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ABSTRACT: This study introduces a novel proline-catalyzed oxidation system
employing hydrogen peroxide to synthesize quinones from a diverse range of
substrates, including hydroquinones, phenols, resorcinols, aldehydes, and
polycyclic aromatics. This approach is well-aligned with green chemistry principles,
offering a more environmentally benign approach than earlier studies. Notably, this
approach uses cost-effective reagents, proline as a readily available organocatalyst,
reduced equivalents of H2O2, metal-free conditions, and notably short reaction
times to achieve moderate-to-high yields. This promising approach encourages
further exploration of the H2O2-proline system in oxidation reactions. This study’s
innovative approach and good results set a strong foundation for future research to expand the scope and efficiency of green
oxidation processes.

■ INTRODUCTION
The quinone motif is a privileged structure in several
pharmaceuticals and natural products, as exemplified by the
biologically active quinones shown in Figure 1.1 Accordingly,

various approaches have been established for synthesizing these
scaffolds,2 with the most commonly investigated scaffolds being
benzoquinone, naphthoquinone, and anthraquinone.3

Among the various approaches utilized in synthesizing
quinones, the most straightforward approach involves the
oxidation of arenes and/or phenols.4 There are several methods
described in the literature. However, most of these methods
require the use of oxidants like organic peroxides,5,6 hypervalent
iodine compounds,6,7 or inorganic salts,8,9 which results in the
generation of a significant amount of waste.4 Consequently,

employing more environmentally benign oxidation methods
would be desirable.10,11

In this regard, hydrogen peroxide as an oxidant has emerged as
a green alternative, as its only byproduct is water. In addition,
hydrogen peroxide is both cost-effective and inherently safe.9

Despite the strong oxidation potential of hydrogen peroxide, it
often requires activation due to the high activation barriers
required for the oxidation of many organic compounds. This has
led to the creation of different catalytic systems to facilitate
oxidations using hydrogen peroxide.12 The electrophilic
activation of hydrogen peroxide by hydrogen bond donors has
been well-reported in literature.13−15 However, in literature, the
role of proline as a hydrogen bond donor for the activation of
hydrogen peroxide is neglected,15 except for the work by Reddy
and co-workers, who reported that a proline-hydrogen peroxide
system for the oxidation of sulfides to sulfoxides.16 As an
organocatalyst, proline offers several benefits, including being
inexpensive and nontoxic, characteristics that are particularly
valuable from the point of view of green chemistry.17

Recently, in 2020, Baeza et al. reported the oxidation of
electron-rich arenes to quinones using a urea-hydrogen peroxide
adduct (UHP) activated by 1,1,1,3,3,3-hexafluoroisopropanol
(HFIP) (Scheme 1,A).10 Additionally, in 2021, Maestri et al.
reported the oxidation of phenols and polycyclic aromatics with
hydrogen peroxide catalyzed by heterogeneous sulfonic acids
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Figure 1.Benzoquinone and naphthoquinonemoieties found in natural
products and pharmaceuticals.
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(Scheme 1,B).11 Despite their effectiveness, these methods

require expensive reagents and long reaction times.

Subsequently, developing a novel method using readily

available and cost-effective reagents is still highly desirable.

Herein, we report the proline-catalyzed oxidation of electron-

rich arenes and polycyclic aromatics to quinones (Scheme 1).

■ RESULTS AND DISCUSSION

We initiated our study by testing various hydrogen-bonding
organocatalysts under solvent-free conditions. Preliminary
experiments involved stirring methylhydroquinone with 3
equiv of 30% aqueous hydrogen peroxide and 20 mol % of the
organocatalyst at 50 °C for 30 min under microwave irradiation.
The use of proline afforded promising conversion and
selectivity; therefore, further optimization was carried out. The

Scheme 1. Metal-Free Approaches That Utilize H2O2 for the Synthesis of 1,4-Quinones

Table 1. Effects of the Solvent on the Oxidation of Methylhydroquinonea

entry solvent conversion (%)b selectivity (%)b

1 neat 36 99
2 acetonitrile 35 99
3 cyclopentyl methyl ether 10 99
4 γ-valerolactone 16 99
5 2-MeTHF 11 99
6 ethyl acetate 12 99
7 dimethyl carbonate 18 99
8 acetone 11 99
9 methanol 20 99
10 ethanol 24 99
11 HFIP 11 99
12 acetic acid 54 99
13 acetic acid 96c 99
14 acetic acid 99d 86

aReaction conditions: substrates (30 mg), proline (20 mol %), H2O2 (3 equiv), 30 min, solvent (0.1 mL), 50 °C. bDetermined by GC-MS analysis.
cReaction performed at 60 °C. dReaction conditions: substrates (30 mg), TFA (20 mol %), H2O2 (3 equiv), 30 min, acetic acid (0.1 mL), 60 °C.
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complete optimization can be found in the accompanying
Supporting Information (SI) (Table S1).
Next, the influence of different solvents on the conversion of

methylhydroquinone was investigated, and the results are shown
in Table 1. In the presence of acetonitrile as a solvent,
conversion was comparable to neat conditions (Table 1, entry
2). Employing a range of green solvents decreased conversion
(Table 1, entries 3−10). Despite the known role of HFIP in

activating hydrogen peroxide, this effect was not observed in our
experiments (Table 1, entry 11).14,18 Notably, using acetic acid
as a solvent increased conversion to 54% (Table 1, entry 12).
Raising the reaction temperature to 60 °C further enhanced
conversion to 96% (Table 1, entry 13). Full conversion was

Table 2. Organocatalyzed Oxidation of Various
Hydroquinonesa

aReaction conditions: substrates (30 mg), proline (20 mol %), H2O2
(3 equiv), 30 min, acetic acid (0.1 mL), 60 °C. bDetermined by GC-
MS analysis. cIsolated yield. dReaction conditions: substrates (30
mg), proline (20 mol %), H2O2 (3 equiv), 30 min, trifluoroacetic acid
(0.1 mL), 50 °C.

Table 3. Organocatalyzed Oxidation of Various Phenolsa

aReaction conditions: substrates (30 mg), proline (20 mol %), H2O2
(4 equiv), 30 min, trifluoroacetic acid (0.1 mL), acetonitrile (0.1 mL),
60 °C. bDetermined by GC-MS analysis. cIsolated yield.
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achieved when trifluoroacetic acid (TFA) replaced proline with
acetic acid as a solvent at 60 °C. However, a reduction in
selectivity was observed as 3-methylfuran-2,5-dione and 2-
hydroxy-5-methyl-p-benzoquinone were obtained as side
products. (Table 1, entry 14). Control experiments confirmed
the necessity of both proline and acetic acid for effective
conversion (Table S2).
Having established the optimal protocol for the reaction, we

then explored the electronic and steric properties of hydro-
quinone substrates to synthesize the corresponding p-
benzoquinones (Table 2). Hydroquinone (1a) affords p-
benzoquinone (2a) in a moderate yield of 58% due to
incomplete conversion. Electron-rich hydroquinones (1b−d)
rendered the corresponding p-benzoquinones in good to
excellent yields (83−92%). The suboptimal yield obtained in
the oxidation of trimethylhydroquinone (1c) was due to the
formation of 2-hydroxy-3,5,6-trimethyl-p-benzoquinone as a

side product. Sterically hindered hydroquinones (1e−f)
afforded the corresponding p-benzoquinones in good to
excellent yields.
Notably, the oxidation of electron-deficient chlorohydroqui-

none (1g) necessitated the use of TFA, as only trace quantities
of the product were detectable when using acetic acid. The
corresponding 2-chloro-p-benzoquinone (2g) was obtained in a
moderate yield of 55%. In hydroquinones, the redox potential is
influenced by the presence of substituents.19 Specifically,
electron-withdrawing substituents decrease the electron density
at the phenoxy group, leading to an increased redox potential.
Consequently, this renders electron-deficient hydroquinones
more resistant to oxidation.20 This method provides superior
yields compared to the oxidation of hydroquinones with
hydrogen peroxide catalyzed by supported sulfonic acids, as
reported by Maggi et al. with the exceptions of benzoquinone
(1a) and chlorohydroquinone (1g).21

Table 4. Organocatalyzed Dakin Reaction−Oxidation of Various Aldehydesa

aReaction conditions: substrates (30 mg), proline (20 mol %), H2O2 (7 equiv), 30 min, trifluoroacetic acid (0.1 mL), acetonitrile (0.5 mL), 60 °C.
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Encouraged by the preceding results, we proceeded to
investigate the oxidation of less reactive phenol substrates
(Table 3). Initial experimental data indicated that effective
conversion required 4 equiv of hydrogen peroxide and the use of
TFA. This is anticipated because phenolic substrates are more
challenging to oxidize compared to the corresponding hydro-
quinones.22 Furthermore, acetonitrile was added as a cosolvent
to increase selectivity by promoting the reaction to the desired
quinone product from the partial oxidation hydroquinone
intermediate.
We began our investigation by expanding on the substrate

scope previously reported in the literature, which focused
primarily on electron-rich substrates.10,11 o-Cresol (3a) and m-
cresol (3b) were utilized to synthesize the corresponding p-
benzoquinone (2b), achieving yields of 18% and 34%,
respectively. The oxidation of mequinol (3c) resulted in
benzoquinone (2a) forming with a 40% yield due to the
incomplete oxidation of the hydroquinone intermediate.
Employing 2,5-dimethylphenol (3d) led to the synthesis of
2,5-dimethyl-p-benzoquinone (2h) with a yield of 74%. The use
of 3,5-dimethoxyphenol (3e) produced 2,6-dimethoxy-p-
benzoquinone (2i) with a yield of 20% due to the incomplete
oxidation of the hydroquinone intermediate. Sterically hindered
phenols (3f−g) afforded the corresponding p-benzoquinones
(2e−f) in poor yields of 6−36%. The reaction of 1-naphthol
(3h) produced p-naphthoquinone (2j) with a yield of 74%. The
results indicate an enhanced reactivity for electron-donating
substituents, with naphthol exhibiting greater reactivity than
phenols, which is in agreement with the existing literature.10 The
suboptimal yields are attributed to incomplete conversion and
partial oxidation to the corresponding hydroquinones in less
reactive substrates. Increasing the equivalence of hydrogen

peroxide did not result in an increased yield. Additionally, the
corresponding furan-2,5-diones and 2-hydroxy-p-benzoqui-
nones were obtained as side products along with the desired
quinone. The reaction methodology proved unsuitable for
phenol, 2-bromophenol, and p-cresol, as the corresponding
quinones were only detectable in trace amounts.
Motivated by the limited existing research, we applied our

novel method to the direct oxidation of aromatic aldehydes,
which are among the most widely available starting materials, to
yield the corresponding quinones (Table 4).10,23 It is proposed
that the reaction proceeds via an acid-catalyzed Dakin oxidation,
which produces the corresponding hydroquinone.24 Thereafter,
further oxidation occurs, yielding the corresponding p-
benzoquinone. Preliminary method optimization indicated
that effective conversion required 7 equiv of hydrogen peroxide
and the use of additional acetonitrile to dilute the reaction
mixture to improve selectivity.
p-Hydroxybenzaldehyde (4a) and p-anisaldehyde ( 4b ) were

employed to synthesize the corresponding p-benzoquinone
(2a), resulting in yields of 68 and 28%, respectively. Although
the oxidation of p-anisaldehyde (4b) was low yielding due to
partial oxidation to 4-methoxyphenol and hydroquinone, Baeza
et al., reported that the oxidation of p-anisaldehyde (4b) resulted

Table 5. Organocatalyzed Oxidation of Various Polycyclic
Aromaticsa

aReaction conditions: substrates (30 mg), proline (20 mol %), H2O2
(7 equiv), 60 min, trifluoroacetic acid (0.1 mL), 80 °C. bReaction
conditions: substrates (30 mg), proline (20 mol %), H2O2 (7 equiv),
60 min, trifluoroacetic acid (0.1 mL), acetonitrile (0.25 mL), 80 °C.

Table 6. Organocatalyzed Oxidation of Various Resorcinolsa

aNot purely isolated; estimated conversion by GC-MS. Reaction
conditions: substrates (30 mg), proline (20 mol %), H2O2 (7 equiv),
60 min, trifluoroacetic acid (0.1 mL), acetonitrile (0.5 mL), 45 °C.
bReaction conditions: substrates (30 mg), proline (20 mol %), H2O2
(7 equiv), 30 min, trifluoroacetic acid (0.1 mL), acetonitrile (0.5 mL),
50 °C.
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exclusively in the formation of 4-methoxyphenol. The oxidation
of m-tolualdehyde (4c) led to the formation of 2-methyl-p-
benzoquinone (2b), achieving a poor yield of 6%. The reduced
yield is attributed to the poor conversion ofm-tolualdehyde (4c)
and the formation of 3-methylbenzoic acid as the major
oxidation product. The oxidation of 1-naphthaldehyde (4d)
led to the synthesis of p-naphthoquinone (2j) with a yield of
60%. Employing 2,5-dimethoxybenzaldehyde (4e) produced
2,5-dimethoxy-p-benzoquinone (2k) with a yield of 40%. The
moderate yield is attributed to the formation of 2,5-
dimethoxyphenol and 2,5-dimethoxyhydroquinone as side
products. Consistent with the previously observed trend,
naphthyl demonstrates greater reactivity compared to phenyl
substrates. The unsatisfactory yields for the oxidation of
aldehydes result from the partial oxidation to phenol and
hydroquinone derivatives. Additionally, the formation of
benzoic acid derivatives was observed across all substrates in
varying amounts. In accordance with the findings reported by
Baeza et al., o-anisaldehyde was converted quantitatively to o-
methoxyphenol.10

It should be noted that our investigation into the reactivity of
anisol derivatives revealed that the reaction was unsuitable for
anisol and p-methoxyanisole.10

Thereafter, we applied our established method to the
oxidation of unsubstituted naphthalene and anthracene,
motivated by the scarcity of practically feasible and environ-
mentally benign methods (Table 5).11 The oxidation of
naphthalene (5a) led to the formation of p-naphthoquinone
(2j), achieving a yield of 19%. The low yield is due to poor
conversion and the formation of phthalic anhydride and
phthalide as side products. The addition of acetonitrile increased
selectivity for the desired quinone.
The use of anthracene (5b) led to the synthesis of

anthraquinone (2l) with a yield of 61%. In addition to the
desired quinone, phthalic anhydride, 1,8-naphthalic anhydride,
1-hydroxyanthraquinone, and anthrone were observed as side
products. These observations imply that the significant energetic
stabilization due to aromaticity was too energetically disfavored
to be overcome in the case of naphthalene.11 Employing
fluorene (5c) produced fluorenone in trace amounts due to poor
conversion.

In light of the observations made by Baeza et al., who reported
on the incompatibility of the UHP-HFIP system with
resorcinols, the focus was then directed to explore the oxidation
of resorcinol substrates with our method.10 We were pleased to
discover that the reaction was compatible with substrates 6a−c,
as confirmed by GC-MS (Table 6). Unfortunately, efforts to
isolate these compounds were consistently met with degradation
to unknown products as determined by GC-MS. It should be
noted that the reaction was incompatible with resorcinol and
2,6-dihydroxybenzaldehyde, as these substrates underwent
complete conversion to unidentified oxidation products.
Interestingly, employing 2-bromoresorcinol as a substrate
resulted in the formation of dibromoresorcinol. Additionally,
when acetonitrile was omitted from the reaction conditions, 2-
bromoresorcinol and 4-chlororesorcinol yielded a mixture of
dihalogenated and trihalogenated resorcinols. Further, no
reaction occurred when phloroglucinol was used as a substrate.
To enhance conversions, reaction times were extended, and

temperatures were increased for the various substrates.
However, no improvement was observed. Regarding the
reaction mechanism, one possibility based on previous literature
reports is depicted in Scheme 2.16,25 Acetic acid and trifluoro-
acetic acid generate their corresponding peroxycarboxylic acids
in situ with hydrogen peroxide.26 The peroxycarboxylic acid is
activated by the protonated proline acid complex (I). There-
after, intermediate II is formed, an electrophilic attack of the
peracid in the π system of the hydroquinone. Finally, through
intermediate III, the corresponding quinone is formed (2a).
Control experiments illustrated that the carboxylic acid group of
proline is essential for activation, as pyrrolidine and proline
tetrazole exhibited no activity. In addition, Fmoc-Pro-OH
displayed lower activity than unprotected proline (Tables S3−
S4). The reduced activity might be attributed either to the steric
hindrance imposed by the Fmoc group or the protection of the
free NH, which potentially limits hydrogen bonding inter-
actions. Additionally, control experiments demonstrated that
the reaction proceeds when peracetic is used directly. However,
it is also possible that proline activates hydrogen peroxide,
thereby initiating the oxidation process.

Scheme 2. Possible Reaction Mechanism (Peroxycarboxylic Acid Generated In Situ from Acid and H2O2)
a

aControl experiments demonstrate the importance of the proline carboxylic acid functionality.
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■ CONCLUSIONS
In conclusion, in this study we report an effective, novel proline-
catalyzed oxidation system using hydrogen peroxide to
synthesize quinones from a diverse range of substrates, including
hydroquinones, phenols, resorcinols, aldehydes, and polycyclic
aromatics. It can be asserted that under the specified reaction
conditions, naphthalene derivatives and electron-rich arenes
demonstrated enhanced performance. This approach is well-
aligned with the principles of green chemistry, offering a more
environmentally benign approach compared to earlier studies.
Notably, this approach uses cost-effective reagents, proline as a
readily available organocatalyst, reduced equivalents of reagents,
metal-free conditions, and notably short reaction times to
achieve moderate-to-high yields. Furthermore, the successful
application of the H2O2-proline system in oxidation reactions,
particularly compared with the UHP/H2O2−HFIP systems,
underscores its potential as a versatile and sustainable oxidation
system for organic synthesis.27 This study’s innovative approach
and promising results set a strong foundation for future research
to expand the scope and efficiency of green oxidation processes.
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