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Sparsely labeled NMR samples provide opportunities to study larger biomolecular
assemblies than is traditionally done by NMR. This requires new computational tools
that can handle the sparsity and ambiguity in the NMR datasets. The MELD (modeling
employing limited data) Bayesian approach was assessed to be the best performing in
predicting structures from sparsely labeled NMR data in the 13th edition of the Critical
Assessment of Structure Prediction (CASP) event—and limitations of the methodology
were also noted. In this report, we evaluate the nature and difficulty in modeling unassigned
sparsely labeled NMR datasets and report on an improvedmethodological pipeline leading
to higher-accuracy predictions. We benchmark our methodology against the NMR
datasets provided by CASP 13.
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INTRODUCTION

NMR is one of the most widely used biophysical techniques to study macromolecules such as
proteins and nucleic acids. It operates under many possible regimes, leading to dynamic, structural,
and functional information over a wide range of timescales from the picosecond to the sub-
millisecond timescale (Kempf and Loria, 2002). We focus here on the use of NMR for structure
determination. The three-dimensional arrangement of atoms in a protein dictates its biological
functionality such as catalytic activity, transportation, or mechanism of actions in diseases like
cancer, Parkinson’s, or Alzheimer’s, to name a few (Chaudhuri and Paul, 2006). Understanding the
behavior of proteins allows us to hypothesize about how to control their activity, how they interact
with other biomolecules, or how to mutate them to manipulate their functionality, which in turn will
accelerate the drug discovery process and help us develop new therapeutic methods (Senior et al.,
2020). The PDB database contains ∼160,000 protein structures, being an essential resource to inquire
about protein structure–function relationships. Of these structures, 90% are solved by X-ray
crystallography and about 8% by NMR (Guzenko et al., 2020). Even though this is a small
fraction, protein structures solved by NMR are important, as not all proteins can be crystallized.
They mostly represent underrepresented folds and solvated structures that correspond to
physiological conditions (Fowler et al., 2020). CryoEM is an emerging technique that is
increasingly providing high-resolution structures—it typically deals with larger molecular
assemblies and, in some cases, suffers from heterogeneous map resolution across the
sample.(Abriata and Dal Peraro, 2020).

NMR uses chemical shift data from NOESY experiments to identify contacts between atoms that
are far away along the sequence. In two-dimensional H1-H1 NOE experiments, every hydrogen atom
pair within 6 Å gives a signal in the NMR spectra, and the intensity of the signal decreases
proportionally with r6, where r is the distance between the interacting atom pair (Bax, 1994; Clore
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and Gronenborn, 1998; Bax and Grzesiek, 1993). The resulting
spectra become intricate as many atom pairs are found
interacting in a protein (Gaalswyk et al., 2018) and give rise to
peaks in the spectra. The challenge is to identify the pair of atoms
that gives rise to each peak. This is done by sequential assignment
using through-bond NMR experiments, where each peak results
in multiple ambiguous interpretations. Assigning each signal and
solving its ambiguity is a time-consuming step in traditional
NMR structure determination, although software helps to
automate the process (Huang et al., 2005; Huang et al., 2015).
Given that proteins have large conformational landscapes, the
presence of each contact reduces the viable conformational space
and accelerates the process of exploration and identification of
relevant biological states. When enough contacts are determined,
they can be used to produce NMR ensembles that are
representative of the native state. Historically, molecular
mechanics strategies such as simulated annealing approaches
have been combined with NMR data to produce restrained
conformational ensembles (Clore and Gronenborn, 1998). For
a typical protein solved by NMR, we need ∼20 restraints per
amino acid (Aiyer et al., 2021). In this scenario, the protein force
field and sampling techniques have limited contribution to the
overall structure but are useful to get the right stereochemical
properties and reduced numbers of steric clashes. On the opposite
end, where NMR data are sparse, a good force field and sampling
strategy are needed to identify plausible macromolecular
structures.

Despite significant successes, structure determination by NMR is
currently challenged by the size of the macromolecules. The
sharpness of NMR peaks depends on the relaxation time. The
faster the molecules relax, the broader the peaks become. As a
system gets to a larger size, it possesses slower tumbling rates which
result in short T2 (transverse magnetization) values, leading to fast
relaxation of the excited states and broader peaks (Foster et al., 2007;
Clore andGronenborn, 1998). Broader peaks lead to increasing peak
overlaps, limiting the identification of individual peaks. Generally,
NMR of proteins beyond 200 residues is not successful due to such
peak broadening. Carrying out NMR at high temperatures would
circumvent the slow tumbling rate, but most proteins are not stable
under such non-physiological conditions (Foster et al., 2007).

The question we address here is to expand the use of NMR
beyond the current size limitation. The NMR field is already using
sparsely labeled proteins (e.g., ILVA labeling) to increase the
quality of the spectra on larger proteins (Tugarinov and Kay,
2003). The trade-off involves the reduction of amounts of
restraints per amino acid and a non-homogeneous distribution
of the information along the protein chain. Eventually, this
reduced number of restraints might not be enough to build a
structural model with automated structure calculation tools
(Huang et al., 2005; Huang et al., 2015). This has limited the
progress of NMR-driven structure determinations of larger
proteins. On the flip side of the coin, macromolecules such as
proteins have an inherently large number of conformations they
can adopt, too many to explore them systematically and identify
the native one. This has limited computational prediction of
protein structures until recent machine learning–based
developments (Jumper et al., 2021; Baek et al., 2021).

However, these predictions are not always correct and need to
be validated with real data. Thinking beyond proteins, NMR is
applicable to DNA, RNA, complexes, modified proteins, and
other systems which machine learning might not have been
trained for yet (Becette et al., 2020). This is where integrative
methods which combine experimental data and computer
simulation play an important role. These methods can use
limited information from experiments and combine them with
a physical model to produce atomic resolution structures (Webb
et al., 2018; Gaalswyk et al., 2018) by filling the blanks present in
the experimental dataset. From a computational point of view,
focusing on the region of the landscape compatible with NMR
data greatly improves the chances of sampling native structures.

MELD uses Bayesian inference to integrate data from different
experimental sources with an atomistic force field to predict
structures (MacCallum et al., 2015; Perez et al., 2016). MELD
simultaneously solves the ambiguity of the data and produces
structures which are compatible with NMR data. While more
computationally expensive than traditional methods, it leverages
a physics-based model to fill the gaps in regions where no data
points exist (MacCallum et al., 2015). Such datasets have been
introduced in the CASP (Critical Assessment of Structure
Prediction) event, where MELD was independently scored as
the leading methodology to handle this type of data (Robertson
et al., 2019). CASP is a worldwide protein structure prediction
competition event that happens biennially (Kryshtafovych et al.,
2019), where predictor groups are asked to produce structural
models for sequences that they are provided with and that are
being independently solved experimentally. At the end of the
competition, CASP assesses predictor groups with respect to the
experimental structures with different matrices. This has
provided a way of assessing improvements in the field through
blind, independent testing, which has led to the successes of
AlphaFold, AlphaFold2, and RoseTTAFold (Senior et al., 2020;
Jumper et al., 2021; Baek et al., 2021). CASP-NMR is a sub-
category of CASP (CASP11 and CASP13) which provides sparse,
ambiguous, and noisy unassigned NMR data along with the
protein sequences and asks groups to solve the corresponding
three-dimensional structures. In the 13th edition of CASP,
despite the successes of this approach in the NMR category,
the determined structures, in some cases, were of lower accuracy
than those predicted in the absence of data (Kryshtafovych et al.,
2019; Sala et al., 2019). In this work, we take the previous success
and develop new strategies for better integration between data
and MELD. Through this process, we test multiple new protocols
to identify and overcome bottlenecks that have prevented higher
accuracy predictions in the past. We have selected a protocol that
systematically outperforms other approaches in our
benchmark set.

METHODS

MELD Approach for NMR Data
MELD combines semi-reliable data (i.e., sparse, ambiguous, and
noisy data) from different sources (experimental, bioinformatics,
or machine learning) with molecular dynamics simulations. This
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approach is ideally suitable for dealing with the noisy and
ambiguous datasets arising from deuterated protein samples
(Robertson et al., 2019), such as those provided in CASP13
(Kryshtafovych et al., 2019; Sala et al., 2019; Huang et al.,
2019). MELD uses a Bayesian framework to enforce data into
simulation, mathematically, as follows:

p x|D( ) � p D|x( )p x( )
p D( ) ∼ p D|x( )p x( ), (1)

where x represents a particular conformation at a timestep given
by an atomistic force field. D represents corresponding NMR
data. p (x) is the prior distribution, given by the Boltzmann
distribution, based on the force field we use. p (D) is a data
likelihood that can be regarded as a normalization factor. p (D|x)
is the likelihood of the data given a structure and represents the
probability of satisfying a certain subset of data (the size of the
subset is provided as a parameter, see the protocol section). p (x|
D) is the posterior distribution that we sample from; it provides
the distribution of sampling certain structures given the fraction
of the data that we enforce. MELD uses a Hamiltonian and
temperature replica exchange protocol (H,T-REMD) (Sugita and
Okamoto, 1999; Fukunishi et al., 2002) to sample the energy
landscape efficiently. The temperature changes geometrically
across the replica exchange ladder, while the Hamiltonian
changes nonlinearly as previously described (MacCallum et al.,
2015). At the highest replica index, we enforce high temperature
and no restraints, favoring the exploration of the energy
landscape, while at the lowest replica index, we sample the
lowest temperature in the ladder and enforce the data with full
restraints, leading to the exploitation of minima that are
compatible with a subset of data.

We consider a hierarchy in the dataset which we call a
collection of NOESY peaks. Each peak contains a group of
possible pairs of atoms that could give rise to the NOESY
signal, based on their chemical shift. Each group contains at
least one possible interpretation, but often it has many more.
Each possible contact in the group is represented as a restraint
between two atoms. During the simulations, given the current
structure, all restraints in each group are evaluated, and the lowest
energy restraint is selected to represent the group. Then the group
energies are ranked and the lowest energy groups up to the
selected accuracy of the NOESY peaks are selected. These are the
restraints that will be enforced until the next timestep. Each
replica will have a different set of restraints active. At high replica
indices, we expect the subsets of data enforced to change easily
between timesteps.

NMR Data and Datasets Used
We selected the 13 proteins from the NMR-assisted prediction
category in the 13th edition of CASP. There is a wide distribution
of lengths, ranging from 80 to 326 residues. CASP provided four
different types of data along with sequences for each target:
ambiguous H1-H1 NOE data, dihedral data generated from the
TALOS program (Shen and Bax, 2015), residual dipolar
couplings (RDCs), and evolutionary contacts. We only used
NOE data and dihedral data for each protein target. Synthetic
NOE data derived from chemical shift were provided for all

targets except n1008 and N1008, where real NMR data were
provided (Sala et al., 2019; Robertson et al., 2019). The data were
generated by NMR experts to represent the problems of
ambiguity and noise in the form of missing or spurious peaks
(Sala et al., 2019) typical in these datasets. For targets n1008 and
N1008, real NMR data were provided (Sala et al., 2019; Robertson
et al., 2019). The provided peaks originated from backbone
amides and from methyl hydrogen sidechains of isoleucine,
leucine, valine, and alanine (ILVA) residues. For target n1008,
we were provided the complete peak list with ambiguity. The
provided dihedral data were calculated from chemical shifts using
the TALOS program. All NMR data used in this work can be
accessed via the official CASP13 webpage http://www.
predictioncenter.org/casp13/index.cgi or, alternatively, by using
10.5281/zenodo.3471415 link (Sala et al., 2019).

On one hand, the provided NOE peak lists contain many
possible restraints because of the ambiguity and added noise (Sala
et al., 2019). On the other hand, the dataset is sparse because
ILVA residues are not always homogeneously distributed
throughout the protein sequence, and the correct set of
restraints is not enough by itself to fully determine the native
structure. The nature of the ambiguity-given chemical shifts poses
a challenge for our physics-based approach, where restraints that
are local along the sequence provide no reduction of the
conformational space but can incorrectly bias the ensembles
when they are incorrect. We thus generated four possible
NOE datasets for each target using the data provided during
CASP. In the first dataset, we removed all peaks which contain at
least one interpretation that could be satisfied by residues closer
than four residues along the sequence. For the remaining peaks,
we mapped the sidechain H atoms to the corresponding heavy
atoms, adding 1�A to the NOE. This reduces the ambiguity due to
symmetric hydrogens (e.g., in a methyl group). We named this
dataset the 4-residue ambiguous dataset. A second dataset, named
the 4-residue true dataset, was built by MDTraj (McGibbon et al.,
2015) using the native structures to identify all contacts present in
the 4-residue ambiguous dataset that can simultaneously be
satisfied in the native structure. For the third dataset, named
the 4-residue true clustered dataset, we clustered contacts from the
second dataset in 10 clusters with a k—means clustering protocol
and chose the centroid of each cluster for each target. Considering
the larger size of targets N1005 andN0981D3, we chose 10, 25, 50,
and 100 clusters (or restraints) for N1005 and 10, 20, 30, and 50
clusters (or restraints) for N0981D3. The fourth dataset was built
as the first dataset, by removing only peaks that could be
interpreted with contacts along the same residue. We call it
the 1-residue ambiguous dataset.

MELD Protocols
We use the MELD (MacCallum et al., 2015) plugin to the
OpenMM molecular dynamics package (Eastman et al., 2017)
to carry out H,T-REMD simulations with the ff14SB (Maier et al.,
2015) (for amino acid side chains) and ff99SB (Hornak et al.,
2006) (for backbones) AMBER force field and the GBNeck2
implicit solvent model (Nguyen et al., 2013; Onufriev, 2008).
Each protein was simulated with all four NMR datasets
mentioned above. We started the simulations from the
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extended chain as produced by tleap (Case et al., 2005). With the
first and second NMR datasets, we designed nine different
protocols combining three different temperature ranges
(300–550, 350–550, and 400–550 K) and three different force
constants (87, 350, and 700 kJmol−1nm−2) along the replica
ladder. Under these simulation setups, violating an NMR peak
by 1�A will add an energy penalty of 0.435, 1.75, and 3.5 kJmol−1

for the 87, 350, and 700 kJmol−1nm−2 protocols, respectively,
which is lower than 1 kBT for protocols with the first two
force constants. For the third and fourth datasets, we chose
the best performing protocol on the previous datasets which
corresponds to the temperature range 400–550 K and the force
constant of 350 kJmol−1nm−2.

We tested a total of 20 protocols for each protein. All
simulations have 30 replicas where the lowest replica index
corresponds to the lowest temperature and is then
geometrically increased to the maximum of the range at the
12th replica—and is maintained at the highest temperature for
higher replica indexes. Force constants are scaled nonlinearly
using a scalar that ranges from 0 at the highest replica to 1 at the
12th replica—it is maintained at 1 at replicas below the 12th
replica. As mentioned earlier, at the higher replica indexes, the
high temperature and non-enforcement of NMR data allow broad
sampling of the conformational space, and at lower replica
indexes, MELD starts identifying the best interpretation of the
data compatible with the physics model. As temperature is
reduced, the structures are refined.

For the first and fourth NMR datasets, we enforced an
accuracy of 70 and 80% of total peaks, respectively, and
considered that each peak had to be represented by at least
one restraint from the ambiguous list. For N1005, we trusted
70% for both datasets as trusting 80% resulted in failed simulation
due to large forces. For the two 1,008 targets, we trusted only 20
and 50%, respectively—as our initial analysis showed noise in
these real datasets (Table 1). For the second and third NMR
datasets, we enforced all the restraints as they were pre-filtered to
be correct in the native structure. An exception was made for

N0981D3, where we enforced 80% due to large forces at higher
accuracy values resulting in simulations failing. The backbone
dihedral predictions from TALOS were trusted at 80% confidence
and predicted secondary structures from PSIPRED (McGuffin
et al., 2000) with 60% confidence.

The timestep was set to 4.5 fs by hydrogen mass repartitioning
(Hopkins et al., 2015). Simulation lengths are summarized in
Table 1, where each simulation ran for at least 0.5 μs, and some
were extended to improve convergence depending on the type of
data and system size.

Stability Simulations
We performed implicit solvent simulations starting from the
native structure of each protein to test the stability with the
physical model we used using the AMBER MD package (Case
et al., 2005). We used two different protocols for the stability
test: with NMR data (4-residue true dataset) and without
NMR data. In both cases, we perform 100-ns AMBER
simulation with the GBneck2 implicit solvent model and
the ff14SB amber force field at 300 K. We report the
backbone root mean square deviation (RMSD) from native
along the trajectory in the results section.

Clustering
At the end of each MELD simulation, we performed hierarchical
agglomerative clustering on the second half of the five lowest
temperature replicas using CPPTRAJ (Roe and Cheatham, 2013).
We have used two different clustering protocols for the
aforementioned four datasets. Both protocols use average
linkage for calculating distances between clusters with a
distance cutoff of 1.5�A for simulations with no ambiguity
(second and third NMR datasets) and 2�A for simulations with
ambiguous data (first and fourth NMR datasets) considering the
fact that ensembles generated with ambiguous data are broader
than those with true data. We report the centroid of the most
populated cluster as our prediction (top1), or the best centroid
from the top five population clusters (top5).

TABLE 1 | Noise in NMR datasets and simulations.

— 4-residue ambiguous 1-residue ambiguous

Target Simulation Total True Trusted Total True Trusted

— Length (μs) Peaks Peaks In MELD Peaks Peaks In MELD

n1008 0.5 840 29% 20% 1887 53% 50%
N1008 0.5 205 27% 20% 394 58% 50%
N0968s1 0.5 219 77.2% 70% 597 87% 80%
N0968s2 0.5 219 77.4% 70% 460 87% 80%
N0957s1 0.5 325 91% 70% 944 97% 80%
N0980s1 0.5 207 67% 70% 457 83% 80%
N0981D1 0.5 147 75.6% 70% 259 85% 80%
N0981D2 0.5 177 76.6% 70% 272 82% 80%
N0981D3 1.0 553 74.7% 70% 974 82% 80%
N0981D4 0.5 220 73.3% 70% 454 85% 80%
N0981D5 0.5 227 78.4% 70% 543 86% 80%
N0989 0.5 505 69% 70% 1,146 82% 80%
N1005 1.5 1,200 66.3% 70% 3,100 72% 70%
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Refinement
We refined our top1 predicted structures from the inexplicit
solvent using the OPC water model (Izadi et al., 2014) and the
ff19SB force field (Tian et al., 2020). We used the NMR
assignments that were compatible with the top1 cluster. We
ran these simulations for 1 μs at 298 K for each prediction,
using hydrogen mass repartitioning and a timestep of 4 fs. At
the end of the simulation, we performed hierarchical clustering
and again selected the centroid of the top cluster as a
representative structure of the ensemble.

RESULTS

Sparsely Labeled NMR Leads to
Heterogeneity of Data Distribution and the
Ability to Determine Protein Structures
Sparsely labeled proteins produce NMR datasets that are
heterogeneous in nature due to the distribution of non-deuterated

groups in residues along the sequence (isoleucine, leucine, and valine
in this case). The number of peaks (Table 1) and their specific
arrangement lead to a different level of ambiguity, noise, and
information content. Figure 1 exemplifies the diversity in the
amount of ambiguity and noise and information content in three
proteins in our dataset. When the information is local or large regions
of the protein have no information to guide the structure, the physics
model is responsible for accurately guiding the conformational search.
For protein N0957s1, the true data are distributed along the whole
sequence with long- and short-range contacts present, favoring the
determination of the two domains—but no contacts between the two
domains limits the ability to determine their overall disposition. For
target N0981D4 (Figure 1B), the ambiguity level is low and easier to
solve, but theN-termini domain contains noNMR information, again
resulting in a reduced ability to predict accurate conformations.
Finally, the case of N0989 presents a case of high ambiguity,
where the information is very localized, with few global contacts,
resulting in a challenging dataset to determine the relative orientation
of the domains. Details of ambiguous, true, and satisfied data are
shown in Supplementary Figures S1, S13.

FIGURE 1 | Protein topology determines the heterogeneity in the NMR datasets and their information content. The circle plots are a graph representation of the
protein sequence, with each residue being a blue node. Lines represent contacts present in the dataset due to ambiguity (A). Purple lines represent incorrect
assignments of the peaks and green are the correct assignments. (B) shows only the correct assignments for clarity. (C) shows the experimental structures (N-termini in
blue and C-termini in red).

Frontiers in Molecular Biosciences | www.frontiersin.org November 2021 | Volume 8 | Article 7743945

Mondal and Perez Protein Structures From Sparse NMR

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Some Proteins Are Unstable With the
Physical Model We Use
There were 13 datasets provided by CASP (Sala et al., 2019),
corresponding to 12 different proteins. Some datasets
corresponded to multidomain proteins, for which assessment
was carried out for the whole assembly and for the individual
domains. For the case of N0981, the protein was divided into five
stable structural domains, with NMR data provided
independently for each of the five domains. Our first analysis
identified the correct NMR data on each dataset based on the
published native structure for each protein. We then simulated
each protein in the presence/absence of the true NMR data using
implicit solvent MD (see methods). Supplementary Figure S4
shows that for most proteins, the force field is able to stabilize the
native structure, the only exceptions being N0957, N0989, and
N0981D2. As expected, simulations combining the physics model
and correct assignments of NMR data produced lower RMSD
distributions for all cases. However, target N0989 remained
unstable with our force field combination. This sets the
baseline expectation: a successful approach should be able to
identify the native state in all targets, except N0989.

Enforcing Data Into the Simulation
Increases the Frustration in the Energy
Landscape
By introducing data as restraints, regions of the energy landscape
not compatible with data are shifted to higher energies. This
produces a highly frustrated energy landscape that is harder to
sample. By using a combination of temperature and Hamiltonian
changes in a replica exchange approach (H,T-REMD), we can
facilitate the exploration of the landscape to visit different minima
(compatible with different interpretations of the NMR data). A
critical point in REMD is to favor exchanges and round trips
along the replica ladder to favor sampling. In this work, we
explore how the energy penalty and temperature range affect the
ability to identify native structures.

The complete ensemble at the lowest replica tells us that for 10
systems, we are always able to sample native states using all
protocols and using ambiguous or assigned data, whereas for
target N0989, we can never sample native-like conformations.
However, sampling native-like structures does not always lead to
identifying them as the most populated cluster—or even amongst
the top five predictions. Supplementary Figures S2, S15 show
the ability to sample and identify native-like conformations in the
ensembles, respectively. When we use correct assignments of the
data, the preferred conformations from clustering (top1) are often
native like, and only a few cases require looking at the top5
clusters to identify the native structure. However, when the
assignments are not given, the challenge of identifying correct
restraints at the same time as the method samples correct
conformations leads to a large difference between top1 and
top5 predictions, with top1 missing the native conformation in
many cases, indicating that longer simulations would likely be
needed. The disparity between the ability to sample and the ability
to identify native-like conformations led us to further analysis in

search for the causes. Comparing across protocols, using a higher
temperature (400 K) leads to better sampling and identification of
native states. An orthogonal approach is to change the force
constants affecting how strongly we enforce the data. Lower
restraint energies reduce the frustration but also the guiding
power of the restraints. Indeed, we observe no benefit from
reducing the force constants (87 kJ.mol−1.nm−2) when the data
are ambiguous. Similarly, increasing the force constant
(700 kJ.mol−1.nm−2) increases the frustration and backtracking
issues (Capraro et al., 2008). Our preferred protocol for using
unassigned NMR data uses 400 K as the lowest temperature and
350 kJ.mol−1.nm−2 as the maximum force constant in the H,T-
REMD ladder. This protocol emerges as significantly better than
the rest in capturing the native state in the top1 cluster (Figure 2).
Throughout the manuscript, we report the performance of the
different protocols and focus on this protocol when providing
overall agreement with experimental structures.

The failure to identify native structures in all cases can in part
be explained by the large restraint energies identified by our
protocols, which quantify violations of the NMR peaks
(Supplementary Figure S16). We find that restraint energies
are a good indicator of the accuracy of the structure: low
restraint energy structures from the ensemble are easily
identified and often result in improved agreement with the
native structure. Additionally, NMR violations can be
evaluated as a post-analysis on the ensemble at different
levels of accuracy. We often find that structures that are
more native-like are more robust to analyzing the ensembles
with high level of restraints—meaning that many contacts are
synergistically satisfied, thanks to the force field, despite not
being enforced in the simulation. In fact, analyzing the lowest
restraint energies in this way allows us to identify structures that
are more native like for several of the targets than using cluster
centroids (Figure 2).

However, we also see instances of restraints that cannot be
satisfied because they would require chains to cross each other,
causing backtracking issues (Capraro et al., 2008). The amount
of data is thus not the only indicator of our ability to capture
the native state, as greater amounts of data can lead to greater
bottlenecks and backtracking issues. We rationalize that better
protocols will present a more smooth funneling behavior,
leading from unfolded states to the native state. We thus
quantify the funneling of each system by following the
RMSD distribution of the protein across replicas. At high
replica indices, we see broad RMSD distributions, which
narrow down as the replica index is reduced. The median of
the distribution at each replica should also be closer to the
experimental structure as the replica index decreases. We
indeed find very different performances of the protocols
under this metric (Figure 3). A second approach to reduce
the frustration is to reduce the number of restraints used in
simulations. We find that the information content of a set of
restraints is very dependent on the distribution of the
restraints along the chain. Thus, some restraints are
redundant and help little in reducing the conformational
space. Clustering the correct assignments of the NMR data
significantly reduces the frustration in the system and allows
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for more efficient simulations. However, the ensembles are
larger and the results are not as close to the native structure
(Supplementary Figure S17)—these types of simulations
would need longer simulation times to converge. However,
the quality of the structures provides a good starting point for
refinement using the whole NMR dataset.

Multi-Domain Proteins
When analyzing the funneling plots, we notice that several
multimeric and multidomain proteins are sampling native-like
structures in the middle replicas but not at the bottom replicas
(Figure 3). Since the bottom replicas are used for clustering, we
often do not make good predictions in these systems. This is
especially apparent in the case of N0957s1, consisting of two
domains. Only protocols with a higher temperature range have a
funneling behavior.When looking at the behavior of each domain
in the trajectory, we notice that domain-2 has a strong funneling
behavior in all cases (Supplementary Figure 22), especially at low
temperature, whereas domain-1 exhibits a pattern of falling into
an alternative conformation after sampling the native one
(Supplementary Figure S19). Looking at the two domains, we
have a coil–coil domain packing against and alpha + beta domain

through a flexible hinge. At lower temperatures and with the force
field combination we are using, the method favors compact
conformations, whereas at higher temperatures, it favors a
more open conformation. This hinge motion is expected and
can in fact be observed by looking at the first deformation
direction using an anisotropic network model (Eyal et al.,
2015). The experimental structure in this case is solved with a
protein in between two domains present in this protein, fixing
their relative position (Supplementary Figure S18). This type of
behavior can also be observed in targets N1005 (Supplementary
Figure S23), N0981D2 (Supplementary Figure S21), and, to a
lesser extent, N0968s1 (Supplementary Figure S20) and
N0981D4 (Supplementary Figure S24).

We found that explicit solvent refinement using the top1
structure with the assigned NMR data that MELD produces is
not useful when the initial model has low accuracy (RMSD higher
than 6�A). Similarly, when the predicted structure is already very
good (RMSD below 2�A), our refinement approach is not useful.
However, when the RMSD of the predicted structure is in
between 2�A and 6�A, we find that the refined models have
lower RMSD (at least by 0.5�A) than the actual MELD
prediction (Supplementary Figure S25).

FIGURE 2 | Quality of structure predictions. (A,B) uses the 4-residue ambiguous dataset and (C,D) use the correct assignment of the NMR data (4-residue true
dataset). We compare nine different HT-REMD protocols (black dots). The blue dots represent the lowest restraint energy structure of the best performing protocol (k �
350 kJmol−1nm−2 and T � 400 K). The lower panels quantify each MELD protocol’s ability to identify the native structures as either red (success) or white (failure) in the
top1 (upper triangle) or top5 (lower triangle) cluster centroids. The y-axis notation is k_T, where k refers to the force constant used (kJmol−1nm−2) and T to the
temperature in K.
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DISCUSSION

Recent advances in machine learning are providing protein
models at an unprecedented level of accuracy (Jumper et al.,
2021; Baek et al., 2021). However, these methods do not work for
all proteins, they might not get correct structural details
throughout the whole sequence, and it is not always clear
what conformation is generated (e.g., holo/apo in the case of
complexes). Sparsely labeled NMR data bridges two worlds: on
one side it allows the use of NMR for larger molecular systems,
and on the other, it provides experimental information with
which to validate models coming from machine learning
approaches (or other methods). The data used in this study
come from assuming perdeuterated protein samples, with
hydrogens along the backbone amide and some methyl groups
(Sala et al., 2019). The data used are not fully assigned, but rather,
from the experimental NOESY peak-list and known chemical
shift; each peak is assigned a set of multiple interpretations (pairs
of atoms) that could give rise to the peak. Hence, the dataset is
ambiguous and sparse. It is sparse because there is not enough
data to completely determine the molecular system using
standard NMR tools, as whole regions of the protein might
not have any NOESY peak to determine the conformation.
The data are additionally noisy, meaning that some NMR
peaks might be erroneous and some possible interpretations in
the ambiguous data might be missing from the dataset (including

the correct interpretation) (Sala et al., 2019). Moving forward,
models from machine learning could be helpful in reducing the
ambiguity and a good starting point to solve the ensembles that
agree with the sparse set of data. In this work, we focus on solving
the ambiguity in the dataset and the structure starting from
extended datasets. This can be helpful for situations for which
no good models exist or other polymeric material for which
machine learning cannot be trained due to unavailability of large
databases.

Computational NMR tools such as AutoStructure, ADSP,
NOAH, ARIA, or CANDID attempt to solve the ambiguity in
the data in order to use themwith a structure generation tool such
as XPLOR/CNS or DYANA. (Huang et al., 2005, 2015;
Mumenthaler and Braun, 1995; Nilges, 1995; Herrmann et al.,
2002; Kuszewski et al., 2004; Brünger et al., 1998; Güntert et al.,
1997). These tools require a substantial understanding of NMR
data to produce a subset of possible restraints that determines the
structure amongst all the possibilities defined by the ambiguity.
Exploring all possible interpretations of the data is not viable, but
the right subset should be compatible with the internal geometric
features of a protein. We use an alternative approach, MELD,
which identifies the best interpretations of the NMR data through
Bayesian inferences using a physics model as a prior. Such an
approach simultaneously solves the ambiguity in the dataset and
the best structural ensembles compatible with different subsets of
the data and the physics model. Other tools like Rosetta have been

FIGURE 3 | Funneling plots for target N0957s1. Each panel is a different protocol. Each line is a violin plot of the RMSD distribution at that replica, with the median of
the distribution marked in black. The vertical cyan line shows RMSD � 4 Å.
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previously used to predict structures given this type of ambiguous
data (Raman et al., 2010; Kuenze and Meiler, 2019). We showed
during the 13th CASP event that MELDxMD significantly
improved the accuracy of the produced structures over other
methods. The approach was not always successful, and in some
cases, the performance was below that of methods that did not use
NMR data (Robertson et al., 2019).

Standard NMR approaches are not suitable for these sparse
datasets. Our choice of a physics-based approach is for multiple
reasons: 1) it provides a way to model regions where no data are
available and 2) it provides a way to sample the ambiguity and
noise in the NMR dataset. From the physics point of view, using
NMR data in simulation greatly reduces the conformational
landscape, but at the same time, it increases the frustration in
the energy landscape, leading to backtracking issues where
satisfying an NMR restraint early on might preclude satisfying
others (Capraro et al., 2008). The stability test starting from the
native structure is a sanity check for the procedure. We do not
expect our methodology to work if the native structure is not
stable under the simulation conditions. These failures can be due
to the force field or the limitations in modeling the system such as
using the monomer or single-domain structure instead of the
whole protein assembly. This is typically a caveat in blind tests,
where it is hard to tell a priori if the structure of the monomer will
need other subunits to be stable. Indeed, in the dataset provided,
T0980 (pdbid: 6GNX) is a heterotetramer, T0968 (pdbid: 6CP9)
is a heterodimer (each monomer models as s1 and s2), and T0957
is a heterodimer (pdbid: 6CP8) (Supplementary Figure S18).
Only T1005 (pdbid: 6Q64) and T1008 (pdbid: 6MSP) are
monomers. For T0981 and T0989 complexes, there is no
experimental structure published yet, but the first consists of
several interacting domains, which are simulated independently.
T0989 is a homotrimer, and each subunit is made of two different
domains. The data provided in CASP were generated based on
taking individual monomers. Our stability tests show that the
presence of NMR data indeed leads to stabilizing some structures
that would otherwise not be stable with the force field alone
(N0957s1 and N0981D2), while for one protein (N0989), the
combination of true data and the physics model we use is not
enough to stabilize the native fold (Supplementary Figure S14).
This failure for N0989 is not surprising as the contacts between
monomers is needed to stabilize the native (homotrimer)
structure. As the trimer structure has not been released to the
PDB yet, we can only know the monomer structure based on the
CASP-released monomeric structure.

The intensity of an NOE peak is proportional to the ensemble
average distance between pairs of atoms as < 1/r6 > . This is a
well-known issue for modeling NMR data (Bonvin et al., 1994),
which implies that it is not always possible to satisfy all data
simultaneously in a single structure (e.g., imposing restraints).
When the NMR peak-assignments are known, ensemble
refinement is possible and commonly used (Konrat, 2014;
Ángyán et al., 2010; Crehuet et al., 2019). However, when the
assignments are not known, and we sample conformational
ensembles at the same time as different interpretations of the
data, such ensemble averaging becomes more challenging. Our
choice for computational efficiency in MELD simulations is to

evaluate data for the instantaneous structure being sampled. To
reduce the problems that would arise from having to satisfy all
data simultaneously, we enforce a smaller subset of the data than
the known accuracy in the dataset—in this way, not all correct
peaks need to be simultaneously enforced. At the end of the
simulations, MELD provides the most likely structures and the
assignment of the NMR data. Thus, a possible last step of
refinement would be able to produce an NMR ensemble from
the MELD-assigned data in explicit solvent. However, the
emphasis and novelty in this work are the step of producing
the most accurate initial structural model and assignment of the
data. Once the data are assigned, standard simulation tools that
are already well tested can be used (Bonomi et al., 2016).

We emphasize the importance of curating the datasets prior to
running MELD or other approaches. Mathematically, given the
list of chemical shifts, it is possible that a certain peak would be
satisfied by residues that are close in the sequence space—given
the ambiguous list for each peak, this can be a correct
interpretation or incorrect one. In our physics-based model,
residues close in a sequence are statistically more likely to be
in contact with each other; hence, they will be selected as low-
energy restraints very often. At best, such information is not
helping with the sampling, and at worst, we are selecting incorrect
information that can prevent us from sampling native
conformations. We thus remove all peaks where any
interpretation is satisfied by atoms belonging to residues closer
than four amino acids in the sequence space. We indeed find that
this systematically improved predictions over the majority of the
protein systems (Supplementary Figure S17). In this process, we
are effectively disregarding potentially useful information, and
indeed, we see a drop in the remaining peak accuracy from an
initial near 90% accuracy to ∼75% accuracy (Table 1).

To identify if failures in obtaining the correct structure are due
to the assignment or the sparsity, we added a new dataset in which
we fedMELD the correct interpretation of the data (4-residue true
dataset). We find that in these conditions and under an array of
different MELD protocols, the results are significantly better for
many proteins (Figure 2). This naturally sets the maximum
expected efficiency of the approach. This dataset helps us
distinguish sampling failures due to the sparsity in the dataset
from those originating from the ambiguity in the data. We expect
target N0989 and its two domains to be incorrect, since they are
only stabilized in the trimer structure. The other two failures are
N0981D2 and N0981D4. These are again difficult to evaluate in
the context of the single domain. In particular, N0981D4 contains
a short helical terminus that is not packed against the rest of the
domain; removing this piece in the analysis results in a successful
prediction of the reminder of the domain (Figure 4 and
Supplementary Figure S26). MELD is thus efficient at using
the sparsity in the data but is not as efficient in navigating the
whole set of ambiguity in the dataset.

Target N0981D2 contains two non-consecutive fragments
forming a protein domain: the first is 71 residues long
(residue 1–71) and the second is nine residues long (residue
72–80), where the short fragment forms a beta strand packing
against the larger one. The MELD prediction has an RMSD of
9.13�A from native. Sampling failures in this case respond to how
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the data are distributed in the dataset and how we define the
ambiguity and noise levels. First, we find that given the accuracy
of the data, MELD satisfies all data on the larger fragment, with no
restraints guiding sampling for the smaller one (despite correct data
being available).Without enforcing the inter-fragment restraints, the
small fragment could not attain its native conformation. Second,
residues 1 to 14 in the first fragment form a strand, but it cannot
adopt the twisted conformation found in the native structure
(showed in blue in Figure 5). Few contacts in the NMR data
correspond to this region (Supplementary Figure S8), further

reducing the chances of exploring the native conformation.
Target N0981D2 has a similar fold to that of N0981D1, and
interestingly, MELD is able to capture the native form for
N0981D1 (RMSD � 3.45�A) as there are enough contacts in the
range of residues 1 to 14 to stabilize the native conformation
(Supplementary Figures S4, S7). We realized a posteriori that a
modified protocol where we separately enforce inter- and intra-
fragment NOESY information would have led to better results.
Under this implementation,MELDmodels residues 72 to 80 (shown
in cyan) better, and the Cα-RMSD excluding residues 1 to 14 is now

FIGURE 4 | Performance of the top1 cluster (red) superposed on the native structure (cyan) for each protein and domain. The numbers below the target name
represent the Cα RMSD (Å) and GDT-TS values.

FIGURE 5 | N0981D1 and N0981D2 domains are structurally similar, differing in the N-termini conformation (shown in blue). MELD captures the difference in
N-termini conformation, but initial predictions fail for the cyan termini. In N0981D2, this corresponds to an independent fragment, which our standard protocol fails to
bind into the main fragment. (A) Native structure for N0981D2. (B)MELD prediction for N0981D2. (C)MELD prediction from a modified protocol to use two fragments.
(D) N0981D1 native structure. (E) MELD prediction for N0981D1.
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3.6�A (Figure 5). This is further supported by the simulationwith the
4-residue true dataset, where we still cannot model residues 1–14
consistently, but the small fragment (residues 72–80) can be
modeled better due to trusting 100% of the true contacts.
However, this is not a generalizable or transferable strategy, as, in
general, we only know the overall accuracy of the dataset, and we
cannot say anything about the accuracy of subsets of the data a
priori.

When the correct assignments are known, most protocols are
efficient at sampling native structures. However, their performance
drops significantly when it comes to identifying native-like structures
on the basis of the lowest free energy structures (top1 or top5).
Increasing the ambiguity reduces the sampling ability and the
identification of native structures and shows more marked
differences between computational protocols. Within the MELD
Bayesian inference approach, there is a trade-off between the
reduction of the conformational space, thanks to using restraints
and the increased frustration of the system. This leads to new
bottlenecks, where satisfying some restraints might limit the ability
to formother restraints. Ideally, in the REMDapproach, restraints that
are unfavorable will be lost and new ones established. However, as
walkers go up the replica ladder, all restraints loosen up and can
therefore be lost. There is no mechanistic information in MELD that
follows a kinetic folding pathway, but rather, the exclusion of
conformation regions that are not in agreement with any subset of
data. In this sense, the information is local, affecting each peak
independently of the rest. We expect the physics model to account
for the cooperativity of restraints. Looking at the different MELD
protocols we designed, some are more suitable for sampling native
states than others. Most protocols are able to sample native-like
conformations in the ensembles—pointing to an efficient search
strategy. But, the performance drops significantly when trying to
identify the native state through clustering (even if we knew the correct
assignment of the data). Interestingly, in the presence of ambiguity and
noise, the best performing protocols shift to those using larger force
constants and temperature. Part of it can be explained through amore
funneled behavior and a greater discriminatory power from the
restraints. In essence, we are shifting the balance between the
restraints and the force field. In the case of traditional NMR, with
20 restraints per amino acid, the system is determined with relatively
simple sampling methods and even with simple force fields. As the
data become more sparse, the balance shifts more toward the force
field. While some protein systems are robust independently of the
method, others change significantly. This in turn ties into the
distribution of the data. Some systems like N1005 or N0989 have
a very local distribution of restraints, whereas others such as N1008
have many high contact-order restraints, which reduce the
conformational landscape significantly. Thus, despite only 20% of
the data being enforced for N1008, the results are significantly better
than for other proteins of similar size.

The NMR datasets provide information for atomic contacts
that are close in space but tell us nothing about long distances
between residues. This, for example, translates in packing
between helices, positions of loops, or relative positions
between domains to have little information. On the other
hand, it is very informative for packing β-strands. For most
of the targets, the data were synthetically created based on

well-determined protocols by NMR experts (Sala et al., 2019).
They were derived based on the monomer structure, whereas,
in reality, some of these proteins are multimeric. Considering
homo-mers such as the N0989 trimer would increase the
ambiguity in the dataset, where each restraint could now be
satisfied in either the monomer (intra) or between monomers
(inter). MELD should be able to solve this type of ambiguity as
well but is likely to require longer simulations. It will be
interesting to see the prevalence of such datasets in future
blind events.

With the current physics-based approach, it is more important
to identify the right data than to have a lot of it. For instance,
clustering the correct data and using 10 contacts is already able to
predict native-like topologies for many systems—with a few more
clustered contacts needed for the larger proteins. One would be
tempted to reduce the overall number of satisfied restraints from
the larger dataset to reduce the frustration in the energy
landscape, but this often leads to redundant contacts being
selected. Furthermore, for the current examples, we used the
known assignments before clustering the data. A maximum
entropy approach that could deal with the ambiguity of the
data for clustering would increase the chances of creating
funneled, low-frustration energy landscapes. The information
is promising for future biophysical experiments, which might
produce even greater degrees of sparsity.

We focused on the optimization of sparse NOE data in this
work as a source of distance restraints on the system, despite the
availability of residual dipolar coupling (RDC) data for the targets
we explored. RDCs inform the system of orientation preferences
between residues (Lipsitz and Tjandra, 2004) and can be a useful
tool to complement distance restraints in structure
determination, especially for multimeric domain proteins and
protein complexes. While NOE informs about residues at short
distances from each other, RDCs provide structural information
independently of the distance between residues (Prestegard et al.,
2005). Despite their potential, they have been more challenging to
incorporate into structure determination pipelines due to their
dynamical and ensemble nature, with only 124 protein structures
in the PDB using RDCs (Cole et al., 2021). Recent approaches for
structure determination using RDCs (Cole et al., 2021; Gaalswyk
et al., 2021) are promising additions to the current pipeline,
synergistically working toward protein structure determination.

CONCLUSION

NMR is a versatile experimental technique capable of providing
structural and dynamical information. Sparse labeling techniques
can provide opportunities to overcome size limitations in protein
structure determination. The development of computational
tools that synergize state-of-the-art computational sampling
approaches with experimental data provide knowledge beyond
what each independent method can accomplish. We have shown
here a marked improvement over previous approaches at the
problem of structure determination in the presence of ambiguous,
sparse, and noisy NMR data. We believe that efforts to unify and
make experimental data more accessible to non-experts like the
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NEF initiative will aid in the development of more computational
tools working synergistically with NMR data.
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