
fmicb-12-665090 May 8, 2021 Time: 17:28 # 1

ORIGINAL RESEARCH
published: 13 May 2021

doi: 10.3389/fmicb.2021.665090

Edited by:
Tangfu Xiao,

Guangzhou University, China

Reviewed by:
Guohong Qiu,

Huazhong Agricultural University,
China

Qingjun Guo,
Institute of Geographic Sciences

and Natural Resources Research,
Chinese Academy of Sciences, China

*Correspondence:
Chengshuai Liu

liuchengshuai@vip.gyig.ac.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Microbiotechnology,
a section of the journal

Frontiers in Microbiology

Received: 07 February 2021
Accepted: 19 April 2021
Published: 13 May 2021

Citation:
Long S, Tong H, Zhang X, Jia S,

Chen M and Liu C (2021) Heavy Metal
Tolerance Genes Associated With

Contaminated Sediments From an
E-Waste Recycling River in Southern
China. Front. Microbiol. 12:665090.

doi: 10.3389/fmicb.2021.665090

Heavy Metal Tolerance Genes
Associated With Contaminated
Sediments From an E-Waste
Recycling River in Southern China
Shengqiao Long1,2†, Hui Tong3†, Xuxiang Zhang4, Shuyu Jia4, Manjia Chen3 and
Chengshuai Liu1,3*

1 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang,
China, 2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China,
3 National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China,
Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute
of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China, 4 State Key
Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China

Heavy metal pollution that results from electronic waste (e-waste) recycling activities
has severe ecological environmental toxicity impacts on recycling areas. The distribution
of heavy metals and the impact on the bacteria in these areas have received much
attention. However, the diversity and composition of the microbial communities and the
characteristics of heavy metal resistance genes (HMRGs) in the river sediments after
long-term e-waste contamination still remain unclear. In this study, eight river sediment
samples along a river in a recycling area were studied for the heavy metal concentration
and the microbial community composition. The microbial community consisted of 13
phyla including Firmicutes (ranging from 10.45 to 36.63%), Proteobacteria (11.76 to
32.59%), Actinobacteria (14.81 to 27.45%), and unclassified bacteria. The abundance
of Firmicutes increased along with the level of contaminants, while Actinobacteria
decreased. A canonical correspondence analysis (CCA) showed that the concentration
of mercury was significantly correlated with the microbial community and species
distribution, which agreed with an analysis of the potential ecological risk index.
Moreover, manually curated HMRGs were established, and the HMRG analysis results
according to Illumina high-throughput sequencing showed that the abundance of
HMRGs was positively related to the level of contamination, demonstrating a variety
of resistance mechanisms to adapt, accommodate, and live under heavy metal-
contaminated conditions. These findings increase the understanding of the changes
in microbial communities in e-waste recycling areas and extend our knowledge of the
HMRGs involved in the recovery of the ecological environment.

Keywords: heavy metal resistance genes, e-waste cycling, sediment, heavy metals, microbial community

INTRODUCTION

Electronic waste (e-waste) recycling has been a global issue for more than 10 years. Although
many related countries have strict restrictions on movements of e-waste and their disposal,
illegal small e-waste recycling workshops have still developed and are densely distributed in some
towns of developed countries due to the economic profits and the less stringent environmental
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regulations. These e-waste recycling activities have inevitably
resulted in severe environmental pollution (Robinson, 2009;
Song and Li, 2014), such as in the towns of Longtang and
Guiyu in southern China, two of the most famous e-waste
recycling sites in the world (Zhang W. et al., 2012; Liu et al.,
2018; Wu et al., 2019). In these areas, the typical pollutants,
including polychlorinated biphenyls (PCBs), polychlorinated
dibenzo-p-dioxins, polybrominated diphenyl ethers (PBDEs),
and especially heavy metals, are released into local aquatic and
terrestrial ecosystems, inducing the overexpression of resistance
genes through the change of microbial communities in soils or
sediments (Luo et al., 2011; Chen S.J. et al., 2014). The river
sediments in the e-waste recycling area appear to be the major
sinks for these pollutants due to the runoff of the surface water
after integrating the wastes (Wang et al., 2009), especially in
southern China with annual rainfall of approximately 1,700 mm.
The release of these pollutants from the sediments imposes a
major threat to food security, ecosystems, and human health.

Heavy metals are ubiquitous and persistent in river
sediments of e-waste recycling areas and greatly affect microbial
communities (Rasmussen and Sørensen, 1998; Brandt et al.,
2010; Zhang et al., 2019). These indigenous microbes are crucial
to the biogeochemical cycling of nutrient elements and the
functioning of aquatic and terrestrial ecosystems. Due to the
sensitivity to heavy metals, the diversity and abundance of
microorganisms change significantly in response to different
types and concentrations of heavy metals (Liu et al., 2018; Li
et al., 2020). Previous studies have shown that heavy metals
can damage microbial metabolism and reduce enzyme activity,
leading to a decrease the diversity of the microbial community
(Wang et al., 2007; Sullivan et al., 2013; Chen J. et al., 2014).
The sediment microbial community plays an important role in
stabilizing ecosystem functions (Jones and Lennon, 2010). Thus,
an alternation in microbial community diversity and structure
due to heavy metals can indirectly affect aquatic ecological
functions, which are a sensitive and comprehensive indicator of
aquatic and sediment environmental quality (Jones and Lennon,
2010; Zhang K. et al., 2012; Adekunle et al., 2019). A thorough
knowledge of the effects of heavy metal pollution on microbial
community diversity and structure will help to obtain insight
into the natural attenuation process of pollutants and ecological
environment recovery.

In addition, the microbial community possesses a variety of
resistance mechanisms to counteract heavy metal stress, possibly
due to their different resistance genes and resistance systems
(Nies, 2003; Li et al., 2017; Hemmat-Jou et al., 2020). This
mechanism might be correlated with the antibiotic resistance that
has a significant impact on microbial ecology and environmental
health (Peltier et al., 2010; Zhao and Dang, 2011). Therefore,
it is important to disclose the microbial resistance mechanisms
to gain more insight into the microbial response during the
long-term heavy metal stress sediments in e-waste recycling
areas. Recently, Xie et al. (2011) developed a microarray
to analyze the microbial functional diversity of acid mine
drainage from copper mines that included an abundance of
some heavy metal resistance genes (HMRGs). (Li et al. (2011b)
used quantitative real time PCR to investigate the relationship

between the nickel concentration and the resistance gene
abundance in a sequencing batch reactor. However, the previous
investigations were conducted based on a limited selected subset
of HMRGs that used specific primers or probes, making it
impossible for a comprehensive characterization of the microbial
community structure.

Previous studies have confirmed that high-throughput
sequencing is a useful tool to analyze comprehensive microbial
function and structure in various environments (Pachter, 2007;
Zheng et al., 2019; Hemmat-Jou et al., 2020). By annotating
millions of sequencing reads against a corresponding database,
various antibiotic resistance genes have been identified from the
environmental metagenome of activated sludge, contaminated
rivers, and mine soils (Li et al., 2011b; Zhang et al., 2011;
Hemmat-Jou et al., 2020). There does not exist a specialized
HMRG database, which makes it nearly impossible to explore
the occurrence of HMRGs in environmental metagenomes
using high-throughput sequencing. Therefore, it is necessary
to develop an advanced method to comprehensively overview
the HMRGs residing in environmental microorganisms in
river sediments of e-waste recycling areas. This is necessary
to compare the microbial diversity of different samples along
environmental gradients, and to evaluate the unique dominant
bacterial populations in these special environments. In this
study, a manually curated HMRG database is established that
can identify HMRGs by retrieving the annotated sequences
and related information from a public comprehensive database.
Then, sediment samples are collected at different locations from a
heavy metal-contaminated river in an e-waste recycling area, and
the microbial communities of the sediments are described using
454 pyrosequencing. Subsequently, Illumina high-throughput
sequencing is applied to determine the diversity and abundance
of the HMRGs in the sediment metagenomes. This study is
an effort to focus on HMRGs using a metagenomic approach,
which might be technologically helpful for comprehensive
characterization of microbial heavy metal resistance in an
environment and the relationship between HMRGs and heavy
metal contaminants.

MATERIALS AND METHODS

Sample Collection, DNA Extraction, and
Determination of Heavy Metal
Concentrations
Longtang town (23◦32′–23◦36′ N and 113◦1′–113◦3′ E) is located
in Qingyuan city, Guangdong Province, southern China, which
was once used for e-waste processing operations. Because of
uncontrolled e-waste processes such as open burning and acid
washing, the environment in this area, including air, water, soil,
and sediment, has been seriously polluted by heavy metals (Li
et al., 2011a; Wang et al., 2014). In 2012, eight sediment samples
were collected from a polluted river in Longtang town along
which most of the recycling operations take place (Figure 1 and
Supplementary Table 1). The sediment samples were grasped
at the depth of 10–15 cm below the surface of the river and
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FIGURE 1 | Map of sampling locations along the river at Longtang town, Guangdong Province, China. The longitude and latitude for all samples were shown in
Supplementary Table 1.

kept in a mobile refrigerator at 4◦C before being transferred
to a laboratory.

Approximately 200 mg sediments were obtained by
centrifugation to extract genomic DNA using the FastDNA
Soil Kit (MP Biomedicals, OH, United States). The DNA
concentration was determined by micro spectrophotometry
(NanoDrop R© ND-1000, DE, United States) and agarose gel
electrophoresis (1%). The concentrations of the heavy metals,
such as arsenic (As), cadmium (Cd), chromium (Cr), copper
(Cu), lead (Pb), mercury (Hg), nickel (Ni), and Zinc (Zn),
were measured by inductively coupled plasma-atomic emission
spectrometry (Perkin Elmer Optima 3300DV, CA, United States)
after acid digestion of approximately 200 mg of ground air dried
sediment samples for 32 h using concentrated nitric acid and
perchloric acid (1/4, v/v) (Jiang et al., 2017).

Assessment of the Heavy Metal Pollution
The potential ecological risk index (RI) was used to evaluate the
pollution of heavy metals in the soils and sediments (Hakanson,
1980; Ma et al., 2020). RI is based on the concentration, toxicity,

and background value of heavy metals, and is calculated as
follows:

RI = 6EhandEh = ThCh/Bh,

where Th, Ch, and Bh represent the standardized response
coefficient for the toxicity, the measured concentrations, and the
background values of heavy metals, h, respectively; Eh is the
potential ecological index of the signal heavy metal, h; and the
corresponding coefficients of As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn
are 10, 30, 2, 5, 5, 40, 5, and 1, respectively (Hakanson, 1980). The
grading standards of the RI and Eh of the heavy metals are shown
in Supplementary Table 2.

Database Construction
The diversity of sequences, types, and resistance mechanisms
of the HMRGs made using the HMRG construction is a large
effort- and very time-consuming. To analyze and validate the
data, a database of the As, Cd, and Cu resistance genes was
separately created by manually retrieving all the related sequences
from the National Center for Biotechnology Information (NCBI)
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non-redundant protein databases using key words, such as “As
resistance protein” or “arsenic tolerance protein.” In detail, if the
feature “note” of the coding region was defined as a confirmed
heavy metal resistance protein, the sequence would be added into
the database as a member. Finally, vector sequences, synthetic
constructs, and redundant genes were manually removed, and the
filtered database resulted in 12,221 non-redundant amino acid
sequences encoding resistance to As (324 sequences), Cd (2,089
sequences) and Cu (9,808 sequences).

Illumina High-Throughput Sequencing
and 454 Pyrosequencing
The obtained genomic DNA was then submitted to the
Illumina high-throughput sequencing (samples S1 and S7) and
454 pyrosequencing (samples S1–S8), which were performed
using the Illumina Hiseq 2000 and FLX Titanium platform
of Roche 454 from the Beijing Genome Institute (Shenzhen,
China), respectively. The bacterial 16S rRNA gene (V3-V4
region, approximately 460 bp) was carried out with Illumina-
specific fusion primers V3F and V4R (Claesson et al., 2009).
PCR amplification was conducted with previous report (Huang
et al., 2014). The 12-bp barcode with primers was used to
assign individual sequences to samples. The 16S rRNA gene
amplicons were submitted to an Agilent 2100 Bioanalyzer
(Agilnet, United States) before using FLX Titanium platform
of 454 pyrosequencing (Roche, United States). The GenBank
accession numbers for the genomic datasets in NCBI are
SRX825942 and SRX825518.

Detection of the HMRGs in the
Sediments
In order to determine the heavy metal resistance in the sediment
in detail, all high-quality sequences were compared against the
established protein databases using BLASTx1 with an E-value cut-
off at 10−5 (Zhang et al., 2011). A read was annotated as a heavy
metal resistance gene according to its best BLAST hit if (1) the
similarity was greater than 95% and (2) the alignment length was
at least 25 amino acids.

Microbial Community Analysis
All the raw sequences generated by 454 pyrosequencing were first
submitted to the Ribosomal Database Project (RDP) to determine
the taxonomic classification of eight different samples using the
specific barcodes and remove sequences shorter than 150 bps or
that contained ambiguous “N” (Kristiansson et al., 2011). The
obtained sequences were then subjected to denoising using the
“pre.cluster” command and filtering out of the PCR chimeras
using “chimera slayer” in the Mothur platform2 (Claesson et al.,
2009; Huse et al., 2010; Roeselers et al., 2011). Reads that
were regarded as the PCR chimeras were resubmitted to the
RDP to confirm the accuracy, and sequences assigned to any
known genus with 90% confidence were merged with the non-
chimera reads to form the collection of effective sequences

1https://www.ncbi.nlm.nih.gov/
2http://www.mothur.org

for each sample (Zhang T. et al., 2012). The non-bacterial
sequences were automatically removed by using RDP Classifier
and a self-written script. Finally, a single composite sample was
normalized in equimolar amounts to produce same sequencing
depth with 7,395 sequences from all samples. Phylogenetic
classification of each sample was conducted by using RDP’s
Classifier with a bootstrap cutoff of 50%, and the sequences
were assigned to different taxonomic levels including phylum,
class, order, family and genus (Zhang T. et al., 2012). Based
on the operational taxonomic units (OTUs) generated by the
RDP Classifier, the diversity indices of each sample including
the Chao, ACE, Shannon and Simpson indexes were calculated
using Mothur at a 3% distance. A heatmap based on the
abundance of genera was also performed to explore the similar
samples using R software and the Vegan package. A canonical
correspondence analysis (CCA) was computed to determine the
correlations between the heavy metal concentration and the
microbial community structures.

RESULTS AND DISCUSSION

Contaminations of Heavy Metals in the
River Sediments
In the study, eight typical heavy metals, including As, Cd,
Cu, Cr, Hg, Ni, Pb, and Zn, were determined to study the
heavy metal contamination. The concentrations of the various
heavy metals in the different sediment samples are presented in
Supplementary Table 3. Generally, the contents of all the heavy
metals in the eight samples greatly exceeded the values of the
Environmental Quality Standard (EQS) for soils regulated by the
Environmental Protection Agency of China and the background
values in China (Supplementary Table 3). Cu had the highest
concentration in all sediment samples, ranging from 4431.04 to
101128.50 µg/g, followed by Zn and Pb. Compared with the
EQS values, Cu concentrations exceeded at least 224 and 5,013
times at sampling sites S8 and S1, respectively. The highest
concentration of Cu was consistent with the primary business
of Cu recovery in this e-waste recycling area (Zhang K. et al.,
2012). Contamination with Cd, Hg, Pb, and Zn was also serious,
with concentrations at least ten times higher than the maximum
permissible concentration according to EQS. Generally, the
concentrations of the heavy metals showed a decreasing tendency
away from the source of pollution and along the river flow (Zhao
et al., 2020), in which S1 had the highest concentration of each
metal except for Hg and Pb. The average concentrations of all
eight measured metals were higher than those found in other
heavy metal-contaminated sediments (Chen and Kandasamy,
2008; Gao and Chen, 2012; Liu et al., 2018; Li et al., 2020). Due
to the persistence and bioaccumulation characteristics of heavy
metals in sediments (Demirak et al., 2006; Uysal et al., 2009), a
high-concentration of heavy metals in the river sediments poses a
serious ecological risk, and is a particular health threat to aquatic
animals and humans through the food chain (Liu et al., 2014;
Monroy et al., 2014; Kumar et al., 2019).

Additionally, the influence on the sediment ecosystem exerted
by heavy metals and persistence time of contamination also is
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embodied at the molecular and community levels (Bodour et al.,
2003; Grandlic et al., 2006). For example, the release of heavy
metals from contaminated sediments has been shown to have an
effect on microbial community diversity, activity and biomass in
sediments and soils (Zhu et al., 2013; Chen J. et al., 2014). To a
certain extent, a change in microorganisms in sediments reflects
the entire health and condition of an ecosystem. The RI is based
on the sensitivity of organisms to heavy metals (Zhu et al., 2013;
Chen J. et al., 2014; Wang et al., 2018). The RI index showed
that the sediments were seriously contaminated by heavy metals
(Table 1). The RI index value at S1 near the source of the pollution
was significantly higher than those at other sites. Ei for a signal
heavy metal of Cd, Cu, and Hg were highest in all samples,
ranging from 1086.0 to 43427.0, corresponding to the “serious”
risk grades (Table 1). Ei of As, Cr, and Ni in all the samples
decreased with the distance from the downstream along the river,
reaching a “low” risk grade largely due to the low concentrations
and response coefficients of the toxicity.

Microbial Diversity and Taxonomic
Composition in the River Sediments
The microbial community structures of the eight sediment
samples were investigated using pyrosequencing of the 16S rRNA
gene fragments. The microbial diversity analysis showed that the
number of OTUs ranged from 1,908 (S4) to 2,528 (S3) among
the samples. Samples S1, S2 and S4 had fewer OTUs than the
other samples, indicating low bacterial richness in these samples.
This agreed with the results of the Chao1, ACE estimation,
Shannon, and Simpson indices (Supplementary Table 4). With
the structural and functional resilience of microbial communities
and adaptation to heavy metal contamination (Brandt et al.,
2010), the diversity and richness of the bacteria showed a
generally stable trend in the last four sampling sites. Hence,
the diversity and richness of the bacteria were not linearly
related to heavy metals in this research. Therefore, these results
suggested that heavy metal contamination had a limited impact
on microbial communities, which was consistent with previous
study (Zhu et al., 2013). Similarly, it has been indicated
that significant variations in metal concentrations changed
the microbial community very little using denaturant gradient
gel electrophoresis (DGGE) (Bouskill et al., 2010). However,

the microbial diversity based on the relative intensity of the
DGGE band and high-throughput sequencing analysis showed
a decreasing trend under long-term heavy metal pollution
(Jiang et al., 2017; Salam and Varma, 2019). In general, the
relationship between the community diversity and heavy metal
concentrations was ambiguous due to the various environmental
factors. For example, previous studies have shown that nutrient
concentrations and soil properties seemed to play a principal role
in promoting diversity in highly metal contaminated sediments
(Bouskill et al., 2010; Jiang et al., 2017).

Annotation against the RDP Classifier showed that the
7,395 effective bacterial sequences were assigned to different
taxa levels (from genus to phylum) with a threshold of 50%.
At the phyla level, Firmicutes (10.45–36.63%), Proteobacteria
(11.76–32.59%) and Actinobacteria (14.81–27.45%) had the
highest relative abundances. The other prevalent phyla primarily
included Bacteroidetes (1.11–8.91%), Chloroflexi (1.42–8.61%),
Planctomycetes (1.05–5.34%), Cyanobacteria/Chloroplast
(0.72–5.56%), Acidobacteria (0.43–6.64%), TM7 (0.31–
3.26%), OD1 (0.11–4%), Verrucomicrobia (0.58–2.24%)
and Armatimonadetes (0.03–1.18%) (Figure 2). Proteobacteria,
Firmicutes, Bacteroidetes, Acidobacteria and Actinobacteria
were all found in anaerobic sediments that contained high
concentrations of heavy metals (Sánchez-Andrea et al., 2011;
Liu et al., 2018). Similarly, Firmicutes and Proteobacteria were
both dominated in sediments contaminated with multiple heavy
metals from the Xiangjiang and Beigang Rivers in China and
in soils influenced by long-term chromium pollution (Desai
et al., 2009; Zhu et al., 2013; Liu et al., 2018). This result was
different from that of Proteobacteria and Acidobacteria, which
contributed to a majority of the community composition in the
less contaminated sediments (Sun et al., 2013). Moreover, the
previous study showed that Deinococcus/Thermus phylum was
positively associated with the presence of Cu and other heavy
metals in the soil samples affected by the neutral mine drainage
(Pereira et al., 2014). However, Deinococcus/Thermus was not
detected in the present study with the high concentration
of Cu. These differences might be due to the sediment
chemical parameters and the concentrations of heavy metals
(Sun et al., 2013; Pereira et al., 2014). The phylogenetic
classification of sequences at the class level from the eight
sediment samples is summarized in Supplementary Figure 1.

TABLE 1 | Potential ecological indices (Ei ) for heavy metals and potential ecological risk index (RI) of heavy metals in all samples.

Name Potential ecological risk indices for single heavy metal (Ei )

As Cd Cu Hg Ni Cr Pb Zn RI

S1 274.4 43427.0 24786.4 5849.1 59.1 27.7 293.9 86.4 74804.0

S2 80.5 27356.8 2185.0 11313.2 48.8 16.4 224.0 39.1 41263.7

S3 111.3 16597.3 1347.0 2996.2 36.0 4.8 175.0 42.9 21310.4

S4 93.4 38845.9 1922.7 4196.2 49.5 18.1 309.8 73.5 45509.2

S5 54.0 15089.2 1395.1 4075.5 29.8 10.8 153.8 46.3 20854.5

S6 29.8 9048.6 1086.0 4279.2 29.9 9.9 158.0 41.3 14682.8

S7 41.0 23918.9 1695.4 7849.1 42.9 15.0 193.8 83.1 33839.3

S8 31.3 17764.9 1111.5 2528.3 33.0 3.8 86.3 47.2 21606.2
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FIGURE 2 | Relative abundances of different phyla in all sediment samples. The relative abundance was obtained by determined sequences vs. the total effective
bacterial sequences with the help of RDP classifier at the threshold of 50%.

FIGURE 3 | Heat map of genera (occurred at > 1% at least one sample) in all sediment samples. The relative abundance was obtained by determined sequences
vs. the total effective bacterial sequences with the help of RDP classifier at the threshold of 50%.

In all the sampling sites, Clostridia (6.84–29.83%) and
Actinobacteria (14.81–27.45%) were the first and the second
dominant classes. The other dominant classes across all
the sediments included Alphaproteobacteria (3.64–5.10%),

Betaproteobacteria (3.27–17.78%), Gammaproteobacteria (1.27–
7.61%), Deltaproteobacteria (0.91–6.30%), Bacilli (1.95–7.49%),
Planctomycetacia (0.99–5.30%), and Chloroplast (0.68–4.90%).
In a study conducted by Wang et al., Alphaproteobacteria,
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FIGURE 4 | Correspondence Canonical Analysis (CCA) of the eight sediment
samples at phylum level (55.95% of the scores variation could be explained by
CCA1 and 27.98% by CCA2). Only the concentration of mercury was
significantly correlated with the microbial community variation (p = 0.043,
r2 = 0.748). The samples could be grouped into three clusters, cluster A
included S1, S2 and S4, cluster B included S3 and S5, and cluster C included
S6, S7, and S8.

Gammaproteobacteria, and Deltaproteobacteria were also
found by pyrosequencing to be the dominant classes in two
typical intertidal sediments of Bohai Bay, China (Wang et al.,
2013). As shown in Figure 3, a total of 41 genera had a relative
abundance of >1% in one of the eight samples. Among the
genera, Clostridium XI (1.35–9.47%), Clostridium sensustricto
(1.09–11.47%), Proteiniclasticum (0.18–6.51%), Cellulomonas
(0.64–4.59%), and Mycobacterium (1.39–7.73%) had relatively
higher abundances in each sample.

Linking Microbial Communities to Heavy
Metals
A large proportion of the genera belonging to phylum of
Firmicute generally dominated all the sampling sites, such as
Clostridium XI and Clostridium sensustricto. Previous reports
showed that Clostridium exhibited two tolerance mechanisms of
heavy metals, including reductive precipitation and formation of
heavy metal-protein complexes (Alexandrino et al., 2014; Maleke
et al., 2019). These findings suggest Clostridium may improve
the green technologies for bioremediation of heavy metals.
In contrast, as the response to the heavy metals, the relative
abundance of Conexibacter, Cellulomonas and Mycobacterium
(Actinobacteria phylum) showed a tremendous decrease in the S8
sample with less contamination of various heavy metals. A similar
trend occurred in the genera of Arcobacter, Anaeromyxobacter,
Janthinobacterium, and Bacillus (Proteobacteria phylum), which
was not consistent with the assumption that the genera would
increase. Members of the Cellulomonas genus can effectively
reduce Cr(VI) to Cr(III) fermentatively, indicating that they

could play a potential role in the Cr(VI) remediation at Cr(VI)
contaminated sites (Viamajala et al., 2007). Members of the genus
Arcobacter are typically classified as nitrate-reducing and sulfide-
oxidizing bacteria (Yeung et al., 2011). These two processes are
usually associated with iron and manganese cycling that plays an
important role in immobilization of heavy metals (Otth et al.,
2005; Zhao and Dang, 2011; Yeung et al., 2011). The genus
Bacillus has commonly been detected in soils, and its members
(Bacillus pumilus, Bacillus indicus, Bacillus Asus, and Bacillus
clausii) have exhibited high resistance against As, Cd, Co, Hg, Pb,
and Se (Nithya et al., 2011).

Heavy metals have been reported to significantly affect the
microbial diversity, activity, and biomass in the contaminated
rivers (Chen J. et al., 2014; Liu et al., 2018; Li et al., 2020).
For example, bioavailable Hg can damage microbial activities
and inhibit enzymatic activities, resulting in selective pressure
on microorganisms in Hg-polluted areas (Harris-Hellal et al.,
2009; Mahbub et al., 2016, 2017). In this study, the microbial
community profiles and concentrations of heavy metals were
obtained from each sample to determine correlations between
heavy metals and microbial populations using CCA. The strength
of the effect of heavy metals on microbial community structure
is reflected by the length of the arrow. As shown in Figure 4,
a CCA ordination plot with the heavy metal concentrations
is displayed for the three groups at the phylum level, and
it can be seen that some heavy metals posed influence on
the structure of microbial community. However, only the
concentration of mercury was significantly correlated with the
microbial community and species distribution (p = 0.043,
r2 = 0.748). This result was consistent with the higher Ei
in all the samples (Table 1). Additionally, the samples were
generally divided into three clusters at the phylum level.
Cluster A included S1, S2, and S4; cluster B included S3
and S5; and cluster C included S6, S7, and S8, which agreed
with the contamination level of sampling locations and the
river flow. The phyla of Actinobacteria, TM7, Planctomycetes
and Cyanobacteria/Chloroplast dominated in cluster A, while
the abundance of OD1, Bacteroidetes, Verrucomicrobia, and
Proteobacteria was high in the sampling sites of S3 and
S5. A previous study had revealed that Verrucomicrobia was
positively correlated with increased mercury and methylmercury
concentrations with low Hg concentration levels (Vishnivetskaya
et al., 2011; Liu et al., 2014), but this was not consistent
with the present result due to the high concentration of Hg
in this study. Mahhub et al. reported a significant decrease
in bacterial α diversity when the Hg concentration was up to
4.4 mg/kg (Mahbub et al., 2016). It is worth noting that the
level of mercury that significantly (p < 0.05) explained the
observed community variation was also shown at the level of class
(Supplementary Figure 2) and order (Supplementary Figure 3).
Moreover, the microbial community was similar among the
less contaminated sites (S6, S7, and S8), where Chloroflexi,
Armatimonadetes, and Acidobacteria dominated. Members of
Firmicutes have been reported to possibly play a potential role
in the transportation and deposition of trace metals in sediment
conditions (Sauvain et al., 2014). These differences might be
caused by the complex contaminations and other environmental
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FIGURE 5 | Exposure to heavy metal-contaminated effluent promotes HMRGs in bacterial communities in river sediment. The figure showed the relative abundance
of (A) heavy metal resistance genes, (B) As resistance genes, (C) Cd resistance genes, and (D) Cu resistance genes. The relative abundance was calculated in
relation to the total number of identified bacterial resistances genes.

parameters. As calculated, the sampling sites S1 and S4, S3 and
S5, S6 and S7 had similar bacterial community structures at
the phylum, class, and order levels, respectively, which were
consistent with the changes in heavy metal concentrations in
these locations and downstream along the river.

Diversity and Abundances of As, Cd, and
Cu Resistance Genes
Illumina high-throughput sequencing was conducted to
investigate the diversity and abundance of the HMRGs in the
selected samples of S1 and S7. After filtering and denoising,
approximately 10 million clean reads (1.3 Gb) were finally
generated for each sample. The results showed that the relative
abundances of the Cu, Cd, and As resistance genes in sample
S1 were all higher than those in S7 (Figure 5A, p < 0.05),
suggesting that the relative abundance of HMRGs was well
correlated with heavy metal concentrations (Jacquiod et al.,
2018). The occurrence of heavy metals with high concentrations
significant influenced the taxonomic and functional diversities
of microbial communities in sediments (Romaniuk et al., 2018).
Moreover, microorganisms demonstrated a variety of resistance
mechanisms to adapt, accommodate, and live in the heavy
metal-contaminated conditions, and the resistance mechanisms
were mediated by autologous components and systems or the
HMRGs (Rouch et al., 1995; Silver et al., 2001;Peltier et al., 2010).

The ubiquitous, various and high-level heavy metals in the
river sediments of the e-waste recycling area that exert a strong
selective pressure on microorganisms, could induce HMRGs
with long-term exposure, which would make HMRGs ubiquitous
in microbial communities (Frostegård et al., 1996; Müller et al.,
2001; Thomas et al., 2020). HMRGs considered as an emerging
pollutant that can have an enormous impact on environmental
safety, and they have increasingly become a major global human
health threat (Peltier et al., 2010).

In a comparison of the As resistance, the database showed
that 168 reads (0.017h) and 157 reads (0.016h) were identified
as As resistance genes in samples S1 and S7, respectively
(Figure 5A). The resistance genes of ACR3, arsB, arsH and
arsC were present in all the samples, but arsA was only
detected in sample S7. Various microbes showed resistance to
As exposure and possessed the ars operon for As resistance.
The ars operon consisted of three (arsRBC) to five (arsRDABC)
genes organized into a single transcriptional unit (Kaur et al.,
2011). In these As resistances, the role of arsH in As resistance
remains contradictory since arsH from Yersinia enterocolitica
confers resistance to both arsenite and arsenate, while arsH
from Acidothiobacillus ferrooxidans did not appear to confer
As resistance (Neyt et al., 1997; Butcher et al., 2000). Among
the identified As resistance genes, the ACR3 gene had the
highest relative abundance (Figure 5B) and was found in
Stenotrophomonas maltophilia, Starkeya novella, Geobacter sp.,
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and Deferribacter desulfuricans (Supplementary Table 5). The
database showed that the ArsH gene was widely distributed
in Stenotrophomonas maltophilia, Yersinia enterocolitica and
Acinetobacter sp. (Supplementary Table 5). Efflux is one of the
most common mechanisms that microorganisms utilize to obtain
heavy metal resistance due to the environmental pervasiveness
of As (Alvarez et al., 2017). The previous reports showed that
the As efflux protein, ACR3, was widespread (Fu et al., 2009),
which was consistent with the highest relative abundance of
ACR3 in the sediments.

Similarly, 229 reads (0.023h) and 216 reads (0.022h)
identified from samples S1 to S7, respectively, were responsible
for Cd resistance (Figure 5A). Cd resistance genes including
czcA, nccA, acrB/D/F, and cadA were present in both samples,
while cusC was detected only in sample S7. Among the detected
genes, the czcA gene had the highest abundance and had a broad
range of host species including Herminiimonas arsenicoxydans,
Acinetobacter baumannii, Methylocystis sp., Ralstonia sp., and
Oxalobacteraceae bacterium (Figure 5C). The czcA gene belongs
to the efflux system czc and can pump Co(II), Zn(II), and Cd(II)
from cells by encoding the cobalt-zinc-cadmium resistance
protein (Trevors et al., 1986; Romaniuk et al., 2018). Roosa et al.
found an interesting phenomenon that the czcA gene might be
co-selected by other non-target metals such as Cu and As (Roosa
et al., 2014). Moreover, the czcA protein encoded by the czc
operon is a member of the RND family, which modulates low
level resistance to Co(II), Zn(II), and Cd(II) (Rensing et al., 1997;
Roosa et al., 2014). The second highest abundance of the Cd
resistance gene (cad) was a two-component operon that consisted
of two genes designated as cadA and cadD (Zhang et al., 2015).
The cadA gene encods a Cd2+/ATPase protein transporter to
accommodate and counteract heavy metals stress, while cadD
genes enhance Cd resistance (Hsieh et al., 2010; Zheng et al.,
2019).

Furthermore, alignment against the Cu resistance database
showed that the Cu resistance genes were more abundant
than the As and Cd resistance genes in each sediment sample
(Figure 5A). This has been due to the highest concentration of Cu
in all the sediment samples (Supplementary Table 3). Previous
report showed a positive correlation between the level of copA
and Cu in paddy soils exposed to 1-year of Cu contamination
(Li et al., 2012). A total of 618 reads (0.061h) and 406 reads
(0.040h) were assigned to the Cu resistance genes, including
copA, copB, copC, copD, and copF (Figure 5D). These results also
showed that the multi Cu oxidase gene, copA, that determines the
uptake P-type ATPase, dominated in the microbial communities,
and this was followed by copB coding for the efflux P-type
ATPase. These two genes were found in a single operon and
are currently best understood as a Cu resistance and transport
system (Teixeira et al., 2008). This cop system was regulated in
response to Cu-starvation when the copA uptake ATPase was
needed, or to Cu-excess when the copB efflux ATPase was needed
(Behlau et al., 2011; Chen et al., 2019). The primary bacterial
hosts of the Cu resistance genes (primary copA) were found
to be Acinetobacter radioresistens, Methyloversatilis universalis,
Xanthomonas vesicatoria, Pseudoxanthomonas spadix, and
Oxalobacteraceae bacterium (Supplementary Table 5).

CONCUSION AND IMPLICATIONS

In this study, our results have shed light on the diversity
and composition of the microbial communities in river
sediments seriously contaminated by e-waste recycling. 454
pyrosequencing showed that Firmicutes, Proteobacteria, and
Actinobacteria dominated the sediment microbial assemblages
followed by Bacteroidetes and Chloroflexi. Specifically, the
abundance of Firmicute increased along with the decreased level
of contaminants. Inversely, there was a gradual decline trend
in the abundance of Actinobacteria. Statistical analysis revealed
that the concentration of mercury was significantly correlated
with the microbial community and species distribution, which
agreed with an analysis of the potential ecological risk index. With
metagenomic analysis, the relative abundance of heavy metal
resistance genes was related with the contamination level and
the exposure time. For instance, the abundances of the arsB and
ACR3 genes correlated positively with the As(III) concentration
in a wasteland soil (Poirel et al., 2013). However, the direct
correlation between the abundance and concentration of heavy
metals is difficult to quantify due to complex contaminated
conditions and the bioaccessibility of heavy metals (Ye et al.,
2016; Liu et al., 2019). Some of the identified HMRGs might be
inactive, or the presence of a mutation or genetic incongruity
could exist in an e-waste recycling area (Dziewit et al., 2015;
Romaniuk et al., 2018). To depict a more-detailed picture among
microbial communities, functional microorganisms and HMRGs
in contaminated sediments, other shotgun omics technologies
need to carry out to explore all microbial genomes, proteomes,
and complete transcriptomes. Nevertheless, characterization
of microbial communities and HMRGs in this study can
provide more information for bio-remediation in contaminated
sediments or act as eco-indicators for eco-toxicological research.
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