydrate
moiety of the secreted proteins does not contain quantitatively the terminal
sialic acid. The addition of genes coding for glycosylating enzymes improves
the quality of the secreted proteins [14,15]. Moreover, human cells synthe-
size sialic acid under the NANA (N-acetylneuraminic acid) form as do
rabbit and chicken cells [16,17] whereas ruminant cells synthesize also the
N-glycosylneuraminic acid [18].

The glycosylation of proteins is essential for the activity of some proteins.
Non-glycosylated proteins have a short half-life in vivo. Unexpectedly, a
peptide which is a candidate to become a vaccine against malaria looses its
capacity to vaccinate mice under a glycosylated form [19]. This exemplifies
the necessity to control glycosylation of recombinant vaccines in some cases.

In one case, for the preparation of a vaccine against hepatitis B, animal
cells are used and provide a vaccine essentially similar to this obtained with
yeast.

Although efficient, CHO cells remain a costly and poorly flexible system to
prepare recombinant proteins. Indeed, a 100,000 l fermentor costs 400 million
dollars and five years are needed to build such a tool.
Transgenic plants

The first transgenic plants were obtained in 1983. Apart from their use for
basic studies, transgenic plants are increasingly used to improve food pro-
duction. The idea of using transgenic plants as the source of recombinant
proteins has become a reality. A number of enzymes used for research or for
diagnosis are currently being produced at an industrial scale.
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Producing pharmaceuticals in plants is a more ambitious project. This
system offers several advantages but also serious limits [20]. Various plant
species can be obtained as transgenics. Two essential methods are imple-
mented to transfer genes to plants. One of these tools is the Agrobacterium
tumefaciens system which contains a natural vector able to transfer a foreign
gene into the plant genome. The other known as biolistics consists of pro-
jecting minute bullets covered by DNA into plant cells. In both cases, viable
plants are developed from transformed somatic cells. A large number of
transgenic plants can be obtained making it possible the selection of those in
which the transgene is intact and functional.

Foreign proteins may be stored in leaves, in seeds, or both according to the
promoter used. Leaves are very abundant but it may be difficult to purify the
protein of interest from them due to the presence of proteases or substances
like polyphenol, which are not well-tolerated by patients.

The amount of recombinant proteins which can be prepared in plants is
virtually unlimited and the production cost is low. Moreover, agriculture
techniques offer a great flexibility for scaling up. Leaves or seeds containing
the proteins of interest can be stored easily. It is also simple to rescue the
plant lines and establish master banks allowing a reproducible production of
proteins.

Plant cells are able to fold proteins and associate subunits as those forming
antibodies essentially as efficiently as animal cells. On the contrary, plants
cells add carbohydrates to protein chains but not as animal cells do. Proteins
synthesized in plant cells have no terminal sialic acid and they contain xylose,
which may induce deleterious immune response. Experiments are in progress
to modify protein glycosylation by transferring various genes responsible
for the addition of sugars to proteins in a way similar to mammalian
cells [21].

Proteins prepared from plants have very little chance to contain pathogens
for humans or animals. Using transgenic plants to prepare recombinant
proteins raise little ethical problems. One major concern is the uncontrolled
dissemination of the proteins thus of the antigens when plants are cultured in
open fields [22]. Low amount of antigens might induce a tolerance in humans
or a basal unknown vaccination. This problem cannot be solved easily. Plants
may be sterile to prevent any dissemination of the transgene. Another pro-
position which has been retained by companies involved in the production of
recombinant proteins by plants is to limit the gene transfer to plants not used
for human feeding such as tobacco or alfalfa [23]. This does not stop com-
pletely the uncontrolled diffusion of the antigen. One possibility to suppress
the problem consists of keeping the plants in greenhouses. This is technically
possible but would enhance markedly the production cost reducing the at-
tractiveness of plants for this purpose.

A satisfactory approach could be to use plants, which can be cultured
easily in large quantity and at a low cost in confined areas. Encouraging
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experiments have shown that duckweed and microalgae could provide hu-
mans with large amount of proteins produced in perfectly well-controlled
conditions [24].

Another possibility would be to use cultured plant cells. Recent studies
suggest that this perspective offers attractive alternative in some cases [25].

Several antigens potentially to be used for vaccination have been produced
in transgenic plants. The capsid protein VP6 of rotavirus has been found in
tubers and leaves of transgenic potatoes [26,27]. The amount of VP6 was
0.01% of soluble tuber proteins in the first case and 0.02% and 0.06% in
tubers and leaves in the second case. Oral immunization with tuber tissues
generated measurable titers of both anti-VP6 IgG in serum and IgA in in-
testine. This proof of concept is insufficient to conclude that this method may
contribute to a vaccine.

A fragment of S protein from SARS virus (severe acute respiratory syn-
drome) was found in transgenic tomato and nicotine-free tobacco. Oral
administration of transgenic tomatoes to mice induced synthesis of IgA anti-
bodies suggesting that mucosal immune response was triggered after oral
administration. Parenteral administration of transgenic tobacco to mice was
followed by the presence of IgG antibodies in serum [28].

The protein G of the rabies virus was obtained in tobacco at the concen-
tration of 0.38% of soluble proteins. Intraperitoneal injection of tobacco
extract in mice in the presence of complete Freund adjuvant induced a total
protection against the virus [29].

To produce anti-hepatitis B vaccine at a lower price, the antigen was
produced in transgenic potatoes. The viral protein was directed to the endo-
plasmic reticulum by adding to the cDNA a signal peptide and the KDEL
signal. Retention of the antigen in the reticulum was observed. Oral immu-
nization of mice in the presence of cholera toxin induced the secretion of a
high-antibody titer, which was still increased by boosting with parenteral
administration of the potato extract [30,31]. The retention of the antigen in
the reticulum may have played the role of a bioencapsulation and favored the
immune response.

The synthesis in transgenic rice of epitopes known to induce a tolerance
toward Japanese cedar antigen was achieved. The rice extract given orally to
mice inhibited Th2-mediated IgE responses to the antigen [32,33].

Recently, a system called magnifection was shown to allow the rapid pro-
duction (within two weeks) of gram of functional antibodies in plants [34].
This system involves the transient high-level co-expression of the transgenes
(for example immunoglobulin heavy- and light-chains) through the use of
plant viruses vectors delivered by Agrobacterium to the plant body.

Although encouraging, these results cannot predict when or if recom-
binant vaccines prepared from transgenic plants will be able to reach the
market.
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Transgenic animals

The first transgenic animals were generated in 1980 and the idea of using
these animals as the source of recombinant proteins was proposed two years
later when the giant mice having high concentration of growth hormone were
obtained. In 1985, it was shown that the DNA microinjection used to gen-
erate transgenic mice could be extrapolated to rabbits, sheep and pigs. The
use of farm transgenic animals to produce recombinant proteins appeared
realistic and the choice of milk as the vehicle was made in 1986. One year
later, two proteins were produced in the milk of transgenic mice. This proof
of concept was followed by the industrial development of the method. Only
in 2006 one protein, human antithrombin III, has been approved by the
European agency EMEA to be on the market. In the mean time a large part
of the technical obstacle has been crossed. These problems are (i) the estab-
lishment of transgenic lines (ii) the secretion of the foreign proteins at a high
level (iii) the purification of the recombinant proteins and (iv) the validation
of the proteins as therapeutics on a case by case basis.
Generation of transgenic animals
The generation of transgenic farm animals may be achieved according to
species by DNA microinjection into embryo pronuclei, by using lentiviral
vectors or transposons, by incubating sperm with DNA followed by in vitro
fertilization using ICSI (Intracytoplasmic Sperm Injection), by transferring
the foreign gene into pluripotent cells (embryonic stem cells or primordial
germ cells) followed by the generation of chimeric animals harboring normal
and transformed cells, by transferring the foreign gene into somatic cells and
by the generation of cloned animals using nuclear transfer. These methods
have been described in recent reviews [35–37]. They are summarized in Fig. 1.

Microinjection into pronuclei is very poorly efficient in ruminants and some
other species. It is still being used successfully in mice, rats, rabbits, pigs and
fish. To increase the integration frequency, foreign genes can be introduced in
integrating vectors such as transposons and lentiviral vectors. The latter
proved highly efficient in ruminants and pigs. This technique is being adopted
by experimenters even if these vectors have limited capacity to harbor foreign
DNA and if the integration number is presently difficult to control.

DNA transfer via sperm has been developed mainly in pigs and mice. It
may simplify transgenesis in some cases.

The utilization of cells as carrier for the foreign genes has been used in
mice for almost twenty years. In this case, pluripotent cells capable of par-
ticipating to the development of chimeric transgenic animals are being used.
This method is laborious and used only for gene targeting and in practice
essentially to inactivate genes (gene knockout).



Fig. 1. Different methods to generate transgenic animals: (1) DNA transfer via direct
microinjection into pronucleus or cytoplasm of embryo; (2) DNA transfer via a
transposon: the gene of interest is introduced in the transposon, which is injected
into a pronucleus; (3) DNA transfer via a lentiviral vector: the gene of interest is a
lentiviral vector, which is injected between zona pellucida and membrane of oocyte
or embryo; (4) DNA transfer via sperm: sperm is incubated with the foreign gene and
injected into oocyte cytoplasm for fertilization by ICSI (intracytoplasmic sperm
injection); (5) DNA transfer via cloning: the foreign gene is introduced into a so-
matic cell, the nucleus of which is introduced into the cytoplasm of an enucleated
oocyte to generate a transgenic clone; (6) DNA transfer via pluripotent cells: DNA is
introduced into pluripotent cell lines (ES: embryonic stem cells: lines established
from early embryo, EG: embryonic germ cells: lines established from the primordial
germ cells of fetal gonads). The pluripotent cells containing DNA are injected into
an early embryo to generate chimeric animals harboring the foreign gene. Methods
4, 5 and 6 allow random gene addition and targeted gene integration via homologous
recombination for gene addition or gene replacement including gene knockout and
knockin.
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For unknown reasons, it has not been possible to obtain and use pluri-
potent cells from embryos (ES cells: embryonic stem cells) in species other
than mice. A recent study has shown that in chicken and quails it was pos-
sible to establish pluripotent cell lines (EG cells) from the pluripotent cells
which are present in fetal gonads (PGC: primordial germ cells). This made it
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possible the generation of transgenic birds, which are candidates to produce
recombinant proteins in egg white.

The cloning technique used to generate Dolly the sheep is being used to
generate transgenic ruminants and pigs. This technique allows gene addition
but also gene targeting by homologous recombination. This makes it possible
gene knockout. Gene targeting is also a way to integrate foreign genes in
genomic sites known to favour their expression.

The generation of transgenic animals remains relatively laborious
and costly but it is no more a hurdle to the production of recombinant
proteins.
The different sources of recombinant proteins
Milk is presently the most mature system to produce recombinant proteins
from transgenic organisms [38]. Blood, milk [38], egg white [39,40], seminal
plasma [41], urine and silk gland [42] and insect larvae hemolymph [43] are
other theoretical systems (Table 2). Silk gland is a promising system in
particular cases. Preliminary results indicate that active human factor VII can
be found in different tissues of a transgenic fish (tilapia). It is not known if
this system may be improved and scaled up (McLean unpublished data).
Blood cannot store high levels of recombinant proteins most of the time.
Moreover, proteins in blood may alter the health of the animals. Milk avoids
essentially these problems. Several mammalian species (rabbits, pigs, sheep,
goats and cows) are currently being used to produce recombinant proteins in
their milk. Rabbits offer a number of advantages: easy generation of
transgenic founders and offspring, high fertility, relatively high milk pro-
duction, insensitivity to prion diseases, and no transmission of severe diseases
to humans. Pigs are more costly but produce higher amounts of milk than
rabbits. Ruminants are potentially the most appropriate species to produce
large amount of proteins but they need cloning or lentiviral vectors to in-
tegrate foreign genes, their reproduction is relatively slow, they do not gly-
cosylate proteins as well as rabbits and pigs and they are sensitive to prion
diseases. Until recently, egg white was considered as a promising system
strongly limited by the great difficulty of generating transgenic birds. This
difficulty appears now surmounted. Lentiviral vectors proved efficient in
chicken. More impressively, pluripotent cell lines have been established in
chicken and quail. These cells harboring foreign genes can be reintroduced
in early embryos and participate to the development of chimeric transgenic
animals [40]. In a previous experiment, the same group showed that chimeric
transgenic chicken generated by using non-pluripotent cells was able to
secrete a monoclonal antibody in egg white. This antibody was functional
but a reduced half-life due to the lack of sialic acid in the terminal end of
the carbohydrate chain [39]. These experiments validate egg white as a source
of foreign proteins including recombinant vaccines.



Table 2. Comparison of the different sources of recombinant proteins from transgenic animals.

Production systems
(Points to consider)

Blood Milk Egg white Seminal
plasma

Urine Silk gland Drosophila
larva

Theoretical
production level

+++++ +++++ +++++ +++ ++ ++ ++

Practical production
level

++ ++++ +++ + + ++ +

Investment cost +++ +++ ++ + + +++ +++
Production cost ++++ ++++ ++++ ++ + +++++ ++++
Flexibility +++++ +++++ +++++ ++ + +++++ ++++
Line conservation +++++ +++++ +++++ +++++ +++++ +++++ +++++
Line stability +++++ +++++ +++++ +++++ +++++ ++++ +++++
Delay for the first
production

+++ +++ +++ ++ + ++++ ++++

Scaling up ++++ ++++ ++++ ++ + +++++ +++
Collection +++++ ++++ +++++ +++ +++ ++++ +++++
Effect on animal ++ +++ +++ (+) +++ (+) +++ (+) ++ (+) ++++
Post translational
modifications

+++++ ++++ +++ (+) +++ (+) +++ (+) + (+) ++ (+)

Glycosylation ++++ (+) ++++ +++ +++ (+) +++ (+) ++ (+) ++
Stability of product +++ ++++ ++++ +++ (+) +++ (+) +++ (+) +++ (+)
Purification ++ +++ +++ ++ (+) ++ (+) +++ ++ (+)
Contaminant
pathogens

++ +++ +++ +++ ++ +++ ++++

Dissemination in
environment

+++++ +++++ +++++ +++++ +++++ ++++ +++++

Intellectual property ++++ +++ +++ +++ +++ +++ +++
Products on the
market

+ ++++ ++ + + ++ +

Note: The best parameters have the largest cross number.

7
6



77
Optimization of transgene expression
To be expressed in a reliable manner, a transgene must ideally contain a
promoter, enhancers, insulators, introns and a transcription terminator [36,44].

Expression in milk is achieved successfully with promoters from milk-
protein genes. Expression in egg white is possible using the potent promoter
of ovalbumin gene. Using long-genomic DNA fragments containing the
promoter of interest generally enhances greatly the expression of foreign
cDNA. This proved to be the case for the promoter of one milk-protein gene,
WAP gene (Whey Acidic Protein) [45]. This suggests that elements from long-
DNA fragments will be used in future to construct compact vectors express-
ing transgene in a reliable manner.

Constructing an efficient expression vector to produce a therapeutic pro-
tein is not a standard operation. Two examples may illustrate this point.
Recombinant vaccines against malaria are presently under study [46]. One of
the proteins was initially obtained in mouse milk [19]; it is now being pro-
duced in goat milk. Unexpectedly, the antigen produced in mouse milk lost
its vaccinating properties when glycosylated.

The second example is the production of VP2 and VP6 proteins from ro-
tavirus in transgenic rabbit milk [47]. Rotavirus has a genome formed of several
independent RNA fragments. This virus is replicated in cytoplasm and its
proteins are not individually secreted. The following modifications of the VP2
and VP6 nucleotide sequence were performed: elimination of the slicing sites
and of several N-glycosylation sites, addition of a peptide signal and adaptation
of codons to optimize the expression of the two cDNAs in the mammary gland
of the animals. The modified cDNAs were introduced into a vector designed
according to the criteria defined above [44]. These gene constructs made it
possible the co-secretion in milk of the two viral proteins at concentration up to
500mg/ml. These proteins were able to protect mice against the virus completely
or partially according to the mode of administration (see below).

A number of experiments have shown that the posttranslational modifica-
tions of recombinant proteins secreted in milk may be incomplete. This indi-
cates that the cellular machinery of mammary gland is not sufficient to mature
completely proteins when they are secreted at a high level. Experiments carried
out several years ago showed that human protein C found in mouse milk was
only partly cleaved. This maturation process was complete in transgenic mice
expressing furin gene coding for a cleavage enzyme [48]. This pioneer work
indicates that living fermentors such as mammary gland can be engineered to
perform the posttranslational modifications of recombinant proteins.
Vaccine adjuvants, formulation and delivery

Identifying and producing vaccinating proteins can be a long and difficult
task. But once it is done, other important challenges need to be achieved.
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Choosing a suitable adjuvant to enhance the immune response against
vaccine antigens together with choosing the right way to deliver the vaccine
in recipients are critical for its efficiency. Most of the recombinant proteins
or subunit vaccines are poorly immunogenic by themselves compared to
whole killed or live-attenuated pathogens. They lack important features
commonly present in pathogens like lipopolysaccharides (LPS) or unmethyl-
ated CpG-containing-DNA that are able to activate the innate immune
system and shape the adaptive immune response. For toxicity reasons, whole
killed or attenuated pathogens cannot be used in many cases. Adjuvants
are then needed to increase the immunogenicity of the subunit vaccines. The
common role of adjuvants is to enhance the immune response to weak
antigens, and they also are implicated in the orientation of the response to a
defined type: cellular or humoral, Th1- or Th2-biased response. The field of
adjuvant research is very active and several new candidates are being deve-
loped and tested in animals and humans. In addition, the choice of formu-
lation and vaccine delivery is crucial to induce an appropriate protective
immune response (local or systemic). It should also be easy to handle and in
the best case be needle-free and non-invasive to avoid pain and requirement
for sterile material and trained medical workers (this is especially important
for vaccines targeting developing countries). The following section summa-
rizes the recent advances in these fields.

Vaccine adjuvants

Aluminum
Despite extensive evaluation of several candidates over the past few years, the
aluminum-based mineral salts (also called alum) are the only adjuvants ap-
proved by the US Food and Drug Administration (FDA) for human use.
Alum is well tolerated and presents a good safety record. However, it is a
relatively weak adjuvant for antibody induction against recombinant vac-
cines. It induces mainly a Th2 immune response and is not efficient for
activation of cellular immunity (Th1) [49]. Thus alum adjuvant is suitable
when antibody-based protective immunity is required (for example induction
of neutralizing antibodies), but alum lacks the ability to induce mucosal
IgA. This can impede efficiency of several vaccines where a strong mucosal
immunity is needed to prevent pathogen entry and replication into host. This
is for example the case for rotaviruses that replicate in the intestine causing
severe gastroenteritis, and for which intestinal IgA were shown to protect
against disease [50]. Other limitations of alum adjuvants are increased IgE
production, allergenicity and neurotoxicity [49,51,52]. Alum also cannot be
effective in some vaccine formulations [49]. Despite its extensive use for many
years, alum mechanism of action is not completely understood. Adsorption
of antigens onto alum results in the formation of a depot at the site of
injection. The particulate structure of the alum/antigen complex may
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facilitate uptake by antigen presenting cells and alum could activate com-
plement and macrophages [49]. The saponin Quil A, derived from the bark of
a Chilean tree, Quallaja saponaria, or purified extracts none as QS-21 have
been evaluated as alternatives to alum for cell-mediated responses activation.
The observed toxicity (local reactions, hemolysis) associated with these
adjuvants renders their use in humans limited to life threatening diseases like
cancer or HIV infection [53].
ISCOMS
Immunostimulatory complexes (ISCOMS) are adjuvants composed of hy-
drophobically associated cholesterol, phospholipids and quillaja saponins
that form a stable cage-like structure in which the antigens can be enclosed
[54]. ISCOM-based vaccines are able to induce strong antibody and cellular
immune response. It has been shown with a number of different antigens
in several animal models including non-human primates (reviewed in [55]). In
mouse, ISCOM-based vaccines were shown to be potent inducers of Th1
immune responses, contrarily to aluminum-based vaccines. In non-human
primates, strong long-lasting CD4+ and CD8+ responses were observed
following immunization with the core protein of the hepatitis C virus (HCV)
complexed to the ISCOMATRIX (a preformed ISCOM preparation) in
addition to humoral responses [56]. The mechanism of action of ISCOM is
not fully understood. It is believed that because of their particulate structure
their uptake by antigen-presenting cells is more efficient. The saponin com-
ponent also has potent adjuvanticity (see above), and it has been shown that
ISCOM activate the innate immune system through an IL-12-dependent
mechanism [57].

In humans, a number of clinical studies were conducted with different
vaccine-based ISCOM (reviewed in [55]). Antibody and/or cellular responses
were induced in most of the recipients, and faster antibody responses of
higher intensity were observed in people vaccinated with an influenza/
ISCOM-based vaccine [58]. ISCOM-based vaccines have been administered
to several recipients and showed to be safe with low reactogenicity. Common
adverse events were reaction at the site of injection and myalgia of mild
intensity and of short duration. ISCOMS appear to be interesting candidates
for human use. In particular, the ISCOMATRIX adjuvant has been
well characterized and appears to be stable and easy to handle [55]. Finally,
ISCOMS benefit from robust and reproducible manufacturing procedures
that can be scaled up for industrial production.
CpG Oligodeoxynucleotides
CpG dinucleotides-containing oligodeoxynucleotides (CpG ODN) possess
adjuvant activity and were shown to be efficient in different vaccine formu-
lations in animals and humans. CpG ODN are currently evaluated in clinical
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trials in humans in the field of infectious diseases, cancer treatment and
asthma/allergy.

CpG ODN are very potent at orienting the immune system toward a
Th1-biased response and can therefore be of primary interest for vaccines
where a Th1-biased reaction is needed to achieve protective immunity. Fur-
thermore, CpG ODN are able to stimulate mucosal immunity. CpG ODN
even showed greater efficiency when administered with other adjuvants like
alum or in formulation like lipid emulsions or nanoparticules, which can be
necessary to induce a protective response when the antigen is weak. Studies in
mice showed that CpG ODN can boost both humoral and cell-mediated
immune responses against a broad range of proteins or vaccines. For example
inclusion of CpG ODN in a SARS coronavirus subunit vaccine composed of
a fragment of the spike protein in alum, increased IgG2a titers (representative
of a Th1-like response) and interferon-g (INF-g) secreting cells [59]. The same
observations were reported with several other subunit vaccines against
different pathogens (hepatitis A and B virus [60–63], herpes virus [64] and
rotavirus [65]).

The exact mechanism of action of CpG ODN is not precisely elucidated,
but it is known that CpG ODN act mainly through activation in the innate
immunity. The innate compartment of the immune system evolved to recog-
nize general structures commonly found on a broad range of pathogens.
These include the structure of the bacterial and of many viruses DNA, which
unlike vertebrate genomic DNA, contain a high proportion of unmethylated
CpG dinucleotides. Bacterial and other pathogens DNA can be recognized
directly by the innate immune system through the interaction with the
Toll-like receptor 9 (TLR9) which, in humans, is present in B-cells and plas-
macytoid dendritic cells (pDC). In mice, TLR9 is also expressed in mono-
cytes and in myeloid dendritic cells. The effect of TLR9 activation is the
induction of a proinflammatory (IL-1, IL-6, IL-18, TNF-a) and a Th1-biased
cellular and humoral immune response (reviewed in [66]). CpG ODN mimic
the presence of bacterial DNA and primarily trigger activation of the innate
immune system. CpG ODN are rapidly internalized by immune cells where
they are bound by TLR9. The TLR9 activation caused by CpG ODN
administration can enhance antigen-specific humoral or cellular immune
response against co-administered antigens. Contrarily to humans, TLR9 in
mice is not only expressed in B-cells and pDC but also in monocytes and
myeloid dendritic cells. This observation renders difficult the extrapolation of
the encouraging results obtained in mice to humans because these cells
may play important roles in vaccination efficiency. However, data obtained
from clinical trials in humans showed efficacy of CpG ODN adjuvants. Co-
administration of CpG ODN with hepatitis B vaccine (Engerix-B) to healthy
adult volunteers, either alone or in combination with alum, resulted in in-
creased IgG titers compared to the control group receiving Engerix-B alone
[67]. Furthermore, hepatitis B-specific surface antigen antibodies appeared
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earlier when immunizations were carried out with CpG [67,68]. Inclusion of
CpG adjuvant also increased the proportion of antigen-specific high-avidity
antibodies [69]. An accelerated antibody response combined with increased
magnitude and avidity was also observed when healthy volunteers were
immunized with the anthrax vaccine adsorbed (AVA) when CpG ODN were
included [70]. So far, treatments with CpG ODN were well tolerated, and the
adverse effects observed among recipients only included pain and erythema
at the site of injection, and mild to moderate flu-like symptoms that did not
last and did not impede daily life activities [66]. Taken together, these results
underline the potential of CpG ODN adjuvants both in animals and humans.
Although more studies are needed and important points remain to be ad-
dressed (like the possibility to induce autoimmune diseases in recipients [66]),
CpG ODN appear to be promising tools. Interestingly, CpG ODN could
benefit from the large-scale – good manufacturing practices – industrial pro-
duction technologies developed during the past few years for the antisens
drug development (which have been approved by the US FDA) [71].

Bacterial toxins
Two bacterial toxins were identified as powerful mucosal adjuvants: the
cholera toxin (CT) and the related heat labile enterotoxin (LT) produced by
Escherichia coli. Both toxins consist of a catalytic subunit A (CTA or LTA)
associated with a pentameric cell-binding B subunit. CTA and LTA subunits
possess an ADP-ribosyl transferase enzymatic activity resulting in permanent
adenylate cyclase activation in targeted cells, increased cAMP production
and hypersecretion of salt and water into the bowel [72,73]. The CTB and
LTB parts allow the binding to cell surface through their association with
GM1 gangliosides, which result in the internalization of the toxic A subunit.
These toxins are internalized by polarized epithelial cells and it is thought
that co-administered antigens may follow the same route. These toxins in-
duce strong systemic and mucosal immune responses and increased responses
against co-administered antigens. Vaccinations with CT and LT as adjuvants
produced Th1 and Th2 responses. They showed excellent efficacy in inducing
protective immunity when administered via the nasal and rectal route and to
a lesser extent via the oral route [65,74,75]. However, the strong toxicity of
these molecules precludes their use in humans (ingestion of 5 mg of CT in
human would result in the induction of a 5-l watery diarrhea). Several less
toxic derivatives that retain adjuvanticity were generated by site-directed
mutagenesis. These mutants comprise the LT K63, LT R72 and LT R192G
forms of LT. The LT K63 and LT R72 bear single amino acid substitutions
in the catalytic A subunit. Both mutants differ in the residual enzymatic
activity, which positively correlates with their adjuvanticity. LT R192G con-
tains a single amino acid substitution in a protease sensitive portion of the
catalytic A subunit [76]. This mutant with reduced enterotoxicity shows great
adjuvanticity when delivered mucosally either by the nasal, oral or rectal
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route [10,74,75,77]. Interestingly, intranasal delivery of antigens in combi-
nation with CT, LT or its derivatives induces mucosal responses even at
distant sites. When rotavirus virus-like particles (VLP) were administered
intranasally, strong mucosal and systemic responses were induced together
with intestinal IgA production [74,78].

Encouraging results were obtained using a strategy consisting of fusing the
enzymatically active A subunit of CT to a B-cell-targeting moiety (D) of
Staphylococcus aureus protein A. This adjuvant, called CTA1-DD, is far less
toxic than the intact CT and contrarily to CT produces a balanced Th1/Th2
response [79]. It was also shown to give comparable protection against
rotavirus infection when compared with LT R192G or CpG [80]. Further-
more, in mice receiving a nasal administration of the universal influenza
vaccine M2e-HBc combined with CTA1-DD, a complete protection against a
lethal infection was observed, together with a reduction of morbidity, in the
context of a Th1-type immunity [81].

The B subunits of CT (CTB) and LT (LTB) could also serve as mucosal
adjuvants. CTB and LTB contain adjuvant activity when administered by the
nasal route. Mice vaccinated with an influenza virus vaccine with LTB
showed higher systemic and mucosal antibody responses than mice receiving
the vaccine alone [82]. Interestingly, recent study showed that the fusion of
CTB to CpG ODN (CpG-CTB) resulted in an enhancement of the
immunostimulatory effect of CpG ODN, with a more potent stimulatory
effect of pro-inflammatory cytokine and chemokine responses in human and
mouse splenocytes [83].

It is worth being mentioned that in addition to CT and LT (and their
derivatives), a third toxin called Zonula occludens toxin (Zot) showing ad-
juvant activity has been identified [84]. Zot is a single polypeptide chain
encoded by the filamentous bacteriophage CTXF and expressed by Vibrio
cholerae. Zot binds a receptor on intestinal epithelial cells and increases
mucosal permeability by acting on the structure of epithelial tight junctions.
This phenomenon is believed to allow penetration of antigens into the tissue
where they can interact with immune cells. It is also possible that Zot does
not only act as a co-delivery system for antigens but may also have immuno-
modulatory properties by activating antigen-presenting cells. Interestingly,
the effect that Zot exerts on tight junctions is reversible and does not cause
tissue damage.

Several other bacterial toxins having adjuvant activity have also been
identified and studied by different groups (reviewed by [85]) but their mech-
anisms of action still need to be clarified.

Monophosphoryl lipid A
LPS is a major constituent of the Gram-negative bacteria. LPS are con-
sidered to be endotoxins and induce strong pro-inflammatory reaction. LPS
have strong adjuvant properties but excess production of pro-inflammatory
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cytokines linked to repeated administration of LPS leads to endotoxin shock
characterized by inflammation, profound hypotension and organ failure [86].
Because of this elevated toxicity, LPS cannot be used in humans. An LPS-
mimetic compound called monophosphoryl lipid A (MPL), exhibiting
adjuvanticity and low toxicity has been generated. MPL, like LPS act by
interacting with Toll-like receptor 4 (TLR4) on antigen presenting cells re-
sulting in the release of pro-inflammatory cytokines like TNF-a, IL-6, IL-10
and INF-g, which will ultimately enhance the adaptive immune response
(humoral and cellular). In preclinical studies, MPL has been shown to gen-
erate Th1-type immune response to antigens [87]. The molecular mechanisms
resulting in the lower toxicity of MPL versus LPS are not clear; but recently,
Okemoto and collegues [88] showed that contrarily to LPS, MPL activation
of macrophages does not result in the release of IL-1b (a pleiotropic pro-
inflammatory cytokine involved in the endotoxin shock [89]), nor the acti-
vation of caspase-1 (also involved in the induction of endotoxin shock).

MPL adjuvant, or synthetic analogue components (RC-529) formulations
have often been used in clinical trials in combination with alum and QS21
[90,91]. The adjuvant designated AS04 composed of an association of alum
salts with MPL has been shown to increase antibody responses against a
papillomavirus subunit vaccine in humans [92]. This formulation also led to a
long-lasting immunity to the vaccine (at least 3.5 years), and an increase of
memory B-cells when compared to alum salt only formulations [91–93].

More than 12,000 subjects received MPL-formulated vaccines for herpes
virus [94], hepatitis B virus (HBV) [95], papillomavirus [91–93]) and extensive
clinical data are available for this adjuvant. In addition, MPL is presently
approved in Europe for use in combination with allergy vaccines [96].

Formulation and delivery

At present different strategies are developed to optimize antigen stability and
bioavailability in the host. Most of them rely on the entrapment of the
antigens into polymer-based particles in the case of microspheres, or into
lipid-based membranous vesicles in the case of liposomes. Microspheres
are composed of biodegradable polymers, mainly polylactide (PLA) or
poly(DL-lactide-co-glycolide) (PLGA). The polymers degrade in vivo to form
non-toxic lactic and glycolic acids. Administered microspheres allow con-
trolled antigen release: it may form a depot at the site of injection, allowing
the slow release of the antigen for extended periods. It can thus minimize the
number of doses required for immunization. Liposomes are bilayered vesicles
composed of phospholipids and other sterols surrounding an aqueous center
where the antigens can be entrapped. Liposomes allow for prolonged release
times of antigens.

Microspheres and liposomes present several advantages like increased re-
sistance to degradation of the antigens in the gastro-intestinal tract, controlled
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antigen release minimizing the number of doses, particle uptake by immune
cells, and ability to induce cytotoxic T-lymphocytes responses.

Adjuvants can also be entrapped in the particles to enhance immune
responses against delivered antigens and one may include this type of for-
mulation to increase vaccine efficiency.

The choice of site of vaccine delivery is particularly important. Usually,
vaccines are delivered by the parenteral route (either by subcutaneous or
intra-muscular injection). This immunization regimen often leads to induc-
tion of systemic immune responses and circulating antibodies but a poor
mucosal immunity. This type of immunization is suitable when serum neu-
tralizing antibody induction is needed to prevent pathogens to replicate or to
reach their target cells in the host. This is for example the case for HBV
vaccine delivered parenterally by injection, where neutralizing antibodies
mediate protection. However, it is generally considered that in order to pro-
duce protective immunity it is best to vaccinate via the natural route of
infection of pathogens. Most pathogens infect hosts via the mucosal epithe-
lium that represents 90% of the body surface: respiratory tract (respiratory
syncitial virus), gastrointestinal (enterotoxigenic E. coli, rotavirus), vaginal
(papillomavirus, HIV) or rectal mucosa (HIV). At present, a great challenge
for vaccination is to stimulate a strong mucosal immunity to prevent patho-
gen entry into host.

The easiest way to administer a vaccine is through oral delivery. However
some limitations do exist. These include degradation of the antigens in the
harsh gastrointestinal environment (acidity, bile salts and pancreatic secre-
tions), and induction of oral tolerance to the antigens. One major feature of
the mucosa-associated lymphoid tissue is the homing of circulating activated
B-cells at distant effector sites from the site of induction [97]. This feature
allows, for example, for the production of intestinal or vaginal IgA after
intranasal immunization [74,78,98]. Intranasal immunization has been widely
used in mouse and is recognized as a very potent induction site for protective
immunity in a number of cases. However, this immunization strategy may
not be well adapted for humans. Indeed, the nasal epithelium is in close
contact with the olfactory bulb and the central nervous system (CNS). The
close vicinity of these structures renders the intranasal delivery of bacterial
toxin-based adjuvants a dangerous approach for mass vaccination since
toxins and co-administered antigens could penetrate the CNS [99,100], (and
see also NIAID July 9, 2001 meeting summary at http://www3.niaid.nih.gov/
research/topics/enteric/meetings.htm).

Alternative immunization sites could be used to overcome this problem,
for example the vaginal or the intrarectal delivery of antigens. The latter
has recently been shown to be efficient for vaccination against the enteric
pathogen rotavirus [65,75,119]. Recently the transcutaneous route has been
shown to stimulate mucosal responses [101,102].

http://www3.niaid.nih.gov/research/topics/enteric/meetings.htm
http://www3.niaid.nih.gov/research/topics/enteric/meetings.htm
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Mucosal immunization offers a number of important advantages including
non-invasive (needle-free) easy administration (intranasal, oral or intra-rec-
tal/vaginal) of vaccines. It can also be conceived that mucosal vaccines could
be self-delivered without the use of sterile equipment (syringes) and trained
medical workers, which may be a real advantage for vaccination in deve-
loping countries.
The use of virus-like particles as foreign antigen carrier systems

Virus-like particles (VLPs) are non-infectious, non-replicating analogues of
pathogenic viruses. VLPs are formed in vitro by the self-assembly of viral
capsid proteins. A number of VLPs from different viruses have been de-
scribed to date like papillomaviruses, rotaviruses, Norwalk viruses, hepatitis
B and E viruses, and parvoviruses to name a few. Some of them are used as
vaccines (papillomavirus and hepatitis B virus). The repetitive structure of
the arranged capside proteins in VLPs (as in native virus particles) favors
activation of B-cells and antibody production [103–105]. Some VLPs can also
efficiently activate cytotoxic T-cell responses in the absence of infection
and intracellular replication [106–109]. VLPs are attractive tools to present
foreign epitopes to the immune system. Some chimeric VLPs have been
described for hepatitis B virus [110–112], hepatitis E virus [113], rotavirus
[75,114], and parvovirus [115] among others.
HBV VLPs consisting of the fusion of HCV epitopes to the HBV core

protein have been used in mice immunization. Both anti HBV and anti-HCV
epitope responses were observed [116]. HBV VLPs were also used to carry
large polypeptides like GFP (Kratz) or the ectodomain of the outer surface
protein A (OspA) from Borrelia burgdorferi, the causative agent of Lyme
disease. HBV/OspA hybrid VLPs immunization could protect mice against
challenge with Borrelia burgdorferi [111]. In another study, inclusion of a
B-cell epitope tag into hepatitis E virus (HEV) VLPs induced specific anti-
body responses against both the VLP and the B-cell epitope. Sedlik et al.
showed that porcine parvovirus VP2 capsid protein carrying a CD8+ T-cell
epitope from the lymphocytic choriomeningitis virus nucleoprotein retain its
capacity to assemble into VLPs. Immunization of mice with these hybrid
VLPs resulted in strong cytotoxic T-lymphocytes responses against the
CD8+ epitope and protected mice against a lethal challenge with the
lymphocytic choriomeningitis virus [117]. It is important to mention that in
some of these experiments, vaccinations were successfully conducted without
the use of adjuvant, underlining the immunostimulatory effect of VLPs on
the foreign epitopes.
Thus, combining the presentation of antigens in an immunogenic repetitive

structure (like VLPs) with the use of powerful adjuvants should result in
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increased efficiency of immune system activation against otherwise poorly
immunogenic soluble antigens. This approach could be a nice strategy for the
elaboration of combined multivalent vaccines, presenting the advantage of
vaccinating against both the carrier (VLP) and the introduced epitopes.

Conclusion

Recombinant vaccines have well-identified theoretical advantages over con-
ventional live vaccines. Yet, recombinant vaccines remain scarce. Vaccine
against hepatitis B is one of them. A vaccine against RHDV (rabbit hem-
orrhagic disease virus) is also used to vaccinate rabbits. An efficient vaccine
against poultry Newcastle disease has been prepared in transgenic plant and
approved but not put on the market so far [118]. No more than four plant-
derived recombinant vaccines have reached clinical development [20]. The
vaccine against malaria produced in goat milk is under clinical study whereas
the vaccine anti-rotavirus produced in rabbit milk is under preclinical study.
Identifying a relevant antigen capable of becoming efficient is the result of

a relatively long-term study. Yet, such antigens have been characterized and
could be prepared. Validating a mode of administration and determining the
valuable adjuvant require specific studies on animal models. Such models are
not always relevant. Mice are most frequently used species for this purpose.
These animals often give only limited information. Infection by rotavirus
is not followed by diarrheas. Other species not so easily used such as pigs or
monkeys are then required.
The different systems for the production of recombinant vaccines have

been markedly improved during the last decades. Additional progress is
expected but the state of the art in this field is no more a hurdle. About
475,000 l of animal cell fermentors are available and could contribute more
extensively to the production of recombinant vaccines. Production in the
yeast Pichia pastoris is getting more and more efficient and reliable.
Transgenic plants are still facing important problems. The production level

remains often low. The glycosylation problem is not expected to be solved in
a near future and the uncontrolled dissemination of antigens may not find
solution other than the implementation of confined areas. The only marketed
proteins produced in plants are enzymes for industrial applications. Two
proteins only are under clinical study, dog lipase for patients suffering from
cystic fibrosis and a monoclonal antibody directed against Streptococcus
mutans and preventing tooth decay [118] and none of them has been
approved yet.
The production in milk is the most mature system and is available to

produce reliable recombinant vaccines at a low cost. The spectacular advance
for generating transgenic chicken and for expressing monoclonal antibodies
in egg white (3mg per egg) suggest that this system will soon contribute to
boost the production of recombinant proteins in transgenic animals. The fact
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that Atryn (human antithrombin III) produced in goat milk has been ap-
proved by EMEA contributes companies and investors to be more confident
in transgenesis to produce biopharmaceuticals.
Technical gaps cannot therefore account for the slow development of

recombinant vaccines. Economical reasons are the major limitation in this
field. It is important to note that the vaccines all included are at the eighth
position in the classification of the biopharmaceuticals [118]. The vaccine
business is in the hand of five major companies, which focus their effort on
influenza and childhood diseases. The demand of vaccines including recom-
binant vaccines remains relatively modest as these biopharmaceuticals re-
quire relatively a high investment in research. The amount of product to be
prepared is relatively low. Vaccination is a preventive operation. This implies
a very low level of risk. The price of vaccines is expected to be low, especially
when they are to be used in developing countries. The recent rotavirus vac-
cines are being used in several countries despite the risk of intussusceptions as
the risk due to the vaccination is significantly lower than the risk of infection.
Recombinant vaccines appear to be a better tool than conventional vac-

cines in a number of cases. Their development might become more rapid
during the coming decade as, in an increasing number of countries, govern-
ments recommend or require systematic vaccination for entry of children into
schools. Recent world epidemics such as SARS or influenza incline govern-
ment to support the development of new vaccines. The threat of bioterrorism
is going in the same direction.
The development of recombinant vaccines thus depends on political

decision but technical improvements are still needed to improve the efficiency
of recombinant vaccines and to lower their production cost.
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