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Abstract

We study the detection of mutations, sequencing errors, and homologous recombination events (HREs) in a set of closely
related microbial genomes. We base the model on single nucleotide polymorphisms (SNPs) and break the genomes into
blocks to handle the rearrangement problem. Then we apply a dynamic programming algorithm to model whether changes
within each block are likely a result of mutations, sequencing errors, or HREs. Results from simulation experiments show that
we can detect 31%–61% of HREs and the precision of our detection is about 48%–90% depending on the rates of mutation
and missing data. The HREfinder software for predicting HREs in a set of whole genomes is available as open source (http://
sourceforge.net/projects/hrefinder/).
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Introduction

Phylogenetic trees are commonly used to represent the

evolutionary history of a set of extant species in biology. If all

organisms only inherit their genetic materials vertically, i.e., from

their parents, then the tree representation would be sufficient.

However, there is evidence that organisms may get genetic

materials from organisms other than their parents [1–3], and this

process is called homologous recombination event (HRE). An HRE is

caused by a homologous recombination, in which the incoming

DNA molecules are highly similar to those in the recipient

genome. HREs may cause the incongruence between gene trees

drawn by different genes, and may lead to inaccurate construction

of phylogenetic trees [4]. Detection of HREs will help construct a

more accurate phylogenetic network [5].

To detect HREs, a standard approach is to compare the gene

trees and the species tree, construct the reconciled tree and detect

the HREs (e.g. [6,7]). These methods do not use the whole-

genome information, and do not utilize the gene positional

information. Methods based on alignments (e.g. [8–10]) use the

positional information and have a higher accuracy. The main

drawback of the alignment approach is poor scalability when

dealing with the whole genomes of dozens of bacterial strains.

Most researchers would choose to align only a few target

genomes/genes instead of many whole genomes. A small subset

of genes risk poor phylogenetic inference if the genes are involved

in HREs [4]. If the species tree is drawn by selecting large

numbers of characters that are distributed across the genomes, the

influence of recombined single genomic regions in tree topology

will be diminished, resulting in a tree that reflects the evolutionary

history of the majority of the genomes [3] and helps detect the

homoplastic changes, those that conflict with the evolutionary

pattern captured by the tree, may be more parsimoniously

explained by HREs than by mutations and sequencing errors.

Convergent evolution could be erroneously classified as HRE by

our software, as a single HRE may more parsimoniously explain a

cluster of similar SNPs than multiple parallel mutations in the

same genome region among disparate strains.

In this paper, we study the detection of mutations, HREs and

sequencing errors given the SNPs and SNP positions of a set of

closely related strains with an evolutionary species tree. The SNPs

of all leaf nodes are mostly known with some missing, but the

SNPs of all internal nodes are unknown. Some known SNPs might

be incorrect because of sequencing errors. Some genomes might

be in the form of contigs, i.e., the SNP positions are only in the

correct order and orientation within a contig. We want to

reconstruct the SNPs of internal nodes with regard to 3 possible

events. (1) Mutations. A single SNP may change when an internal

node passes its SNPs to its child node. (2) HREs. A node may get a

segment of SNPs from any other node which is not one of its

descendants. (3) Sequencing errors. The data we have may be

wrong.

We cannot distinguish sequencing errors from mutations that

occur on the leaf nodes. For simplicity, all SNP disagreements

between a leaf node and its parent node are considered as ‘‘errors’’

(although in reality some may be true SNP variations). Therefore,

mutations refer to SNP changes at internal nodes, and errors refer

to SNP changes at leaf nodes. Each event has a weight. The

weights of mutation/HRE/error are wm, wx, and we, respectively.

We want to reconstruct the events and SNPs of all nodes

(including leaf nodes because there might be errors), while

minimizing the total weight. The frequencies of mutation/

HRE/error events are low, and the assignment that minimizes
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the total weight would give a reasonable explanation [3]. Note that

the error weight we is always less than the mutation weight wm,

since SNP variations on leaf nodes are always considered to be

errors. Considering a homologous recombination event, if the

source or the destination mutate in the sequence context around

the SNP, then the SNP locus from the donor appears to be missing

in the receiver, or vice versa. Inversions that occur after an HRE

and whose endpoints fall within the HRE region also disrupt the

co-linearity of SNP loci across genomes. Therefore, we only

consider HREs that have the same SNP loci in the same order and

orientation in both the source and destination (with some

exceptions explained in Section 2.1), although differences from

mutations/errors are allowed between donor and recipient. We

use a greedy algorithm to partition genomes into blocks in which

inversions do not take place. We then use the dynamic

programming technique to assign mutations/HREs/errors in

each block. We also consider possible HREs from an out-group,

i.e., some species not in the given evolutionary species tree. If a

genome has a many SNPs alleles that differ from other genomes in

the tree within a small segment of adjacent SNP loci, then we

consider assigning an HRE from an out-group to this segment (see

Section 2.3). Figure 1 shows an example of how HREs can leave

evidence within a block. There are six SNPs loci, and the SNPs on

the leaf nodes (2, 4, 6, 7) are known. We can explain SNPs on node

6 by three mutations or one HRE, and we assume that one HRE is

more likely than three neighboring errors and set the weights

accordingly (wxv3we).

We have implemented our algorithms that partition genomes

into blocks and assign mutations/HREs/errors. We have tested

the program on both simulated data and real data. The

experimental simulation results demonstrate that there are many

HREs and mutation events that leave no evidence to be detected,

and the detection accuracy mainly depends on the mutation rate,

HRE rate, and the size of the evolutionary tree.

Methods

The sequences of source and destination of a HRE should be

similar, i.e., there should be the same set of SNPs in the same

order and orientation in the HRE regions of both donor and

recipient genomes. However, the SNP order/orientation may not

be identical all genomes, because of genome rearrangement

events, i.e., inversions and transpositions, and we have to focus on

regions in which all genomes have the same SNP order and

orientation. A locally collinear block is a homologous region of

sequence shared by two or more of the genomes under study, and

does not contain any rearrangements of homologous sequence

[11]. In this paper, we simply use blocks to refer locally collinear

blocks. SNPs in a block should be in the same order across all

genomes, with some exceptions explained in Section 2.1.

We first partition the genomes into blocks by a greedy block

extension algorithm, then we consider each block separately.

Within each block, for each SNP locus, we use dynamic

programming to reconstruct the SNPs of internal nodes in the

evolutionary tree with the minimum number of mutations. Then

within each block, we check if we can assign HREs to further

reduce the total weight by dynamic programming. We also

consider possible HREs from an out-group not in the input

genomes. After assigning mutations/HREs/errors from within the

tree, we trace the origin of each SNP allele and evaluate if there is

any evidence indicating HRE from an out-group. Note that these

steps represent only one reasonable approach to this problem, and

optimal solution for each step does not guarantee optimal solution

at the end.

2.1 Computing Blocks with Duplications and Missing
SNPs

Considering a possible block B and a genome G, we say that G
agrees with B if, given the genome G, there is no evidence that

suggests an inversion within the block B. A straightforward

example is, if all the SNPs in B appear consecutively in G in the

same order and orientation, or all in the reverse order and

complement orientation, then G agrees with B. Different orders

usually suggest inversions, but there are some exceptions.

1. Missing. A SNP may appear in B but be absent in G, and it

does not suggest an inversion. For example, B~bcd, G
contains a SNP sequence abde and c is absent in G, then G
should agree with B.

2. Duplication. There might be duplicated SNPs inserted in G
and they could alter the SNP order. For example, B~bcd, G
contains a SNP sequence abcbde, then the second b in G
should be considered as a duplicated SNP, and G should agree

with B.

3. Contigs. The genome may be in contig form, which makes the

SNP order in G unclear. For example, B~abcd, G contains a

contig ending with SNP sequence ab and a contig starting with

cd, then G should agree with B.

We formally define the notion of agreement as follows.

Definition 1. Let S be the set of forward and reverse complement of all

SNPs. A block is a string B[Sz and a genome is a set of strings

Figure 1. An example of detection of HREs. The SNPs on node 6
are better explained by an HRE from node 2 than inheritance from node
5 with three mutations. The first 2 A’s and last A do not represent SNPs,
but merely serve as sequence context for the SNPs in between.
doi:10.1371/journal.pone.0075230.g001

Table 1. Algorithm GETBLOCK.

1: blocks/1
2: for each genome do
3: for each SNP s do
4: if s has not been included by any block then
5: B/2BLOCKEXTENSION(s)

6: mark all SNPs in B as included
7: blocks/blocks|fBg
8: return blocks

doi:10.1371/journal.pone.0075230.t001
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G~fg1,g2, � � � ,gkg, gi[Sz (kw1 if in contig form). Let BDG be the

subsequence of B obtained by deleting SNPs absent in G. Let DG be the set of

SNPs that appear more than once in G. We say the genome G agrees with the

block B if and only if there exists a string S such that the two following

statements both hold. (1) There exists a concatenation G�~gj1 gj2 � � � gjk

allowing reverse complement and S is a substring of G�. (2) BDG is a

subsequence of S and S can be obtained from BDG by inserting only SNPs in

DG .

When considering if a genome G agrees with a block B, we try

to match the SNP order and orientation in B and G. If a SNP s
appears in B but does not appear in G, then s should be skipped in

B in the matching. If a SNP s appears in G more than once, then

we can choose to skip s in G or not, based on if it makes the SNP

order/orientation in G different from those in B. When we try to

match the SNP order/orientation but the comparison reaches the

end of a contig, then the next match in G can start from any other

end of a contig. Let s be the SNP in B we want to match when the

comparison reaches the end of a contig in G. We check all

occurrences of s and see if any occurrence of s is at the end of a

contig (or only duplicated SNPs between s and the end of the

contig) and if the occurrence of s is in the correct orientation. If

there is a such occurrence, we can keep matching from the

occurrence. If there are multiple such occurrences, then there are

multiple ways to match s and we have to enumerate and check all

possibilities. We call this a jump-over-contig step.

We try to explain all genomes with the minimum number of

inversion endpoints, i.e., as few blocks as possible. We use a greedy

block extension algorithm so that every block is maximal, and

minimize the number of blocks. The block extension algorithm

works as follows. A block starts from a single SNP. Each round we

try to extend a block B, we pick a SNP s which is next to B in some

genome, and test if all other genomes agree with the new block

candidate Bs. If all genomes agree with Bs, then we extend B to

Bs and start the next round. If there is any genome that does not

agree with Bs, then we pick up another SNP s’ which is next to B
in some genome. If there is no such SNP that extends B in either

forward or reverse direction, then we stop extending and output B
as a block. Tables 1 and 2 outline the main idea of the algorithm.

The time complexity of the algorithm is determined by how fast

we can determine if a genome agrees with a block. Assume B� is

returned by Algorithm 2 and there is no duplication, then a

straightforward implementation will take O(nDB�D2
P

ji) time,

where n is the number of genomes, DB�D is the length of the block,

and ji is the product of all jump-over-contig enumerations on

genome i. Note that duplications make it possible that a genome

may agree with a small block in multiple ways in our algorithm,

which theoretically increases the time complexity, and complicates

the optimization. We choose not to optimize the implementation

because our experiments show that a straightforward implemen-

tation yields a reasonable running time. For example, it takes 2

minutes for the Bulkhorderia pseudomallei dataset with 122 thousand

SNPs and 26 strains. This is because duplications and jump-over-

contigs do not occur very frequently.

In our algorithm, if a SNP s is absent in a genome G, then s will

never make G disagree with a block. If s is next to a inversion

endpoint, then s may appear in two different blocks. For example,

genome G1 has a SNP sequence abcde and genome G2 has ab and

de but c is absent in G2. Our algorithm will produce two blocks

abc and cde, and we say these two blocks overlap. Duplications may

also create overlapping blocks. For example, G1 has SNP sequence

abcdef and G2 has abdcef and c, d elsewhere. Our algorithm will

get two blocks abcef and abdef . Therefore, after getting blocks,

the summation of number of SNPs in all blocks, denoted as

increased number of SNPs, is usually much more than the number

of given SNPs. Note that overlapping blocks may result in

duplicated HREs at the end, and we may overcount the number of

HREs. However, we simply accept overcounting since our

objective is to find HREs, not to count HREs.

2.2 Inside of a Block with no Inversions
We now consider a single block, and the corresponding SNPs of

the block in all genomes. Our objective is to reconstruct the history

of the block on each node of the evolutionary tree. The SNP order

of the block should be the same in all genomes but there might be

missing SNPs. For each SNP locus, we reconstruct the SNPs of

Table 2. Algorithm BLOCKEXTENSION(blockB).

1: for both forward and reverse direction do /*reverse B when needed */
2: for each genome G do
3: Let s be the next SNP after the block B in genome G

4: if Bs has not been tested then
5: if all genomes agree with Bs then
6: B/Bs

doi:10.1371/journal.pone.0075230.t002

Table 3. The accuracy of HREfinder under different
parameters.

Mutation rate 0.5% 1% 3% 6%

Recall 31.90% 40.97% 49.07% 49.32%

Precision 79.90% 78.99% 77.33% 76.23%

HRE rate 1% 3% 6% 10%

Recall 61.58% 49.07% 38.48% 31.31%

Precision 55.32% 77.33% 85.72% 90.27%

Missing rate 1% 5% 10% 20%

Recall 51.74% 49.53% 49.07% 46.64%

Precision 77.36% 76.98% 77.33% 76.04%

Error rate 0.1% 0.5% 1% 3%

Recall 48.36% 49.35% 49.07% 48.18%

Precision 77.31% 76.66% 77.33% 76.69%

# SNPs 10 20 50 100

Recall 49.25% 48.94% 49.07% 48.51%

Precision 76.55% 76.99% 77.33% 77.04%

# strains 10 20 40 80

Recall 34.74% 48.29% 49.07% 44.61%

Precision 48.96% 63.15% 77.33% 85.81%

The default values of parameters are: average branch length = 20, 40 strains, 50
SNPs, mutation rate = 1% each SNP per branch length, HRE rate = 3% per
branch length, error rate = 1% each SNP, and missing rate = 10%.
doi:10.1371/journal.pone.0075230.t003
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internal nodes assuming there are only mutations and errors, and

minimize the total weight of mutations (wm) and errors (we) at the

same time. This is a weighted small parsimony problem and can

be solved by dynamic programming in linear time [12].

After inferring the SNPs of the internal nodes, we then compute

if we can assign HREs. Let 1,2, � � � ,b be the SNP indices of the

block we consider. For each internal node t as a possible HRE

destination, we define S½i�½j� as the minimum total weight

considering SNPs 1,2, � � � ,j assuming node t inherits SNP j from

node i. Let p be the parent node of t, n the number of nodes, and

snp½k�½j� SNP j of node k. We derive the recurrence relations for

S½:�½:�: (i=p).

S½p�½1�~0 ð1Þ

S½i�½1�~wx ð2Þ

S½p�½j�~wm
:I(snp½p�½j�=snp½t�½j�)z min

k
S½k�½j{1� ð3Þ

S½i�½j�~wm
:I(snp½i�½j�=snp½t�½j�)z min

S½i�½j{1�
min

k
S½k�½j{1�zwx

(
ð4Þ

I(:) is the indicator function in the above equations. Equation

(3) represents the case that SNP j is not from an HRE, and

Equation (4) represents the case that SNP j is extending an existing

HRE (top option in bracket) or starting a new HRE (bottom

option in bracket). In Equation (3) and (4), k is enumerated from

all possible source nodes, i.e., all other nodes that are not

descendants of node t. We charge the weight of an HRE at the

beginning of the HRE (Equation (4)), but do not charge at the end

(Equation (3)). Note that Equation (4) also allows us to have

mutations on a segment of HRE. For the leaf nodes, the

recurrence relations are identical except each wm is replaced by

we. With the recurrence relations established, a standard dynamic

programming technique with backtracking would be sufficient to

assign mutations/HREs optimally [12,13]. There are nb entries in

S½:�½:�, and it takes O(n) time to compute each entry. The time

complexity is O(n2b) for a single node, and O(n3b) for all nodes.

Let m be the increased number of SNPs, and the total time

complexity is O(n3m).

2.3 Detection of Possible HREs from the Out-groups
If there are several consecutive mismatches of SNPs of a node

and its parent node, it is likely that the segment is affected by some

HRE. However, there might be no similar SNP segment in the

given data, and we suspect it might be an HRE from an out-group.

Suppose we try to assign an HRE from the out-group, since there

are no known SNPs, we are free to create whatever SNPs we need

to match the SNPs of the node we consider. If the weight of such

HRE is a constant, it may lead to matching all the SNPs with an

HRE from the out-groups. We borrow the idea of affine gap

penalty in sequence alignment [12]. For the out-group HRE, we

introduce the opening weight woo and the extending weight woe.

Let S½0�½j� be defined the same as S½i�½j� but SNP j is inherited

from the out-groups. The recurrence relation derived in Section

2.2 remain mostly the same except the enumeration of k in

Equation (3) and (4) should include the the out-groups. We derive

the recurrence relations for the out-groups as follows.

S½0�½0�~woo

S½0�½j�~ min
S½0�½j{1�zwoe

min
k

S½k�½j{1�zwoo

(

These recurrence relations can be solved by standard dynamic

programming with backtracking technique, and help assign sparse

mismatches as mutations/errors and dense mismatches as out-

group HREs.

Sometimes the algorithm may assign two HREs of the same

segment to two nodes, and they are predicted to inherit the HRE

segment from each other. We consider this scenario as evidence of

an out-group HRE. After assigning mutations/HREs/errors by

dynamic programming and backtracking, for each SNP of a node,

we trace the ancestor of the SNP allele. A SNP within an HRE

segment is inherited from the HRE source, and a SNP not in an

Table 4. Summary of results from HREfinder and kSNP.

#
Genomes

Time for
kSNP
(h:m:ss
or m:ss)

Time for
HREfinder
(h:m:ss
or m:ss)

Total
#
SNPs

Homo-
plastic
SNPs

#
core
SNPs

#
blocks

# SNPs
involved
in HRE

#
HRE

# HRE
from
outside

B.pseudomallei 23 55:14 24:13 108004 45992 45660 10168 87259 24100 331

B.pseudomallei
(assembled
,100 contigs)

14 30:22 10:29 84104 33110 46054 5395 59377 12159 456

B.mallei 11 16:20 01:03 1977 25 1245 256 87 15 15

Burkholderia 69 6:28:14 44:56:59 1865212 219097 38 227124 189368 33192 5130

B.anthracis 18 23:40 00:15 4141 57 3570 115 151 28 28

Vaccinia 33 08:41 02:57 3079 1564 1400 123 2818 1891 39

Variola 48 12:56 01:15 1725 73 1307 2 111 12 4

Core SNPs are loci present in all the genomes. Homoplastic SNPs are those that are not consistent with the pattern of inheritance in the predicted SNP-based
phylogeny.
doi:10.1371/journal.pone.0075230.t004
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HRE segment is inherited from the parent node. If there is no

HRE from out-groups, we should be able to trace all SNPs all the

way to the root. If the tracing falls into a cycle, then we output the

SNPs and involved nodes as evidence of an out-group HRE. This

algorithm also detects inheritance patterns that form a cycle by

more than two nodes.

Experimental Results

We have implemented our algorithm in C/C++, denoted as

HREfinder. We have also implemented a simulator to generate

simulated data and estimate the accuracy of HREfinder. We also

run HREfinder on real data obtained from SNP analysis

according to [14] of all available whole genomes (draft and

finished) for several bacteria and viruses.

HREfinder takes as input the SNP alleles and positional

information, the genome sequences, and a phylogenetic tree. SNP

detection and building a phylogenetic tree occurs prior to running

HREfinder, and may be accomplished with alignment-based

approaches (e.g. Mugsy [15] or progressiveMauve [16]) or the

alignment free method kSNP [14,17] (http://sourceforge.net/

projects/ksnp/) which we used here with k = 25. Likewise, the

method for building a phylogeny is up to the user. Here we used

maximum likelihood of the SNP allele sequences [18]. The root

was selected as the node that resulted in the fewest homoplastic

SNPs when mapping SNPs to nodes based on alleles shared by all

descendant leaves. The SNP finding and tree building methods are

independent of HREfinder, but we have formatted kSNP output

for automatic input to HREfinder using any of several trees (based

Figure 2. Tree for variola with node numbers indicated on internal nodes. An HRE from positions 164360–165376 is shown in red between
a Somalia strain and either node 7 or node 1, although the direction of transfer is not clearly predicted by HRE. Another HRE is predicted from node 2
to the Nepal strain, shown in blue. Two more HREs are predicted from outside the tree to nodes 41 and 42, in green.
doi:10.1371/journal.pone.0075230.g002
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on maximum likelihood, parsimony, neighbor joining of pairwise

SNP differences, or only core SNPs).

3.1 Simulation
We use a model of random branching of lineages to simulate an

evolutionary tree [19]. To simulate a tree of n strains, we start with

a root and a branching event at time 0. When an event occurs, it

splits a lineage into two. For each new branching event, we draw a

time interval from an exponential distribution with a given

branching rate, then add the time interval to the current time for

the occurrence time of the new event. The time interval will also

be the branch length of the corresponding edge. This process stops

at the time the branching event which would generate the (nz1)st
strain is about to occur. The branch length of each edge which

ends at a leaf will be assigned as the time difference between the

stop time and the branching time that generated the branch. Note

that the summation of the branch length on the path from the root

to each leaf will be the same.

After the evolutionary tree is generated, we then need to

generate genome rearrangement events. In circular bacterial

genomes, inversions tend to be symmetric to the origin of

replication, i.e., the endpoints of the inversion are equally distant

from the origin of replication [20,21]. Dias et al. have published a

program called SIB to simulate these symmetric inversions in

bacterial chromosomes [22]. We use SIB to generate inversion

events. SIB generates both symmetric and nonsymmetric inver-

sions and the number of inversions on a branch is proportional to

the branch length.

After the evolutionary tree and inversion events are generated,

we then generate when and on which branches mutations and

HREs should occur. For each edge, we generate a series of

mutation events, and the time interval between a mutation and the

next mutation is drawn from the exponential distribution with a

given mutation rate. The series of mutations terminates when the

time of the next mutation event is later than the time of the

branching event that ends the edge. For each pair of edges,

consider the time interval both edges appear. In the time interval,

we generate a series of HREs in the same way as described above

that we generate mutations, with a given HRE rate. After all

events have been generated, we uniformly randomly generate the

SNPs of the root. We then generate all SNPs of all nodes in the

evolutionary tree with the given mutations/HREs. The SNP

Figure 3. SNP tree for Burkholderia with putative HRE counts. This tree shows the number of predicted HREs (x#) to each node and to each
genome in brackets after the genome name.
doi:10.1371/journal.pone.0075230.g003
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position where each mutation takes place is assigned uniformly

randomly. The position and length of each HRE is then generated

uniformly randomly on condition that it occurs within a

homologous region, i.e., the SNP order/orientation should be

the same in source and destination. Finally, on the leaf nodes, we

generate sequencing errors and missing loci uniformly randomly

with given error rate and missing rate, respectively.

There are many HREs/mutations that cannot be detected

easily, and some of them can never be detected. A mutation

followed by another mutation or an HRE on the same branch will

be nullified and there is no way to detect it. The SNP sequence on

source and destination of an HRE may be identical or differ by

only one SNP, then it has no effect or can be explained by a

mutation, respectively. An HRE may be followed by another HRE

on the same branch and get nullified. After simulated data is

generated, we try to identify these nullified events with conditions

listed above, and discard them later when computing the accuracy.

By identifying and discarding nullified events in simulated data, we

can compute accuracy based on events that leave some evidence.

However, we only identify and discard nullifying effects that are all

on the same branch when generating simulated data. We do not

identify nullifying effects in which two or more branches are

involved (e.g., a mutation followed by a branching event, then

both branches are affected by HREs, nullifying the first mutation).

Therefore, there are still some events that leave no evidence when

generating simulated data, and these events will have an impact on

calculating the accuracy of HREfinder. There are still many

scenarios in which HREs cannot be detected: two or more HREs

may overlap and can be explained by a few mutations/errors, an

inversion may separate an HRE into different blocks and we

cannot detect it because we consider each block separately, etc.

Identifying and discarding all these events would be very difficult,

and we choose not to identify all these events when generating

simulated data. Therefore, many events cannot be identified as

HREs, so we expect that HREfinder can detect only a subset of

HREs in the simulations.

The weights of the events are set as

(we,wm,wx,woo,woe)~(2,3,5,7,1). With these values, a segment

that can be explained by either two (or more) mutations or one

HRE from a node in the evolutionary tree, HREfinder will choose

one HRE. If a segment can be explained by either three (or more)

errors or one HRE from a node in the evolutionary tree,

HREfinder will choose one HRE. For a segment that can be

explained by one mutation or two errors, HREfinder will not

explain it by an HRE. Note that the number of mutations allowed

does not depend on coalescence time, since the likelihood of HREs

and mutations are both proportional to the time. Our first

experiment shows that most HREs are separated by inversions and

cannot be detected. Therefore, in our second experiment, we do

not generate inversions in order to focus on HREs within a block.

The default value of parameters are: average branch length = 20,

40 strains, 50 SNPs, mutation rate = 1% each SNP per branch

length, HRE rate = 3% per branch length, error rate = 1% each

SNP, and missing rate = 10%. Since most HREs get partially

nullified by other HREs that overlap, an HRE detected by

HREfinder is considered correct if it overlaps with an actual HRE

Figure 4. Bacillus anthracis, 34 strains, 8781 SNPs (increased).
doi:10.1371/journal.pone.0075230.g004
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on the same branch. We denote recall as the number of correctly

detected HREs divided by the total number of actual HREs, and

precision as the number of correctly detected HREs divided by the

total number of predicted HREs by HREfinder. The average

branch length is always fixed. In each set, we try 4 different values

for a parameter, and all other parameters are fixed. For each

parameter setup, we run the simulation 200 times, and compute

the recall and precision.

Table 3 shows the results of our simulation. A higher mutation

rate brings more diversity, and it reduces the similarity between

source and destination of an HRE. More diversity makes HREs

easy to detect, and improves recall. However, a higher mutation

rate also increases the probability of consecutive mutations, which

HREfinder will explain as HRE, thus slightly decreases the

precision. A higher HRE rate brings more overlapped HREs, and

makes HREs difficult to detect, thus decreases the recall. A higher

HRE rate also increases the precision, because it makes it easy for

a detected HRE to overlap with an actual HRE. A lower missing

rate results in better recall, and has little effect on the precision.

The number of SNPs, or the size of a block, and the error rate, do

not have significant impact on the accuracy. The number of

strains can affect the accuracy either way. More strains with a

fixed average branch length bring more diversity and improve the

accuracy. However, more strains also bring bigger phylogenetic

trees, longer simulated time, and more overlapped HREs, which

lower the recall. Therefore, more strains affect recall both ways,

but obviously bring a better precision.

We have tried different weights of events to see how weights

may affect recall and precision. The weight assignments we have

tried for (we,wm,wx,woo,woe) include (2,3,5,7,1), (2,3,7,9,1),
(2,4,5,7,1), (2,5,8,10,1), (3,5,7,9,1). The result shows that

(2,3,5,7,1) works best on recall but worst in precision. Since our

objective is to find HREs, we should look for high recall rate,

which is more important than high precision (low false positive),

and only result for (2,3,5,7,1) is presented here. If a user needs to

reduce the number of candidate HRE’s to investigate, the weight

wx should be increased to decrease the number of false positive

calls. A longer series of SNPs in a predicted HRE is more likely to

be a true HRE, which could be a measure used to rank the HRE

events for verification analysis.

3.2 Real Data
We ran HREfinder on all publicly available draft and finished

genomes of Bacillus anthracis, Burkholderia mallei, Burkholderia

pseudomallei, Burkholderia genus, vaccinia virus and variola virus. Nine

of the B.pseudomallei genomes are in more than 1000 contigs

each, so we also ran HREfinder on the subset of genomes in

assembled into fewer than 100 contigs. Of the Burkholderia genus

genomes, 28 were draft contigs, 11 in more than 1000 contigs. For

the calculations, separate contigs or chromosomes were concate-

nated with 250 N’s as separators into a single sequence for each

genome. Burkholderia calculations were performed on an Intel

Xeon 5660 CPU with 2.8 GHz. and 48 GB RAM, and timings are

given in Table 4. kSNP was run with 12 CPU, and HREfinder

Figure 5. Burkholderia mallei, 11 strains, 3659 SNPs (increased).
doi:10.1371/journal.pone.0075230.g005
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with 1 CPU. All data are available at https://sourceforge.net/

projects/hrefinder/files/HGT_paper_data.zip. We would expect

Burkholderia mallei and Bacillus anthracis to show little recombination,

i.e., few HREs, and Burkholderia pseudomallei to show large amounts

of recombination based on extensive published work [2,3,23,24].

Vaccinia virus is also expected to show high rates of HRE resulting

from a complex history due to broad host range, extensive passage

in domesticated animals and chick embryos, culturing spiked with

cowpox and variola, scarification practices of vaccination that

reintroduced vaccinia virus to nature many times, and mixing of

multiple vaccinia strains in vaccine preparations [25]. In contrast,

variola virus is much more homogeneous than vaccinia virus, and its

evolution is thought to be a result of natural selection via human-

to-human transmission. As a result much lower levels of

recombination have been found [26]. These in fact are the results

we observe in Table 4. Most SNP discovery runs with kSNP

completed in under an hour and HREfinder completed in

minutes. The very large run with all public Burkholderia genomes

took longer, with 69 multi-chromosome draft and finished

genomes from 23 species in a 461 MB genome sequence file.

The Burkholderia genus analysis probably would not be feasible

for an alignment based approach for SNP discovery, unless one

limited the analysis to a subset of genes such as the core genome.

There are far too many predicted events to detail all of them,

but we have looked at a subset and make the following

observations, recognizing that there may be good alternative

interpretations. HREfinder is intended to be used as a tool for

hypothesis generation, so results are best interpreted and verified

by more detailed analyses of the HRE predictions. We note that

overlapping blocks result in repeatedly counting HREs, mutations,

and errors, so the number of events is an overestimate that can be

corrected by a user’s detailed examination of the positions and

sequences of the predicted transfers. The overlapping blocks and

event duplicate counting are an area for improvement of the

algorithm and code. The program output includes the full

sequences of the regions around the putative HRE for each of

the leaf strains under the recipient node, so the region, not just the

SNP allele, may be more easily compared across genomes by

BLAST. For cases with many predicted HREs, increasing wx and

re-running HREfinder may be required, particularly in taxa with

high rates of mutation and convergent evolution.

For variola, HREfinder predicts an HRE containing 16 SNPs in

a sequence fragment of 1041 bases from Node 1 (the branch

leading to the India 1964 Vellore strains) to the Soma-

lia_1977_gi109726076 genome, highlighted in red in Figure 2.

BLASTing the sequence from the genome corresponding to this

putative HRE from positions 164360–165376 in Soma-

lia_1977_gi109726076 shows that it is 100% identical to

India_1964_7124_Vellore_gi109725056 and identical but for 6

deleted bases to India_1964_7125_Vellore_gi109725262, but only

97% identical to the other Somalia 1977 strains that are nearest

neighbors. An HRE is also predicted at the same positions but in

the opposite direction from Somalia_1977_gi109726076 to node

7, which is ancestral to the India 1964 strain which is identical in

this region, and also branches to other Middle Eastern strains

which have more indel and SNP differences in that region relative

Figure 6. Burkholderia pseudomallei, 26 strains, 212174 SNPs (increased).
doi:10.1371/journal.pone.0075230.g006
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to the Somalian genome. This illustrates a circular case where

HREfinder has trouble determining the direction of the event, but

does suggest that an HRE in this region is possible between these

regions of the tree, with convergent evolution as an alternative

explanation. Genes spanned by this putative HRE region are SPI-

2/CrmA IL-1 convertase, several IL-1-beta-inhibitors and hypo-

thetical proteins, and a hypervariable AT repeat region

(ABG45376.1-ABG45382.1).

Another HRE of 82 SNPs over a 6761 bp region from 17233–

23969 is predicted from node 2 to the Nepal_1973_gi109725669

strain (in blue in Figure 2). This region is identical between the

Nepal strain and the Pakistan, Syria, Iran, Afghanistan, and differs

by only 1 base from the Yugoslavia strain, while it differs from the

nearest Bangladesh strain by 8 SNPs and 1 indel. It is not clear

why HREfinder predicts the HRE from node 2 instead of node 5.

Genes spanned by this region are several ankyrin-like proteins,

some of which are noted to inhibit NF-kB activation by preventing

I-kB-alpha degradation, a SPI-3 serine protease inhibitor-like

protein and an interferon resistance protein which are both noted

to be host range and host defense modulators, dUTPase, a kelch-

like protein, and hypothetical proteins, one of which interferes

with apoptosis (AGB44808.1-ABG44817.1).

In addition to these putative HREs within the tree, 2 events are

predicted from outside the tree, shown in green on Figure 2. One

is predicted to node 41, which branches to the variola minor

strains and spans 5 SNPs from positions 171335–171464 (relative

to strain Bangladesh_1974_nur_islam_gi94484460). The other, to

node 42, branches to the variola major strains, and spans positions

72847–74129. The first region spans mostly an intergenic region

and the beginning of a kelch-like protein (ABF23763.1), and the

second begins on a polyA polymerase subunit (ABF23656.1)and

ends on a DNA-dependent RNA polymerase subunit rpo22

(ABF23657.1). Note that these positions are the SNPs closest to the

ends of the putatively transferred region, and the end of the HRE

could extend beyond.

The only HREs predicted in B. anthracis are from ‘‘outside’’ the

tree, the majority to internal nodes. The majority are predicted to

the node branching to A0442 and Kruger_B, as well as some to

the leaf node A1055 and one to A0488. This indicates that the

affected node differs from other nodes in the tree by a series of co-

linear SNPs. This could result from HRE from an unsequenced

isolate, or it could result from positive selection in a particular

region which changes a series of SNPs, and suggest that more

detailed analyses are needed for these regions. BLASTing the B.

anthracis putative HRE regions from leaf nodes against all

Bacillaceae genomes show one region (strain A1055_positions

2496911–2503816) with highest similarity to Bacillus thuringiensis

serovar andalousiensis BGSC 4AW1 and other regions with

highest similarity to proprietary, unpublished draft isolates

sequenced by collaborators.

For vaccinia, all of the HREs predicted by HREfinder from

outside the tree are to Vaccinia_Horsepox_virusMNR-

76_gi111184167. One of these putative HRE regions spans

positions 211–1425 and has the top BLAST hit to monkeypox

Zaire (gi|17529780). Another very large putative HRE from

positions 88078–106214 in Tian Tan is predicted to come from

Figure 7. Vaccinia virus, 33 strains, 17562 SNPs (increased).
doi:10.1371/journal.pone.0075230.g007
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within the tree from the WR strain (Vaccinia_gi66275797, and

indeed this is the top BLAST hit for the region, a better match

than the more closely related Copenhagen and rabbitpox strains.

There are also events predicted between Dryvax clones. One

putative HRE from the WR strain to Vaccinia_GLV-

1h68_gi167412463 positions 81817–91609 actually has the best

BLAST matches to Homo sapiens transferrin receptor, so appears

to be a region that is involved in HRE not only among vaccinia,

but between virus and host.

HREfinder predicts very few HREs in B. mallei. The node

branching to NCTC_10229, NCTC_10247, and 2002721280 has

the majority of predicted transfers which come from outside the

tree. The longest includes only 16 SNPs, and most are much

shorter.

We analyzed B. pseudomallei both with and without highly

fragmented draft genomes. Including the 9 additional draft

genomes resulted in more SNP loci, although slightly fewer core

SNP loci present in all genomes, some of these possibly due to gaps

and errors that obscure the locus in highly fragmented drafts.

There are almost twice the number of blocks and HREs when the

extra draft genomes are included, but only 50% more SNPs

predicted to be involved in HREs, since the larger number of

blocks breaks up HREs into more, smaller putative transfers.

However, fewer HREs are predicted from outside the tree when

the additional draft genomes are included, supporting the

hypothesis that HREs from unsequenced isolates can parsimoni-

ously explain a series of novel SNP alleles. Finally, the analyses of

69 highly divergent genomes from the Burkholderia genus

(Figure 3) illustrates several points: 1) pseudomallei has far more

putative HREs than other species; 2) mallei has by far the fewest

predicted HREs; 3) other species that cluster separately from the

(mallei, pseudomallei, rhizonica, thailandensis, oklahomensis)

cluster appear to have intermediate levels of HREs between

mallei and pseudomallei. In the node leading exclusively to the

mallei strains, 1610 HREs are predicted, only 8 from outside the

tree, 197 from pseudomallei 668, 221 from the node leading to

pseudomallei 9 and Pakistan 9, 118 from the node leading to

pseudomallei 1710a and 1710b, 103 from the node leading to

pseudomallei 1106a and 1106b, and dozens from other pseudo-

mallei internal and leaf nodes.

We plot the number of events detected by HREfinder as a

function of the length of the branches. Figures 4, 5, 6, 7 and 8

show the results. Note that blocks may overlap heavily because of

duplications, so that some SNPs may be computed many times,

increasing the count of mutations. Therefore we use the increased

number of SNPs as a reference of mutation counts. The branch

length is calculated by the rearrangement distance, which we

expect to be proportional to the evolutionary time [17]. We also

expect the number of mutations to be proportional to the

evolutionary time, thus proportional to the branch length, which

is consistent with the plots. For leaf nodes, mutations are

considered as errors. The number of errors should only be

proportional to the number of SNPs. If we draw a linear trendline

y~axzb where x is the branch length and y the number of errors

and mutations, then the intercept b should represent the number

of errors. Given the intercepts are small in our plots, most ‘‘errors’’

Figure 8. Variola virus, 49 strains, 2926 SNPs (increased).
doi:10.1371/journal.pone.0075230.g008
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on the leaf nodes should be mutations. The difference of slopes

between mutations and errors in the plots could be because the

accuracy of branch length estimation is different between internal

nodes and leaf nodes. A few branches are outliers, however,

showing more mutations than expected based on the branch

length, which could be explained by the following. In Burkholderia

mallei dataset, there are many blocks that overlap extremely

heavily, and mutations in the overlapping regions get counted

repeatedly. In the other 4 datasets, there are some regions that get

partitioned into many single-SNP blocks by HREfinder, and some

HREs fall into these regions. HREfinder explains these HREs by

many mutations or errors, and it leads to some plots with extreme

amounts of mutations and errors.

For homogeneous species like Bacillus anthracis, Burkholderia mallei

and variola virus, there appears to be no relationship between HREs

and branch length, since so few HREs have occurred. Even for the

more heterogeneous Burkholderia pseudomallei and vaccinia virus,

HREs seem to have much weaker relationship to branch length

than do mutations or errors. HRE may have less to do with

evolutionary time (branch length) and more to do with ecological

opportunity. Factors like co-infection or co-habitation in the

environment with multiple strains or species could lead to more

opportunities for HRE, as could the prevalence of genetic

mechanisms for HRE like transposons or other mobile elements.

There are more HREs to internal nodes than to leaf nodes. We

believe it is because the weight of an error is smaller than that of a

mutation, so HREfinder with the weight parameter settings used

here tends to assign errors on leaf nodes but HREs on internal

nodes.

We plot the number of mutation/HRE/error events of

Burkholderia pseudomallei dataset in Figure 9 with Dendroscope

[27] and outline the number of HREs from the out-groups of each

Figure 9. Evolutionary tree of Burkholderia pseudomallei. The internal nodes are labeled by the number of events, m for mutation, e for error,
and x for HRE.
doi:10.1371/journal.pone.0075230.g009
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strain. We also show a phylogenetic network (Figure 10) created

from the SNP data using SplitsTree [28], which illustrates the

reticulate nature of the tree but does not easily allow us to show

predicted numbers mutations and HREs. There are 331 out of

24100 HREs predicted to be from out-groups and 240 of them are

on the leaf nodes. HREfinder outputs the full sequence of HRE

regions from leaf nodes (including the sequence between SNPs).

BLASTing HRE regions in Burkholderia pseudomallei that are

predicted to come from out-groups shows many with high

homology to transposon, phage, and plasmid sequences, which

are prime candidates for HREs. Others show strong homology to

soil and water inhabiting microbes like Rhizobium, Pseudomonas,

and other Burkholderia species, consistent with HREs occurring in

soil and aquatic environments.

Conclusions

We designed and implemented an algorithm to do HRE

detection among many whole genomes using dynamic program-

ming, based on SNPs. Our experimental results on simulated data

show that there are many HREs that cannot be detected, but the

HREs detected by our program are mostly true events. The

tradeoff between recall and precision depend on the weights used,

so a user may modify depending on tolerance for false positives/

negatives. HREfinder is intended for hypothesis generation, and

should be followed up by more detailed analyses of sequences, not

just SNPs, to verify predicted HREs. The experimental results on

real sequence data show that the number of HREs we predict for

several bacteria and viruses is consistent with expectations based

on the literature, and BLAST similarity of some of the putatively

transferred regions support the predictions of HREfinder.
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