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Abstract: The wide use of cooperative missions using multiple unmanned platforms has made
relative distance information an essential factor for cooperative positioning and formation control.
Reducing the range error effectively in real time has become the main technical challenge. We present
a new method to deal with ranging errors based on the distance increment (DI). The DI calculated by
dead reckoning is used to smooth the DI obtained by the cooperative positioning, and the smoothed
DI is then used to detect and estimate the non-line-of-sight (NLOS) error as well as to smooth the
observed values containing random noise in the filtering process. Simulation and experimental
results show that the relative accuracy of NLOS estimation is 8.17%, with the maximum random
error reduced by 40.27%. The algorithm weakens the influence of NLOS and random errors on the
measurement distance, thus improving the relative distance precision and enhancing the stability
and reliability of cooperative positioning.

Keywords: cooperative positioning; non-line-of-sight error; distance increment; distance smoothing

1. Introduction

Currently, unmanned vehicles, unmanned aerial vehicles, intelligent robots, and other
automated platforms have been widely used for military and civilian tasks [1]. The develop-
ment of swarm intelligence technology inspired by organisms such as bee colonies and ant
colonies has promoted research into cooperative task execution using multiple unmanned
formations [2]. The advantages of multi–platform cooperation including performance
of multiple tasks, high overall efficiency, high system reliability, and strong stability are
obvious, and thus, cooperative mission planning among unmanned machines is an area of
interest for future development [3,4].

Obtaining accurate positioning information among each platform is an essential pre-
requisite for performing collaborative tasks. Cooperative localization improves the overall
positioning accuracy of the formation using relative navigation information between par-
ticipants, and it is a vital method for multi–platform formations at present [5,6]. Kurazume
et al. [7] first proposed the theory of a cooperative positioning system. In their experi-
ments, three land robots achieved a relative positioning accuracy of 0.4% and an attitude
accuracy of 1 degree with the assistance of landmarks and laser ranging. Bahr et al. [8]
and Fallon et al. [9] used acoustic ranging to measure the distance between an unmanned
surface vehicle (USV) and an autonomous underwater vehicle (AUV) for master–slave
cooperative positioning, and they effectively suppressed the AUV underwater naviga-
tion error divergence. Chen et al. [1,10] adopted distributed cooperative positioning and
used ultra–wideband (UWB) to position unmanned aerial vehicle (UAV) clusters, and the
positioning reliability and stability of the formation are significantly improved. Once a
multi–platform formation performs a task, it is necessary to avoid obstacles in the sur-
rounding environment, to adjust positions when the task changes, and to repair the blind
in the case of individual platform failure. In response to these situations, the formation
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needs to change and adjust rapidly and safely with accurate formation control. For both
multi–platform cooperative positioning and formation control of unmanned platforms,
distance information between platforms is a vital piece of the navigational information. Its
accuracy is an essential factor in determining the results of multi–platform cooperative
positioning and formation control [11].

The most common mechanisms for short–range distance measurement are motion
capture, laser, ultrasonic, infrared, ZigBee, and UWB systems. However, motion capture
systems are mainly used in indoor environments, laser systems can measure in only
one direction, infrared and ultrasonic systems are more easily affected by the external
environment, and ZigBee’s ranging accuracy is low. The remaining method, UWB, has
strong penetration ability and high ranging accuracy and readily supports networked
ranging [12,13]. Therefore, UWB is currently the most popular ranging method in formation
environments. However, in a complex external environment, UWB signals are usually
blocked by unknown obstacles in the process of transmission, resulting in sizeable random
noise and serious non-line-of-sight error (NLOS) error [14].

Existing methods for reducing the distance error are classified as direct or indirect.
Direct methods process and restore measured values using the statistical characteristics
of the measured values. Direct methods for reducing measurement noise include existing
wavelet analysis, Vondrak filters, and Kalman filters. Direct methods for lowering NLOS
error include the classical Wylie method, the global migration method, and the two–step
estimation method [15]. Indirect methods combine NLOS error elimination with the
localization process, with the localization algorithm designed to reduce the influence
of NLOS error on the localization results. Indirect methods usually require multiple
base stations to obtain location results. This enables NLOS to be detected and estimated
according to specific decision criteria. Indirect methods include the weighted least squares
algorithm based on optimization theory [16] and a filtering method combining a Gaussian
mixture model, extended Kalman filter (EKF), and interacting multiple model (IMM) [17].
However, according to indirect method, we introduce the distance increment (DI) based on
the cooperative positioning of an unmanned platform formation to improve the accuracy of
distance measurement with the help of the estimated position of each platform in this study.

Our main contributions are as follows. First, we propose a ranging error processing
method based on the DI. Second, we reduce the random noise in the distance information
and also detect and estimate the NLOS error using our method. Finally, we demonstrate
that our method effectively improves the stability and reliability of co–location.

The remaining parts of this article are organized as follows. Section 2 reviews existing
research concerning random noise reduction and NLOS. Section 3 first introduces DI
and then presents our method for smoothing DI, as well as the distance filtering model
and the NLOS estimation method. Section 4 presents our experimental environment and
experimental results. Finally, Section 5 summarizes our work directions for future work.

2. Related Works

Many scholars have studied mechanisms to reduce the influence of random noise
and NLOS error. Methods commonly used to reduce noise include wavelet transforms,
Vondrak filters, and Kalman filters. Wavelet analysis is a time–frequency localization
analysis method. By decomposing the signal at different frequencies and then eliminating
the noise, the spikes and abrupt changes in the signal are preserved. Lin et al. [18] modeled
the noise caused by multipath propagation in indoor positioning and used wavelet analysis
to remove the noise, effectively weakening the influence of multipath error. Vondrak
filters effectively smooth the observed data without knowing the change rule and use a
fitting function on the observed data, giving it a wide range of applications in numerical
filtering. Zhong et al. [19] used Vondrak bandpass filtering to separate multipath errors and
structural vibration information in GPS structural deformation monitoring, thus improving
GPS positioning accuracy. Kalman filters take the minimum mean square error as the best
estimation criterion to estimate the state parameters and update the state parameters with
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the prior estimation of the parameters and the new observation data. Using an analysis of
the UWB ranging error characteristics, Yin et al. [20] adopted a robust unscented Kalman
filter and obtained positioning errors less than 10 cm. Wang et al. [21] applied wavelet
analysis, Vondrak filtering, and Kalman filtering to reduce UWB noise in indoor positioning
and concluded that Kalman filtering had the best positioning accuracy performance.

In the diagnosis of NLOS, Benedetto et al. [22] and Conti et al. [23] identify NLOS by
analyzing received waveforms, but the effect depends on the material and the physical en-
vironment. Based on machine learning, Marano et al. [24] used non–parametric regressors
to identify NLOS errors, which reduced the influence of environment on the recognition
effect, but this method relied on a large number of training data. Xiong et al. [25] used
the Cramér–Rao lower bound (CRLB) of cooperative positioning to identify NLOS, which
needs more anchors to provide redundant observation information. Landolsi et al. [26]
classified different UWB channel models by using the probability density function (PDF)
of estimating parameters, such that the recognition accuracy of NLOS can reach more
than 90%. Yin et al. [27] designed an iterative algorithm for robust position estimation for
the case of unknown PDF, but the computational complexity of this algorithm is greatly
improved when the number of distance measurements is small.

The most common method to solve the NLOS error problem is the maximum likeli-
hood method (ML) but obtaining the necessary error and measurement noise distribution
is not easy in practice. Guvenc et al. [16] and Picard and Weiss [28] proposed the weighted
least square method, which requires measuring only the first and second moments of noise
and NLOS errors. Another difficulty is that the machine learning problem is a complex,
high–dimensional, non–convex problem, thus obtaining an optimal solution is difficult.
Most existing methods apply the relaxation method to the non–convex problem. Some
have proposed a semi–definite programming (SDP) relaxation algorithm for cooperative
positioning [29,30]. Wang et al. [29] proposed combining the estimated value of the tar-
get node location with so–called “equilibrium parameters” to simplify the estimation
problem into one solvable with second–order cone programming and applying an SDP
algorithm to solve the estimation problem. Biswas [31] proposed graph optimization
theory for describing cooperative positioning and deduced the upper and lower bounds
of the objective function SDP. Joint estimation involves many optimization variables and
requires many accurate measurement data to estimate all parameters accurately. Therefore,
optimization–based methods may not perform well in dense NLOS environments due to
poor measurement accuracy [32].

Robust filtering methods are another common approach to solving this problem. Based
on Kalman filtering, Li et al. [15] proposed the measurement value dropping method, global
migration method, and two–step estimation method. These methods effectively eliminated
the randomness and positive deviation of NLOS errors in TOA measurements, but the
NLOS estimation result depends on the setting of parameters. On this basis, Wang et al. [33]
introduced adaptive factors to adjust the parameters, but the algorithm was only suitable
for a simple indoor environment and had poor results in a complex NLOS environment.
Cui et al. [17] integrated the Gaussian mixture model, extended Kalman filter (EKF), and
interacting multiple model (IMM) to overcome the influence of frequent switching between
LOS and NLOS environments. The main advantage of this algorithm is that it reduces the
influence of severe NLOS in a mixed LOS/NLOS environment. However, the algorithm
still needs noise statistics, which are unknown. Chen et al. [34] proposed a robust algorithm
using NLOS recognition and classification, dividing NLOS into light and heavy NLOS.
The light NLOS was truncated by robust filtering, while the line–of–sight reconstruction
estimated the heavy NLOS, but this method relied on an established known platform. Li [2]
used the relative velocity between dynamic platforms to detect and compensate for NLOS
in the relative navigation to eliminate the dependence on known platforms, effectively
improving the detection efficiency. However, this method only estimated NLOS once,
resulting in a significant estimation error.
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At present, existing work has achieved promising results in reducing the distance
error. However, some limitations remain, including the distance noise reduction results
affected in the process of dynamic ranging. In addition, accurate estimation of NLOS
depends on the layout of known platforms, which limits application scenarios. The relative
navigation information between platforms is stable over short intervals, which assists in
the noise reduction of distance error and the detection and estimation of NLOS, and the
application environment is flexible. Therefore, we propose a range error processing method
based on the DI in this study.

3. Distance Processing Principle
3.1. DI Filtering Model
3.1.1. Cooperative Positioning Model

In this paper, a hierarchical cooperative positioning algorithm is used. The algorithm
structure is shown in Figure 1. Inertial Navigation System/Odometer (INS/OD) integrated
navigation is adopted for single platform [35] to carry out dead reckoning, and the obtained
position information is transmitted to the processing center according to a certain frequency
for interactive fusion. After receiving the position information of each platform, the
cooperative positioning processing center uses the distance information to correct the
position of each platform. Finally, the processing center transmits the corrected position
information to each platform to complete the whole cooperative positioning process. The
filtering model of cooperative positioning refers to the model adopted in reference [9].

Sensors 2021, 21, x FOR PEER REVIEW 4 of 17 
 

 

established known platform. Li [2] used the relative velocity between dynamic platforms 

to detect and compensate for NLOS in the relative navigation to eliminate the dependence 

on known platforms, effectively improving the detection efficiency. However, this 

method only estimated NLOS once, resulting in a significant estimation error. 

At present, existing work has achieved promising results in reducing the distance 

error. However, some limitations remain, including the distance noise reduction results 

affected in the process of dynamic ranging. In addition, accurate estimation of NLOS de-

pends on the layout of known platforms, which limits application scenarios. The relative 

navigation information between platforms is stable over short intervals, which assists in 

the noise reduction of distance error and the detection and estimation of NLOS, and the 

application environment is flexible. Therefore, we propose a range error processing 

method based on the DI in this study. 

3. Distance Processing Principle 

3.1. DI Filtering Model 

3.1.1. Cooperative Positioning Model 

In this paper, a hierarchical cooperative positioning algorithm is used. The algorithm 

structure is shown in Figure 1. Inertial Navigation System/Odometer (INS/OD) integrated 

navigation is adopted for single platform [35] to carry out dead reckoning, and the ob-

tained position information is transmitted to the processing center according to a certain 

frequency for interactive fusion. After receiving the position information of each platform, 

the cooperative positioning processing center uses the distance information to correct the 

position of each platform. Finally, the processing center transmits the corrected position 

information to each platform to complete the whole cooperative positioning process. The 

filtering model of cooperative positioning refers to the model adopted in reference [9]. 

 

Figure 1. Structure of cooperative positioning algorithm. 

3.1.2. DI Error Analysis 

We first assume that existing platforms 1 and 2 have positions at the time 1k   of

 1 1 1 1

1 1 1 1, ,k k k kx y z   X  and  2 2 2 2

1 1 1 1, ,k k k kx y z   X , respectively, with calculated positions of 

 1 1 1 1, ,k k k kx y zX  and  2 2 2 2, ,k k k kx y zX , respectively. The corresponding DI is 

           
2 2 2 2 2 2

12 1 1 1 1 1 1 2 2 2 2 2 2

1 1 1 1 1 1k k k k k k k k k k k k kI x x y y z z x x y y z z                  (1) 

INS

Odometer

Dead reckoning

UWB

Platform 1

Distance

Process 

center

C
o

o
p

e
ra

tiv
e

 p
o

s
itio

n
in

g

Platform 1

position update

Platform 2

position update

.

.

.

Platform n

position update

.

.

.

Position 

increment

Figure 1. Structure of cooperative positioning algorithm.

3.1.2. DI Error Analysis

We first assume that existing platforms 1 and 2 have positions at the time k− 1 of
X1

k−1

(
x1

k−1, y1
k−1, z1

k−1

)
and X2

k−1

(
x2

k−1, y2
k−1, z2

k−1

)
, respectively, with calculated positions

of X1
k
(

x1
k , y1

k , z1
k
)

and X2
k
(
x2

k , y2
k , z2

k
)
, respectively. The corresponding DI is

I12
k =

√(
x1

k − x1
k−1

)2
+
(

y1
k − y1

k−1

)2
+
(

z1
k − z1

k−1

)2
−
√(

x2
k − x2

k−1

)2
+
(

y2
k − y2

k−1

)2
+
(

z2
k − z2

k−1

)2
(1)



Sensors 2021, 21, 8028 5 of 17

If NLOS are generated during the range measurement at time k, the measured distance
will change significantly. The measured distance can be expressed as:

LDk = LDk−1 + I12
k + εNLOS + e, (2)

where LDk and LDk−1 are the distance observations; I12
k is the distance increment; εNLOS is

the non-line-of-sight error; e is the measurement error (zero mean Gauss variable). The
distance increments from the observations can be expressed as:

I12
k = I12

k + εNLOS + e. (3)

If the exact DI is obtained by Formula (1), εNLOS can be detected and estimated by
I12

k and Î12
k . The key to obtaining stable, small error range increments is the use of the DI

between platform epochs to reduce ranging error. Figure 2 shows the error diagram of
the DI calculated by dead reckoning and the DI obtained by cooperative positioning in an
experiment, and Figure 3 shows the corresponding distance error. In this experiment, the
position of each platform is calculated by Inertial Navigation System/Odometer (INS/OD)
integrated navigation system (frequency is 10 Hz). Based on the above system, each
platform uses UWB to measure the distance between platforms, and then uses the distance
for centralized cooperative positioning (frequency is 1 Hz). The specific experimental
environment is described in detail in the follow–up experimental analysis. As can be
seen from Figure 2, the DI from dead reckoning is generally stable, but it can be biased
in some situations due to the lack of correction for other measurements, as shown in the
enlarged portion. In contrast, the error of the DI is small between the two cooperative
positionings, but there is a big jump in several epochs after cooperative positioning. The
reason of the DI jump in the cooperative positioning is that the estimated value of the
platform position will be changed when the cooperative positioning update is performed.
As can be seen from Figure 3, these jumps reduce the stability of the DI, but can correct the
errors and restrain the speed of error divergence to improve the positioning accuracy in
the cooperative positioning.
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Therefore, we combine the two kinds of DI and use the DI calculated by dead reckon-
ing to smooth the jump generated by the collaborative update. In this way, we obtain a
small error and stable DI.

3.1.3. Filtering Model

According to the characteristics of the two kinds of DI errors, we use the Kalman
filter algorithm with additional compensation parameters to smooth the DI. This algorithm
with additional compensation parameters adds model parameters to the function model
to compensate for model errors and then calculates these additional parameters together
with the original state parameters.

By taking the DI from dead reckoning as the predicted value and the DI from co-
operative positioning as the observed value, the deviation between the DI values can be
estimated. Therefore, the deviation between the dead reckoning DI and the cooperative
positioning DI (hereinafter referred to as the DI deviation) is dynamically estimated as an
additional unknown parameter vector, which yields the filtering model [36]:[

Ik
sk

]
=

[
1 1
0 1

][
Ik−1
sk−1

]
+

[
uk
0

]
+

[
wIk
wsk

]
Lk =

[
1 0

][ Ik
sk

]
+ ek

(4)

where Ik and sk are the DI and DI deviation, respectively; Lk is the observation vector,
which represents the cooperative positioning DI; uk is the control vector, which converts
the estimated state value at the last time into the dead reckoning DI through the control
vector in the filtering process. wIk and wsk are the process noise of DI and DI deviation
respectively, assuming that they are zero–mean Gaussian white noise, and the covariance
matrix is Qk. ek is the observation noise of cooperative positioning DI, assumed to be
zero–mean Gaussian white noise with variance Rk. The variances of wIk and ek can be
calculated by the position calculation error of the platform. According to the definition of
Formula (1), since the position error at the last moment has no influence on the calculation
error, the formula can be abbreviated as

I12
k = f

(
x1

k , y1
k , z1

k , x2
k , y2

k , z2
k

)
. (5)
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According to the law of error propagation, the corresponding error expression is as
follows:(

σI12
k

)2
=

(
∂ f
∂x1

k

)2(
σx1

k

)2
+
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∂ f
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k
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k
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After calculating the DI error σI12
k

, we obtain eI12
k

= σI12
k

. Since the displacement of
each platform is equivalent to maintain formation stability in practical application, the
difference of position errors in each direction of the platform is ignored. The following
formula roughly calculates σI12

k
:

(
σI12

k

)2
=
(

σ1
k

)2
+
(

σ2
k

)2
, (7)

where σ1
k and σ2

k are the position drift errors in one direction of platforms 1 and 2 in a given
interval and can be calculated based on the accuracy of the sensors in each platform.

In the iterative process of the Kalman filter, the new information vector Vk is com-
pared with the preset threshold value. If the new information value is greater than the
threshold value, it indicates a jump in the cooperative positioning DI. The dead reckoning
DI combined with the DI deviation replaces the state estimate. This method’s threshold
value is easy to determine because the jump phase generated by cooperative positioning
DI is significant.

3.2. Distance Filtering Model

Using the distance and DI between platforms as the state vector and the distance and
smoothed the DI measured each time as observations, the filtering model can be expressed as(

Dk
Ik

)
=

(
1 1
0 1

)(
Dk−1
Ik−1

)
+

[
wDk
wIk

]
(

LDk
LIk

)
=

(
1 0
0 1

)(
Dk
Ik

)
+

[
eDk
eIk

] (8)

where Dk and Ik are the distance and DI between platforms, respectively; LDk and LIk
are the measured distance and DI after smoothing, respectively; wDk and wIk are the
corresponding process noise; eDk and eIk are the related measurement noise.

Since the distance is recursive according to the DI, we set the noise parameter wDk to 0.
The process noise is mainly reflected by wIk , which is assumed to be zero–mean Gaussian
white noise Similarly, assuming that eDk and eIk are zero–mean Gaussian white noise, the
variance of eDk can be determined according to the measurement error of the instrument,
while the variance of eIk is set to the variance of Ik estimated in the previous section.

The relevance of DI with other variables needs to be explained here. It can be seen
from Formula (1) that DI is closely related to the velocity of the platform. The greater the
velocity of the platform is, the greater the corresponding DI is. In cooperative positioning,
the distance is used to correct the platform position, and then the corrected position is used
as the observation value to correct the platform’s heading. Therefore, the whole process of
cooperative positioning has little influence on the platform’s speed. Here, we can ignore
the relevance between DI and distance.

In this filtering model, we use the DI with small and stable error in a short time as the
observation quantity to filter the distance measurement value and reduce the influence of
measurement noise on the distance value.

3.3. Detection and Estimation of NLOS

The method in Section 3.1 enables us to obtain a stable DI with a small error, which
can assist in the detection and estimation of the NLOS error. Assuming that the estimated
distance value at time k− 1 is D̂k−1, the measured distance value at time k is LDk , and the
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calculated DI is Ik. The threshold value is then used to determine whether the measured
value has NLOS error. We set the threshold as γmax when the following conditions are met:

γmax <
∣∣Ik −

(
LDk − D̂k−1

)∣∣. (9)

Here, the setting of threshold γmax will directly affect the effect of NLOS detection and
estimation. If the value of threshold γmax is too small, the normal measurement error will
be regarded as NLOS; on the contrary, if the value is too large, the system will ignore
some small NLOS. In practical applications, if the ranging accuracy of the rangefinder is
known (assuming that the distance variance is σ2), the probability of observation error
less than 2σ is 95.45%, and that less than 3σ is 99.73%. Therefore, if γmax is set to 2σ or
3σ, the corresponding false detection rate is 4.55% or 0.27%. Taking into account the effect
of the error of the last time distance estimate, the γmax here is generally set to 3σ. If the
ranging accuracy of the rangefinder is unknown, the method of adaptive windowing
estimation [37] can be considered to estimate the observation noise of the distance based
on the filtering model mentioned in Section 3.2. When the estimated standard deviation is
σ′, γmax is still set to 3σ′.

We now detail the NLOS error estimation method. Different obstacles have different
influences on NLOS errors, but the NLOS errors caused by a single obstacle almost obey
normal distribution [38]. In order to reduce the influence of NLOS error, we first estimate
the mean of NLOS error and then eliminate it, while the random part can be weakened by
filtering. On the basis of the preceding assumptions, the occlusions between the platforms
occur at time k, with the measured distance from time k to time k + N containing an NLOS
error with mean equal to ε and the time of the NLOS error estimation being set to M. The
recursive distance sequence obtained by DI during this period is D′k, D′k+1 · · ·D

′
k+M−1,

and the complementary observation distance sequence is LDk , LDk+1 · · · LDk+M−1 . We
can calculate the NLOS error observation sequence εk, εk+1 · · · εk+M−1 according to the
following equation:

ε = LD − D′. (10)

Since the recursive distance sequence error is small within short intervals, the NLOS
error observation sequence can be considered as having equal weight. That is, across
duration M of the NLOS error estimation:

ε̂i =
i
Σ

j=k
ε j/(i− j + 1)(i = k, k + 1, . . . , k + M− 1). (11)

The final estimate is

ε̂ =
k+M−1

Σ
j=k

ε j/M. (12)

The process of NLOS error detection and estimation is shown in Figure 4.

3.4. Data Processing Flow

Our algorithm has three main parts: the DI smoothing process, the measurement
distance smoothing process, and the NLOS error detection and estimation.

1. Using the dead reckoning DI to smooth the jumping part of the cooperative position-
ing DI to obtain a stable DI with a minor error.

2. Taking the processed DI as the observed quantity to filter and smooth the measured distance.
3. When filtering the observed distance, the NLOS error is detected by the observation

residual. If the detection has any NLOS error, the NLOS error is estimated using the
range increment and the range observed value.

The specific flow chart is shown in Figure 5.
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4. Experimental Results and Analysis
4.1. Experimental Environment Settings

In the cooperative positioning experiment, we used three mobile platforms called
A, B, and C. Platforms A and C are robots equipped with odometer, INS, GNSS, and
UWB. Platform B is a trolley equipped with INS, GNSS, and UWB. In this experiment,
we analyzed the ranging error and verified the proposed method of handling the ranging
error. The experimental equipment is shown and labeled in Figure 6. The GNSS base
station was placed on the roof of a nearby building about 200 m away. Both cars have
built–in odometers. The tracks of the three platforms are shown in Figure 7, with circles
representing the starting position and arrows representing the direction of movement.
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The full equipment details are as follows.

1. Platform B was equipped with a KY–INS112 module (with a gyro bias less than
0.8◦/h) in the cooperative positioning system, which is positioned as a pilot using
GNSS/INS integrated navigation. Platforms A and C were equipped with Bynav–A1
boards (with a gyro bias less than 2.7◦/h) positioned as followers using INS/OD
integrated navigation. All platforms in the cooperative positioning system made a
centralized distance correction once per second.

2. The distance between the platforms was obtained through the DW1000 UWB ranging
module (DW1000). The ranging accuracy of the DW1000 is about 10 cm, the two–way
ranging accuracy is 15–20 cm, and the ranging frequency is 1 Hz.

3. Keep the trolley in front and the two robots in the back, forming a triangle while
driving. The movement speed of the whole formation is maintained at about 0.5 m/s.

4. The robots and trolley were equipped with GNSS receivers able to use PPK results as
a reference value for navigation when reprocessing.

5. The pedestrian shielding between the platforms causes NLOS. There were two such
shields between Platforms A and B and two shields between Platforms B and C.

4.2. DI Smoothing Experiment Results

We selected a measuring distance sequence with sampling time of 30 s between the A
and B platforms above and smoothed the cooperative positioning DI using the calculated
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dead reckoning DI. By comparing the measured data with the reference distance, the
system was not affected by NLOS during this period. Figure 8 is the corresponding error
curve obtained by subtracting the DI from the reference DI.
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As shown in Figure 8, the DI obtained by processing in the above method combines
the advantages of the two DIs, with little error and no large jumps.

4.3. NLOS Simulation Experiment Analysis

Since it is impossible to obtain accurate distribution of NLOS error in actual envi-
ronments, our simulation experiment simulated the NLOS error by adding a group of
numbers that obey normal distribution to the measured data according to literature [38].
We added a set of numbers distributed as N(0.45, 0.12) (NLOS1), N(0.5, 0.12) (NLOS2), and
N(0.6, 0.12) (NLOS3) to the measured distances of 10–20, 50–60, and 90–95 s to simulate
the NLOS error. According to our proposed process, we set threshold γmax to 45 cm (three
times of ranging error) and set the estimated duration M of NLOS as 3 s. We analyzed the
distance error and NLOS estimation time after processing and compared them to the UWB
ranging error estimation and compensation methods [2] as a reference method. For ease of
description, we call the reference method RN–Based and the DI method DI–Based.

Figure 9 shows the range error obtained from the NLOS elimination method. The
figure shows that the original observed distance was smoothed to a certain extent, with the
NLOS significantly weakened. Table 1 shows the estimation of simulated NLOS values. The
three NLOS estimation errors of RN–Based were 0.0517, 0.1031, and 0.0764 m, respectively,
and the corresponding error percentages were 11.49%, 20.62%, and 12.73%. However,
the estimated errors of the third NLOS calculation of DI–Based were reduced to 0.0368,
0.0067, and 0.0105 m, respectively, with corresponding error percentages of 8.17%, 1.34%,
and 1.75%.

Figure 10 shows changes in the NLOS estimation process. A total of 30 steps were
conducted during the experimental calculation. After 20 steps of the calculation, all three
NLOS estimates stabilized. Because the error of the recursive distance sequence increases
with time, setting the estimation time interval too large increases the NLOS estimation
error and affects the NLOS estimation performance.
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Table 1. Estimation of the three simulated NLOS values.

NLOS1 NLOS2 NLOS3

Reference value (m) 0.45 0.5 0.6
Method RN–Based DI–Based RN–Based DI–Based RN–Based DI–Based

Estimated value (m) 0.3983 0.4868 0.6031 0.5067 0.5236 0.6105
Error value (m) 0.0517 0.0368 0.1031 0.0067 0.0764 0.0105

Percentage error (%) 11.49 8.17 20.62 1.34 12.73 1.75
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4.4. Cooperative Positioning Experimental Analysis

We adopted the preceding distance processing method mentioned above for coop-
erative positioning and output the distance calculation results of each step. As in the
simulation experiment, we set threshold γmax to 45 cm (three times of ranging error) and
set the estimated duration M of NLOS as 3 s. By calculate the difference between the
output distances and the corresponding distance reference value, as well as the original
observation distances and the corresponding distance reference value, the distance errors
of the A–B, A–C, and B–C segments were obtained as shown in Figure 11. The four obser-
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vation range sequences having NLOS errors were successfully detected and modified, and
the processed distance weakened the influence of NLOS errors. In the LOS environment,
the range fluctuation of the processed distance was minor, and the variation trend of the
original observed distance was maintained. In terms of NLOS estimation, the mean values
of the two NLOS estimates of A–B segment are 0.5837 and 0.4721 m, and the mean values
of the two NLOS estimates of B–C segment are 0.4973 and 0.5468 m. The experiment in
literature [38] shows that the mean value of NLOS caused by pedestrians is 0.4–0.6 m,
which is consistent with our experimental results.
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The data characteristics of each distance sequence were analyzed, including maxi-
mum error, mean error, root mean square error (RMSE), signal–to–noise ratio (SNR), and
smoothness. Table 2 shows the results. As can be seen from the table, the A–B and B–C
segments containing NLOS had a maximum error RN–Based error of 0.3289 and 02653 m
and a mean error of −0.0255 and −0.0053 m. The maximum error of the DI–Based was
reduced to 0.1024 and 0.1147 m, with the mean error reduced to −0.0059 and −0.0035 m,
indicating that the estimation performance of NLOS was better than that of the RN–Based
method. For the A–C segment in the LOS environment, the maximum error of RN–Based
increased by 2.45%, with no reduction in the mean error. The RMSE fell by 4.88%, the SNR
improved by 0.03%, and the smoothness improved by 11.19%. The maximum error, mean
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error, and RMSE of method 2 fell by 40.27%, 17.07%, and 37.44%, respectively. The SNR
and smoothness of method 2 increased by 7.41% and 20.32%, respectively. The DI–Based
method had significant improvements in all data characteristics.

Table 2. Data characteristics at different segments.

Segment Method Max (m) Mean (m) RMSE (m) SNR (db) Smoothness

A–B
Observed 0.8348 0.0285 0.1404 42.1575 1.8831
RN–Based 0.3289 −0.0255 0.0593 49.8267 1.1485
DI–Based 0.1024 −0.0059 0.0389 53.3832 1.0111

A–C
Observed 0.1835 0.0041 0.0641 51.6731 1.2621
RN–Based 0.1880 0.0041 0.0639 51.6874 1.1209
DI–Based 0.1096 0.0034 0.0401 55.5046 1.0056

B–C
Observed 0.7325 0.0345 0.1438 42.0586 1.6148
RN–Based 0.2653 −0.0053 0.0608 49.7457 1.1337
DI–Based 0.1147 −0.0035 0.0404 53.2827 1.0152

Figure 12 compares the positioning error calculated using the original observation
distance with that obtained using the treated distance. According to the analysis of the
figure, when the measured value contains NLOS, both RN–Based and DI–Based approaches
weakened the influence of NLOS, but the DI–Based method was better. The fluctuation
range of the positioning error curve shows that the positioning result obtained by DI–Based
had fewer fluctuations and the most stable positioning result. This indicates that the
method improves the stability and reliability of cooperative positioning.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 17 
 

 

and a mean error of −0.0255 and −0.0053 m. The maximum error of the DI–Based was 

reduced to 0.1024 and 0.1147 m, with the mean error reduced to −0.0059 and −0.0035 m, 

indicating that the estimation performance of NLOS was better than that of the RN–Based 

method. For the A–C segment in the LOS environment, the maximum error of RN–Based 

increased by 2.45%, with no reduction in the mean error. The RMSE fell by 4.88%, the SNR 

improved by 0.03%, and the smoothness improved by 11.19%. The maximum error, mean 

error, and RMSE of method 2 fell by 40.27%, 17.07%, and 37.44%, respectively. The SNR 

and smoothness of method 2 increased by 7.41% and 20.32%, respectively. The DI–Based 

method had significant improvements in all data characteristics. 

Table 2. Data characteristics at different segments. 

Segment Method Max (m) Mean (m) RMSE (m) SNR (db) Smoothness 

A–B 

Observed 0.8348 0.0285 0.1404 42.1575 1.8831 

RN–Based 0.3289 −0.0255 0.0593 49.8267 1.1485 

DI–Based 0.1024 −0.0059 0.0389 53.3832 1.0111 

  

A–C 

Observed 0.1835 0.0041 0.0641 51.6731 1.2621 

RN–Based 0.1880 0.0041 0.0639 51.6874 1.1209 

DI–Based 0.1096 0.0034 0.0401 55.5046 1.0056 

  

B–C 

Observed 0.7325 0.0345 0.1438 42.0586 1.6148 

RN–Based 0.2653 −0.0053 0.0608 49.7457 1.1337 
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distance (green dashed), and DI–Based distance (orange dashdotted).

Table 3 shows the positioning error statistics. According to the mean value of posi-
tioning errors in the table, compared with the original observation distance, the errors
for Platforms A and C using RN–Based estimation were reduced by 27.05% and 29.39%,
respectively. In contrast, those of Platforms A and C were reduced by 35.76% and 40.62%,
respectively, under DI–Based. It can be seen that the distance processed by the DI–Based
method can be used in cooperative positioning to effectively improve the positioning
accuracy, which is consistent with the conclusion in reference [39].
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Table 3. The positioning error statistics of Platforms A and C.

Method Statistic Error of A (m) Error of C (m)

Observed
Max 0.8250 0.8771

Mean 0.2388 0.2021

RN–Based
Max 0.5874 0.6861

Mean 0.1742 0.1427

DI–Based
Max 0.529 0.6771

Mean 0.1534 0.12

5. Conclusions

In this study, we proposed a ranging error processing method using DI to reduce the
influence of range error on cooperative positioning and formation control.

By smoothing the DI between platforms, NLOS was detected and estimated by the DI.
Smoothing the observed values containing random noise in the filtering process reduced
the ranging error.

Simulation and experiment results show the following:

1. Reducing random noise of the range data by introducing the incremental observation
of range for filtering significantly improved the processed range for various data
features. The maximum value of the random error decreased by 40.27%, and the
smoothness increased by 20.32%.

2. In the aspect of NLOS error, the relative accuracy of NLOS estimation was 8.17% by
using DI to detect and estimate NLOS continuously.

3. Applying the smoothed distance to the cooperative positioning improved the stability
and reliability of the positioning results.

In future research, we intend to focus on the detection of NLOS from the signal level
and study relevant fault detection strategies. We will try to provide services for multiple
unmanned platforms to position cooperatively in complex environments.
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