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• COVID-19 reveals radiological signatures 
that can be detected using chest X-rays.

• The evaluation of radiological signatures is 
a time-consuming and error-prone task.

• Therefore, there is a need to automate the 
analysis of chest X-rays.

• An automatic analysis of chest X-rays is 
achieved using deep learning models.
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The most widely used novel coronavirus (COVID-19) detection technique is a real-time polymerase chain 
reaction (RT-PCR). However, RT-PCR kits are costly and take 6-9 hours to confirm infection in the 
patient. Due to less sensitivity of RT-PCR, it provides high false-negative results. To resolve this problem, 
radiological imaging techniques such as chest X-rays and computed tomography (CT) are used to detect 
and diagnose COVID-19. In this paper, chest X-rays is preferred over CT scan. The reason behind this 
is that X-rays machines are available in most of the hospitals. X-rays machines are cheaper than the 
CT scan machine. Besides this, X-rays has low ionizing radiations than CT scan. COVID-19 reveals some 
radiological signatures that can be easily detected through chest X-rays. For this, radiologists are required 
to analyze these signatures. However, it is a time-consuming and error-prone task. Hence, there is a need 
to automate the analysis of chest X-rays. The automatic analysis of chest X-rays can be done through 
deep learning-based approaches, which may accelerate the analysis time. These approaches can train 
the weights of networks on large datasets as well as fine-tuning the weights of pre-trained networks 
on small datasets. However, these approaches applied to chest X-rays are very limited. Hence, the main 
objective of this paper is to develop an automated deep transfer learning-based approach for detection 
of COVID-19 infection in chest X-rays by using the extreme version of the Inception (Xception) model.
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Extensive comparative analyses show that the proposed model performs significantly better as compared 
to the existing models.

© 2020 AGBM. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

The first case of novel coronavirus (COVID-19) was found in 
Wuhan, China in December 2019. It was assumed that this virus 
has been originated from animals that have zoonotic nature. How-
ever, the source of this virus has not been identified [1]. The 
first person has been infected from the Wuhan market in Hubei 
Province. Thereafter, it has been spread in China and infected 
persons of any age across the whole World [2]. The disease 
caused by this novel coronavirus is known as COVID-19. The World 
Health Organization (WHO) announced COVID-19 a pandemic on 
11 February 2020. The total number of infected cases are 7,949,710 
with 434,177 causality and 4,087,348 recovered cases on 15 June, 
2020 at 11:27 GMT [3]. The second-largest population country, In-
dia has 333,008 confirmed cases with 9,520 causality and 169,689 
recovered cases.

COVID-19 is a respiratory disease that is instigated by a novel 
coronavirus. The common symptoms appear in the infected per-
son are fever, cough, sore throat, and difficulty in breathing [4]. 
Vanishing of taste, tiredness, aches, and nasal blockage can also 
be observed in some patients [5]. The duration between contam-
ination and the first indication of symptoms may be extended to 
14 days [6]. The infection of this virus is transmitted through the 
droplets of patients such as coughing and sneezing. If the person 
comes indirectly or indirectly contact with an infected person, then 
the contacted person gets infected. The vaccines/drugs of this dis-
ease are not available until now. Isolation and social distancing are 
the only solutions to this infection. Therefore, the early detection 
of infected persons is required to stop the spread of infection.

The most widely used COVID-19 detection technique is real-
time polymerase chain reaction (RT-PCR). However, RT-PCR kits are 
costly and take 6-9 hours to confirm infection in the patient [7]. 
Due to less sensitivity of RT-PCR, it provides high false-negative 
results. To resolve this problem, radiological imaging techniques 
such as chest X-rays and computed tomography (CT) are used to 
detect and diagnose COVID-19 [8]. In this paper, chest X-rays is 
preferred over CT scan. The reason behind this is that X-rays ma-
chines are available in most of the hospitals. X-rays machines are 
cheaper than the CT scan machine. Besides this, X-rays have low 
ionizing radiations than CT scan [9]. COVID-19 reveals some radio-
logical signatures that can be easily detected through chest X-rays. 
For this, radiologists are required to analyze these signatures. How-
ever, it is a time-consuming and error-prone task. Hence, there is 
a need to automate the analysis of chest X-rays.

The automatic analysis of chest X-rays can be done through 
deep learning-based approaches, which may accelerate the anal-
ysis time. These approaches can train the weights of networks on 
large datasets as well as fine-tuning the weights of pre-trained net-
works on small datasets [10]. However, these approaches applied 
to chest X-rays are very limited to [6]. Hence, the motive of this 
paper is to develop an automated deep learning-based approach 
for the detection of infection in chest X-rays.

The main contribution of this paper is:

1. To overcome the less sensitivity of RT-PCR, chest X-rays images 
are used in this paper to detect and diagnose of COVID-19.

2. In this paper, chest X-rays is preferred over CT scan. The rea-
son behind this is that X-rays machines are available in most 
of the hospitals. Even, X-rays machine is cheaper than the CT 
scan machine. Besides this, X-rays has low ionizing radiations 
than CT scan.

3. COVID-19 reveals some radiological signatures that can be eas-
ily detected through chest X-rays. Therefore, automatic analy-
sis of chest X-rays can be done through deep learning-based 
approaches, which may accelerate the analysis time.

4. Extreme version of inception (Xception) can train the weights 
of networks on large datasets as well as fine-tuning the 
weights of pre-trained networks on small datasets.

5. Extensive comparative analyses are also drawn to evaluate the 
performance of the proposed model by using various perfor-
mance metrics such as accuracy, f-measure, sensitivity, speci-
ficity, and kappa statistics.

The remaining structure of this paper is organized as follows. 
Section 2 presents related work. The proposed deep learning-based 
technique is presented in Section 3. Section 4 discusses the exper-
imental results and discussion. The concluding remarks are drawn 
in Section 5.

2. Related work

Recently, deep learning techniques have been used for the anal-
ysis of chest X-rays in a short period. Due to low ionizing radia-
tions and portability of X-rays, it has been preferred over the chest 
CT scan [11].

Wang et al. [12] developed a deep convolutional neural net-
work (CNN) for the identification of COVID-19 cases from chest 
X-rays. Their model was trained over 13,975 chest X-ray images. 
The classification accuracy obtained from the model was 98. 9%. 
Hemdan et al. [13] developed a COVIDX-Net for automatic de-
tection of coronavirus infected persons using chest X-ray images. 
COVIDX-Net was trained on 50 normal and 25 confirmed COVID-19 
cases. The classification accuracy obtained from COVIDX-Net was 
91% for COVID cases. Narin et al. [14] presented three different 
CNN models such as ResNet-50, Inception-ResNetV2, and Incep-
tionV3 for classification of COVID-19 from the chest X-ray images. 
ResNet50 provided better classification accuracy of 98% than the 
other models. Sethy and Behera [15]utilized the pre-trained trans-
fer technique as ResNet-50 for extracting the imaging features from 
the infected patients. These features were applied to support vec-
tor machines (SVM) for classification. The classification accuracy 
obtained in the developed model was 95. 348%.

Farooq and Hafeez [16] presented a multi-stage fine-tuning 
scheme for pre-trained ResNet-50 architecture. The developed 
model named COVIDResNet. The accuracy obtained from COVIDRes-
Net was 96.23%. Asnaoui et al. [17] presented a comparative 
study of eight transfer learning techniques for the classification 
of COVID-19 pneumonia. This model was trained on 5856 chest 
X-ray images. MobileNet-V2 and Inception-V3 provided 96% classi-
fication accuracy. Abbas et al. [18] presented a deep CNN named 
as Decompose, Transfer, and Compose (DeTraC) for distinguishing 
the symptoms of COVID-19 using chest X-rays. They investigated 
the irregularities in class boundaries using the decomposition pro-
cess. DeTraC model attained 95.12% accuracy with a sensitivity 
of 97.91%. Chowdhury et al. [19] proposed an image argumen-
tation technique with a transfer technique for the detection of 
coronavirus infection on chest X-ray images. Four well-known pre-
trained techniques namely, AlexNet, ResNet-18, DenseNet-201, and 
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Fig. 1. Architecture of deep convolution neural network.
SqueezeNet are used for classification. The classification accuracy 
obtained from SqueezeNet was 98.3% with 99% specificity and 
96.7% sensitivity.

Alqudah et al. [20] used machine learning techniques namely, 
SVM and random forest (RF) for early detection of COVID-19 symp-
toms in the patients. They utilized the CNN model for feature 
extraction. After that machine learning techniques are applied to 
extracted features to classify COVID-19 and non-COVID-19 cases. 
The accuracies obtained from SVM and RF were 90.5% and 81%, re-
spectively. Ghoshal and Tucker [21] utilized Bayesian CNN (BCNN) 
to diagnosis the COVID-19 using a chest X-ray. They investigated 
the significance of dropping weights of BCNN. The correlation be-
tween uncertainty and prediction accuracy was investigated. The 
classification accuracy obtained from BCNN was 90%. Salman et 
al. [22] utilized a trained CNN for detecting the coronavirus infec-
tion on chest X-ray images. The sensitivity and specificity obtained 
from the model were 100%.

Li and Zhu [23] designed a deep CNN for the extraction of 
imaging features using chest X-ray images. The developed model 
is named as COVID-Xpert. DenseNet based transfer learning tech-
nique is used to distinguish between COVID-19 and viral pneu-
monia cases. Karim et al. [24] developed a DeepCOVIDExplainer 
for automatic detection of COVID-19 symptoms from the patien-
t’s chest X-ray. They used an ensemble technique utilizing image 
processing and transfer learning techniques. The proposed method 
attained 96.12% classification accuracy for COVID-19 cases. Apos-
tolopoulos and Mpesiana [25] used a transfer learning approach 
for the detection of coronavirus patterns from the patient’s chest 
X-ray. They utilized 224 confirmed COVID-19, 714 viral pneumonia, 
and 504 normal images. The accuracy obtained from this model 
was 98.75% for binary class. Ozturk et al. [26] developed a DarkNet 
Model for automatic detection of an infected person using chest X-
ray images. DarkNet model was used to classify the binary and 
multi-class problems in COVID-19. It produced the classification 
accuracies as 98.08% and 87.02% for binary and multi-class prob-
lems, respectively.

Medhi et al. [27] implemented deep CNN for detecting and 
diagnosis of coronavirus infection using chest X-ray. They tested 
their model on 150 confirmed cases obtained from the Kaggle 
dataset. The accuracy obtained from their model was 93%. Asif and 
Wenhui [28] proposed an automatic COVID-19 detection system 
using chest X-ray images. They used Inception V3 with transfer 
learning for detecting infection in the patient’s chest. Their model 
was tested on 1341 normal, 1345 viral pneumonia, and 864 COVID-
19 images. This model achieved was 96% classification accuracy. 
Loey et al. [29] implemented a GAN based deep learning technique 
for COVID-19 detection in chest X-ray. They investigated three 
models such as AlexNet, GoogleNet, and ResNet-18. GoogleNet 
model attained 80.6% and 99.9% for four and two class cases. As-
naoui and Chawki [30] presented a comparative study of seven 
different deep learning architectures for detecting the symptoms of 
COVID-19 in chest X-ray images. These models were trained over 
6087 images. Inception-ResNetV2 provided the classification accu-
racy of 92.18%.
3. Proposed model

This section discusses the proposed deep transfer learning-
based COVID-19 disease detection model. Initially, a deep convo-
lutional network is defined. Thereafter, a deep transfer learning 
model is defined. Finally, the proposed deep transfer learning-
based model is defined. Fig. 1 illustrates the layered structure of 
the deep convolution neural network.

Initially, to extract the features of images, convolutional layer 
is applied by using different masks. It produces the low-level fea-
tures. An activate function is then used as [31–33]:

Rl = F (
∑

k∈Lr

ak ⊗ Xl + Sl) (1)

Here, Rl defines latent demonstration of kth feature of the layer. 
F represents an activation function, ak defines lth feature of Lr of 
the former layers. In case of first layer, lth ⊗ channel of input im-
ages with Lr channels. Xl and Sl define the coefficients and biases 
values, respectively, of kth feature map. Rectified linear unit (ReLU) 
is utilized as an activation function F . It can be defined as:

F (a) = max(0,a) (2)

If F < 0, then, the value of a is 0 and returns a otherwise.
The n-dimensional vector can be decomposed into real num-

bers ∈ [0, 1] by using the Softmax function. It can be computed 
as:

P j = qyb
∑L

l=1 c y L
, j = 1,2,3, ...., L (3)

Here, yj defines the input tensor’s parameter.
In this paper, a cross-entropy is used as a loss function. It can 

be defined as:

T (Z P ) = −
∑

j

Z j log(P j) (4)

Here, Z j defines label of ith image. P j shows ith parameter of 
obtained results of softmax function.

To minimize the size of features space, pooling layer is consid-
ered. Average and max pooling operations are utilized to obtain 
average and maximum values, respectively.

Finally, the fully-connected layer is utilized to map the output 
to flatten and linearly separable space. Softmax is then utilized to 
test COVID-19 disease in chest x-ray images.

However, a convolutional neural network may suffer from the 
under-fitting issue, as many potential features may not be ex-
tracted. Therefore, in this paper, an extreme version of the Incep-
tion (Xception) model is used. Fig. 2 shows the architecture of the 
xception model (for more details please see [34]).

Fig. 3 shows the proposed deep transfer learning based COVID-
19 disease testing model for chest x-ray images. It utilizes deep 
convolutional neural networks and Xception model to build the 
model.
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Fig. 2. Architecture of extreme version of Inception (Xception) model (adapted from [34]).

Fig. 3. Architecture of extreme version of Inception (Xception) model.
4. Experimental results and discussion

4.1. Dataset

We have used three class chest x-ray datasets obtained from 
[26]. It contains three classes as COVID-19 (+), pneumonia (+) but 
COVID-19 (-), and other infection except COVID-19 and pneumonia. 
We have used 70% dataset for training purpose. Remaining dataset 
is further divided into 10% and 20% fractions for validation and 
testing purpose, respectively.
4.2. Comparative analyses

Fig. 4 shows the true positive rate and false positive rate anal-
yses among the proposed and some well known competitive mod-
els. It is clearly shown that the proposed model achieves a signif-
icantly better area under curve (AUC) values as compared to the 
competitive models.

Table 1 shows training analyses of the proposed and compet-
itive models in terms of accuracy, f-measure, sensitivity, speci-
ficity, and kappa statistics. It clearly shows that the proposed 
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Table 1
Training analyses of the proposed deep transfer learning based COVID-19 infection testing model.

Model Accuracy F-measure Sensitivity Specificity Kappa statistics

Support vector machine 0.834426 0.867797 0.867121 0.835237 0.850837
Random forest 0.849182 0.876271 0.876481 0.848933 0.862536
Back propagation network 0.854098 0.881356 0.881557 0.853859 0.867556
Adaptive neuro-fuzzy inference system 0.870492 0.893222 0.893939 0.869637 0.881667
Convolutional neural networks 0.886885 0.905085 0.906198 0.885572 0.895833
VGGNet 0.903279 0.916949 0.918333 0.901667 0.915436
ResNet50 0.919672 0.928814 0.930348 0.917923 0.924167
Alexnet 0.936066 0.940678 0.942244 0.934343 0.938333
Googlenet 0.952459 0.952542 0.954023 0.950931 0.952543
Inceptionnet V3 0.968852 0.964407 0.965686 0.967687 0.966667
Proposed 0.995246 0.986271 0.991236 0.994615 0.980833

Table 2
Testing analyses of the proposed deep transfer learning based COVID-19 infection testing model.

Model Accuracy F-measure Sensitivity Specificity Kappa statistics

Support vector machine 0.824959 0.861953 0.861252 0.825806 0.843105
Random forest 0.839546 0.870378 0.870588 0.839286 0.854666
Back propagation network 0.844408 0.875421 0.875639 0.844156 0.859626
Adaptive neuro-fuzzy inference system 0.860616 0.887205 0.887968 0.859706 0.873658
Convolutional neural networks 0.876823 0.898998 0.900166 0.875418 0.887696
VGGNet 0.893031 0.910774 0.912252 0.891269 0.901734
ResNet50 0.909238 0.922559 0.924217 0.907285 0.915772
Alexnet 0.925446 0.934343 0.936066 0.923461 0.929816
Googlenet 0.941653 0.946128 0.947798 0.939799 0.943848
Inceptionnet V3 0.957861 0.957912 0.959416 0.956303 0.957886
Proposed 0.974068 0.969697 0.970921 0.972973 0.971924
Fig. 4. Training and Validation analyses between the proposed and the inceptionnet 
V3 models.

model achieves significantly better performance as compared to 
the competitive models. Even the proposed model shows signifi-
cantly lesser uncertainty values, which shows the proposed model 
provides consistent training results.

Table 2 shows verification analyses of the proposed and the 
competitive models in terms of accuracy, f-measure, sensitivity, 
specificity, and kappa statistics on the testing dataset. It demon-
strates that the proposed model achieves significantly good perfor-
mance as compared to the competitive models. Even the proposed 
model shows significantly lesser uncertainty values, which shows 
the proposed model provides consistent training results.

5. Conclusion

To overcome the less sensitivity issue with RT-PCR, chest X-
rays images were used in this paper to detect and diagnosis of 
COVID-19. Chest X-rays were preferred over CT scans. As X-rays 
machines are cheaper than the CT scan machines, therefore, we 
have preferred chest x-ray images. Besides this, X-rays has low 
ionizing radiations than CT scan. From the extensive review, it has 
been reviewed that chest X-rays images of COVID-19 infected pa-
tients show some unique patterns and bilateral changes. However, 
manual COVID-19 testing from chest x-ray images is not an easy 
task. Therefore, in this paper, an automatic analysis of chest X-rays 
was achieved using deep learning-based approaches. Deep transfer 
learning approaches were able to train the weights of networks on 
large datasets as well as fine-tuning the weights of pre-trained net-
works on small datasets. Extensive comparative analyses have been 
performed to evaluate the performance of the proposed model by 
using various performance metrics such as accuracy, f-measure, 
sensitivity, specificity, and kappa statistics. Comparative analyses 
reveal that the proposed model outperforms competitive models. 
In the near future, the initial parameters of the proposed model 
can be tuned by using various approaches like parallel Strength 
Pareto Evolutionary Algorithm-II [35], non-dominated sorting ge-
netic algorithm-III [36–38], memetic differential evolution, [39–41], 
genetic algorithm [42], particle swarm optimization [43,44], etc. 
Also, some per-processing techniques can be used to improve the 
visibility of chest x-ray images such as integrated means filter 
[45,46], gain gradient filter [47,48], etc.
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