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Summary
Background Sedation management has a major impact on outcomes in mechanically ventilated patients, but sedation
strategies do not generally consider the differential effects of different sedatives on respiration and respiratory
pattern. A systematic review was undertaken to quantitatively summarize the known effects of different classes of
drugs used for sedation on respiratory pattern during both spontaneous breathing and assisted mechanical
ventilation.

Methods This was a systematic review and meta-analysis conducted using Ovid MEDLINE, Embase, Cochrane
Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials up to June 2020 to retrieve
studies that measured respiratory parameters before and after the administration of opioids, benzodiazepines,
intravenous and inhaled anaesthetic agents, and other hypnotic agents (PROSPERO #CRD42020190017). A
random-effects meta-analytic model was employed to estimate the mean percentage change in each of the
respiratory indices according to medication exposure with and without mechanical ventilation. Risk of bias was
assessed using the Cochrane risk of bias assessment tools.

Findings Fifty-one studies were included in the analysis. Risk of bias was generally deemed to be low for most studies.
Respiratory rate decreased with the administration of opioids in both non-ventilated patients (18% decrease, 95% CI
12–24%) and ventilated patients (26% decrease, 95% CI 15–37%) and increased with inhaled anaesthetics in non-
ventilated patients (83% increase, 95% CI 49–118%) and ventilated patients (50% increase, 28–72%). In non-
ventilated patients, tidal volume decreased following administration of inhaled aesthetics (55% decrease, 95% CI
25–86%), propofol (36% decrease, 95% CI 20–52%), and benzodiazepines (28% decrease, 95% CI 17–40%); in
patients receiving assisted mechanical ventilation, tidal volume was not significantly affected by sedation.
Administration of other hypnotic agents was not associated with changes in respiratory rate or tidal volume.

Interpretation Different classes of drugs used for sedation exert differential effects on respiratory pattern, and this
may influence weaning and outcomes in mechanically ventilated patients.

Funding This study did not receive any funding support.

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Mechanical ventilation; Sedation; Control of breathing; Respiratory failure
*Corresponding author. Toronto General Hospital, 585 University Ave., 9-MaRS-9024, Toronto, ON, M5G 2N2, Canada.
E-mail address: ewan.goligher@utoronto.ca (E.C. Goligher).

www.thelancet.com Vol 68 February, 2024 1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ewan.goligher@utoronto.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eclinm.2023.102417&domain=pdf
https://doi.org/10.1016/j.eclinm.2023.102417
https://doi.org/10.1016/j.eclinm.2023.102417
https://doi.org/10.1016/j.eclinm.2023.102417
www.thelancet.com/digital-health


Research in context

Evidence before this study
Sedation and analgesia is used in the ICU to ensure patient
comfort and safety while on life support. Guidelines on
sedation and analgesia management in critically ill patients
focus on the management of wakefulness. Although sedation
and analgesia are often used to facilitate mechanical
ventilation and sedation management is strongly associated
with prolonged ventilator-dependence, their specific effects
on ventilatory control have not been systematically reported.

Added value of this study
Different sedative and analgesic drug classes exert important
characteristic differential effects on respiratory pattern (tidal

volume and respiratory rate) during both unassisted and
assisted breathing.

Implications of all the available evidence
Strategies for managing sedation and analgesia in critically ill
patients need to account for the specific effects of different
drug classes on respiratory drive, effort, tidal volume, and
respiratory rate, as these may affect the risk of lung and
diaphragm injury and the ability to be liberated from
mechanical ventilation.
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Introduction
In critically ill patients, multiple noxious stimuli
contribute to agitation and delirium, elevated respiratory
drive, ventilator asynchrony, premature extubation, and
removal of feeding tubes or lines, and sedation may be
required for comfort and safety.1 At the same time,
many studies have reported a link between sedation
management and adverse clinical outcomes in critically
ill patients, including increased mortality, prolonged
mechanical ventilation, and long-term cognitive
dysfunction.2 Clinical practice guidelines have defined
best practices in sedation management to optimize
outcomes.3–6 The ABCDEF ICU Liberation Bundle em-
phasizes the importance of limiting sedation to promote
earlier extubation, reduce delirium, and improve long-
term outcomes.4

There is increasing recognition that sedation might
affect clinical outcomes in mechanically ventilated pa-
tients by virtue of its direct effects on the control of
breathing. Excessive sedation may suppress respiratory
drive and effort, leading to diaphragm atrophy and
weakness, with attendant risks of difficult weaning and
prolonged mechanical ventilation.7 Conversely, inade-
quate sedation may allow excessive respiratory drive and
effort to injure the lung and diaphragm.8,9 To prevent
this, sedation could be directly titrated according to
respiratory parameters such as tidal volume, expiratory
occlusion pressure, and airway occlusion pressure
(‘lung-protective sedation’ or ‘lung- and diaphragm-
protective sedation).10,11

To optimize application of sedation to control respi-
ratory effort, an appreciation for the effects of different
classes of drugs used for sedation on respiratory effort
and ventilatory pattern is essential. We undertook a
systematic review and meta-analysis to quantitatively
summarize the effects of different drugs used for
sedation on tidal volume, respiratory rate, and respira-
tory drive and effort during both spontaneous breathing
and assisted mechanical ventilation. We hypothesized
that different classes of drugs would exert differential
effects on ventilatory pattern and respiratory drive and
effort.
Methods
This systematic review protocol was prepared in accor-
dance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis Protocols (PRISMA-P)
statement. This study was conducted from June 2020
through October 2022. This systematic review has been
registered in the international prospective register of
systematic reviews (PROSPERO #CRD42020190017).

Eligibility criteria
We aimed to identify original studies of adults ≥18 years
of age where at least one of the sedating medications of
interest was administered and a parameter of respira-
tory control (full search list below) was measured. We
included retrospective, prospective, and case–control
designs published in peer-reviewed journals or as con-
ference abstracts. Eligible studies included healthy
volunteers, patients undergoing procedural sedation,
peri-operative patients, and critically ill patients. We
excluded animal studies, studies including coadminis-
tration of a sedative other than those commonly used,
studies using non-invasive ventilation, administration
routes other than intravenous or inhalational adminis-
tration, and studies where the dose of medication
administered or timing of respiratory parameter mea-
surement were unclear. Studies where commonly
administered sedatives were compared to a less
commonly used sedative, only the study arm using the
medication of interest was included.

Information sources
Searches were executed in the following databases on
June 18, 2020: Ovid MEDLINE ALL, Ovid Embase,
Cochrane Database of Systematic Reviews (Ovid), and
Cochrane Central Register of Controlled Trials (Ovid).
Results were limited to human studies and adults. No
www.thelancet.com Vol 68 February, 2024
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other limits were applied. Additional search methods
included searching the reference lists of the included
studies. See Appendix for database search strategies.

Search strategy
A comprehensive search strategy was initially developed
for Ovid Medline using a combination of database-
specific subject headings and text words which com-
bined the two concepts of ICU sedation and control of
breathing. The search strategy was then customized for
each database.

Selection process
Studies that met the following criteria were included:
those which documented one or more of study medi-
cations: opioids (morphine, hydromorphone, fentanyl,
remifentanil, sufentanil), benzodiazepines (diazepam,
midazolam, lorazepam), intravenous anesthetic agents
(propofol, ketamine, etomidate), symaptholytics (dex-
medetomidine), and inhaled anaesthetic agents (iso-
flurane, sevoflurane, desflurane); and evaluated one or
more of the following components of respiratory con-
trol: respiratory rate, ratio of inspiratory to expiratory
time (I:E ratio), tidal volume (VT), measures of inspira-
tory effort using esophageal and gastric pressures
(ΔPes), diaphragmatic electrical activity (EAdi), dia-
phragm electromyography (needle and surface), dia-
phragm ultrasonography, airway occlusion pressure
(P0.1), end-tidal carbon dioxide (ETCO2), arterial partial
pressures (PaO2 and PaCO2) and pulse oximetry (SPO2).

Data collection process
Duplicate search results were removed using an auto-
mated reference manager. Two reviewers (DQ and JW)
independently screened abstracts for inclusion criteria
and any discrepancies were resolved by consensus and a
third reviewer (MS).

Data items
Fourteen independent reviewers (AS, CK, CO, IK, KH,
KM, MM, MW, RG, RZ, SB, SP, TH, UK) extracted data,
including: author, year of publication, study design,
patient population, number of patients included in each
study and intervention arm, gender, age and weight
distributions, type and dose of medication administered,
mode of ventilation, respiratory parameter being
measured and time after medication administered that
the parameter was measured. Sample size and means
and SD or medians with IQRs were also recorded where
means and SD were not available. Where available,
appendices were checked for any missing parameters.
Discrepancies in the datasets were adjudicated by a third
reviewer (DQ).

Study risk of bias assessment
Study quality was assessed by the Cochrane risk of bias
assessment tool appropriate to each clinical study
www.thelancet.com Vol 68 February, 2024
design; the risk of bias tool for randomized studies (RoB
2)12 and Risk of Bias in Non-randomized Studies - of
Interventions tool (ROBINS-I)13 was used for non-
randomized studies. For randomized studies, the risk
of bias was assessed as “low”, “uncertain” or “high” in
the following areas: generation of random sequence,
allocation concealment, blinding of participants and
professionals, blinding of outcome assessors, incom-
plete outcomes, selective outcome reporting, and other
sources of bias. For non-randomized studies, studies
were evaluated for preliminary consideration of con-
founders and co-interventions and the risk of bias was
then assessed as “low”, “uncertain” or “high” in the
following areas: confounders, selection of participants,
classification of interventions, deviation from intended
intervention, missing data, measurement of outcomes
and reported results. Disagreements were resolved by a
third reviewer (DQ).

Statistical analysis
For the analysis, studies were grouped according to
whether they enrolled non-intubated spontaneously
breathing patients or patients on mechanical ventila-
tion. After completing the literature search, we decided
that measures of gas exchange (EtCO2, PaO2 and
PaCO2 and SpO2) were not relevant to the research
question, so these measurements were excluded from
analysis.

There was substantial heterogeneity between studies
in the timing and numbers of assessments, dosing,
drug combinations, and study design (with some
studies having only a single arm and others having
multiple arms). This led to several decisions on how to
summarize the data. First, we restricted the primary
analyses to arms in which only a single sedative agent
was administered to avoid the potential confounding
effects of multiple sedatives. Studies with simultaneous
exposure to multiple drugs were included as a secondary
analysis. Second, we restricted on-treatment measure-
ments to those obtained within the 72 min after
administration. Third, we used the percentage change
between the mean at baseline and the mean of the
follow-up measurements as the within-arm outcome.
Finally, we were forced to abandon within-study be-
tween-sedative comparisons and instead pool results
across all the arms that used only a given sedative, then
compare these pooled results between sedative. There
were too few studies, and too many combinations, to
allow present summaries each for head-to-head com-
parison of sedative and too little connectedness to allow
a network meta-analysis of these data.

The following analysis was repeated separately for
each respiratory parameter: (1) the baseline means and
standard errors were calculated in each arm; (2) the
averages of the follow-up means and the pooled follow-
up standard deviations were calculated in each arm; (3)
The percent change from baseline to follow-up was
3
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calculated in each arm, along with its standard error
(assuming a correlation between baseline and follow-up
of 0.3); (4) an inverse-variance weighted meta-analysis
was used to estimate the mean change from baseline
and its 95% confidence interval for each sedative; (5)
random effects meta-regression was used to estimate
pairwise differences in mean percent change between
the sedatives evaluated (these computations provide the
values for physiological effects reported in the manu-
script). Unreported standard deviations (SD) were
estimated in a single imputation through linear regres-
sion of the arm-specific SD on the arm-specific mean,
separately within the mechanically ventilated and non-
mechanically ventilated arms. All analyses were con-
ducted using R version 4.2.1, using R packagesmeta and
ggplot.

Role of funding
This study did not receive any funding support.
Results
The initial search returned a total of 12,554 results
including 8960 unique citations. After applying auto-
mated methods to remove case reports, animal studies
and alternative routes of administration, a total of 1485
abstracts were screened yielding a total of 51 studies
eligible for inclusion in the analysis (Fig. 1). The char-
acteristics of the studies included are listed alphabeti-
cally in Table 1. The studies of patients receiving
mechanical ventilation reported use of pressure support
ventilation mode in all cases.

Risk of bias in studies
Risk of bias was assessed for each study pertaining to
sources of error in measurement of respiratory param-
eters and time. The corresponding ROB2 or ROBINS-I
are contained in Appendix I. Risk of bias was gener-
ally deemed to be low for most studies.

Tidal volume
Twenty studies with a total of 24 arms reported the in-
fluence of sedation on tidal volume in patients breathing
without mechanical ventilation. Tidal volume decreased
following administration of inhaled sevoflurane (55%
decrease, 95% CI 25–86%, p = 0.0004, 1 arm),28 propofol
(36% decrease, 95% CI 20–52%, p < 0.0001, 4
arms),16,41,54,60 and benzodiazepines (28% decrease, 95%
CI 17–40%, p < 0.0001, 10 arms)14,19,27,43,47 (Fig. 2). There
was no statistically significant association between
medication administration and change in tidal volume
for opioids (11% decrease, 95% CI 28% decrease-5%
increase, 6 arms)39,55,56 and other hypnotic agents (9%
decrease, 95% CI 23% decrease-6% increase, 6
arms)23,36,41,44,49 (Fig. 2).

Five studies with a total of six arms reported the ef-
fect of sedation on tidal volume in patients receiving
pressure support ventilation. Mean percentage changes
in tidal volume were close to zero though confidence
intervals were wide for opioids (2% increase, 13%
decrease-16% increase, 3 arms),22,24,45 other hypnotic
agents (5% increase, 19% decrease-29% increase, 1
arm),25 propofol (4% decrease, 28% decrease-20% in-
crease, 1 arm),25 and inhaled sevoflurane (0% decrease,
24% decrease-24% increase, 1 arm)40 (Fig. 2).

The results of each meta-analysis and corresponding
forest plots are presented in the Appendix. Secondary
analyses including studies using multiple sedatives are
reported in eTable 1.

Respiratory rate
A total of 44 studies with 56 arms reported respiratory
rate in patients breathing without mechanical ventilation.
Opioids were associated with a statistically significant
mean reduction in respiratory rate of 18% (95% CI
12–24%, p < 0.0001, 24 arms),15,20,21,33,35,39,46,51,55,56,61,62,65

whereas inhaled sevoflurane was associated with an in-
crease in respiratory rate of 83% (95% CI 49–118%,
p < 0.0001, 1 arm).28 Mean percent changes in respiratory
rate were close to zero and not statistically significant
with exposure to benzodiazepines (2% decrease, 95% CI
9% decrease-6% increase, 16 arms),19,26,27,29,37,42,43,47,50,59,63,64

other hypnotic agents (2% decrease, 95% CI 9%
decrease-5% increase, 17 arms),17,23,26,29–32,34,36,41,44,48,49,59 and
propofol (4% increase, 6% decrease-14% increase, 9
arms)16,17,30,41,52,54,60,61,63 (Fig. 2).

Nine studies with a total of 10 arms were included in
the analysis of respiratory rate in patients receiving
pressure support ventilation. Opioids were associated
with a mean decrease in respiratory rate of 26% (95% CI
15–37%, p < 0.0001, 4 arms).22,24,45,66 Conversely, inhaled
sevoflurane was associated with a mean increase in
respiratory rate of 50% (95% CI 28–72%, p < 0.0001, 1
arm)40 Mean percent changes were close to zero and not
statistically significant with exposure to benzodiazepines
(8% decrease, 95% 29% decrease-13% increase, 1
arm),58 other hypnotic agents (2% decrease, 95% CI 14%
decrease-10% increase, 3 arms),25,57,58 and propofol (2%
decrease, 23% decrease-19% increase, 1 arm)25 (Fig. 2).

Other parameters
Two studies in patients undergoing pressure support
ventilation reported that administration of opioids
reduced airway occlusion pressure (P0.1) by 10% (95%
CI 5–14%, 2 arms).22,24 One study with two arms in
patients receiving pressure support ventilation reported
that there was no significant change in diaphragm
electrical activity following administration of dexmede-
tomidine (−4%, 95% CI −19 to 10%, 1 arm) or propofol
(2%, 95% CI −12 to 15%, 1 arm).25 One study in patients
receiving pressure support ventilation reported that
remifentanil was associated with a decrease in esopha-
geal pressure swing of 36% (95% CI 10–60%, 1 arm).45

Another study in non-intubated subjects reported an
www.thelancet.com Vol 68 February, 2024
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Fig. 1: PRISMA flow diagram outlining study inclusion.
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increase in resistive work of breathing following
administration of midazolam.43
Discussion
In this systematic review and meta-analysis, different
classes of drugs used for sedation in the ICU exerted
distinct effects on respiratory control, as indicated by
changes in respiratory rate and tidal volume. Opioids
produced a statistically significant decrease in respira-
tory rate independent of mechanical ventilation.
Conversely, inhaled anaesthetic agents significantly
increased the respiratory rate in patients with and
without mechanical ventilation. In the absence of me-
chanical ventilatory support, significant decreases in
www.thelancet.com Vol 68 February, 2024
tidal volume were observed following receipt of volatile
anaesthetics, propofol and benzodiazepines, but no
detectable changes were observed in tidal volume in the
presence of pressure support ventilation. Other hypnotic
agents did not produce any statistically significant
change in respiratory rate or tidal volume in either
ventilated or non-ventilated patients.

There is a growing appreciation for the impact of
sedation on the outcomes of mechanical ventilation.
This was recently highlighted by the findings of the
WEANSAFE study. This large epidemiological study of
weaning in the ICU found that moderate or deep levels
of sedation were among the only modifiable factors
strongly associated with both a delay in attempts at
liberation from mechanical ventilation and weaning
5
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Study Population N Medications Dose Mechanical
ventilation (Y/N)

Respiratory
parameter

Alexander (1992)14

Cross-over RCT
Healthy volunteers 10 Midazolam 0.1 mg/kg N Vt

Alimohammadi (2014)15

Cohort
Peri-procedural 67 Fentanyl 1 mcg/kg N RR

Vt

Aliverti (2011)16

Cohort
Peri-procedural 15 Propofol 2 mg/kg +

7.5 mg/kg/h
N RR

Vt

Arain (2002)17

RCT
Peri-procedural 40 Dexmedetomidine

Propofol
1 mcg/kg + 0.4 mcg/kg/h
75 mcg/kg/h

N RR

Aydin (2004)18

RCT
Peri-procedural 70 Fentanyl 0.7 mcg/kg N RR

Berggren (1987)19

Cross-over RCT
Healthy volunteers 8 Midazolam

Diazepam
0.05–0.15 mg/kg
0.15–0.45 mg/kg

N RR
Vt

Cao (2017)20

Cohort
Peri-partum 60 Fentanyl 2 mcg/kg N RR

Casey (2010)21

RCT
Post-operative Remifentanil 0.5–1 mcg/kg N RR

Cavaliere (2002)22

Cohort
ICU 10 Remifentanil 0–0.25 mcg/kg/min Y RR

Vt
P0.1

Choi (1985)23

Cross-over RCT
Healthy volunteer 6 Etomidate 0.3 mg/kg N RR

Vt

Conti (2004)24

Cohort
ICU 12 Sufentanil 0.25 mcg/kg/h Y RR

Vt
P0.1

Conti (2016)25

RCT
ICU 20 Dexmedetomidine

Propofol
0.46 mcg/kg/h
1.08 mg/kg/h

Y RR
Vt
EADi

Demiraran (2007)26

RCT
Peri-procedural 50 Midazolam

Dexmedetomidine
1 mcg/kg + 0.2 mcg/kg/h N RR

Denaut (1975)27

Cross-over RCT
Healthy volunteer 20 Lorazepam

Diazepam
2.5 mg
10 mg

N RR
Vt

Doi (1987)28

Cohort
Healthy volunteer 21 Sevoflurane 1.71 MAC N RR

Vt

Eren (2011)29

RCT
Peri-procedural 125 Dexmedetomidine

Midazolam
1 mcg/kg
0.02–0.06 mg/kg

N RR

Ghali (2011)30

RCT
Peri-procedural 60 Dexmedetomidine

Propofol
1 mcg/kg + 0.35 mcg/kg/h
0.7 mg/kg + 1.25 mg/kg/h

N RR

Ghasemi (2018)31

RCT
Peri-procedural 60 Dexmedetomidine 0.5 mcg/kg/h N RR

Hall (2000)32

Cross-over RCT
Healthy volunteer 7 Dexmedetomidine 0.5 mcg/kg + 0.2–0.6 mcg/kg/h N RR

Hwang (1996)33

RCT
Peri-operative 42 Fentanyl 1 mcg/kg N RR

Jense (2008)34

Cohort
Post-operative 14 Dexmedetomidine 0.52 mcg/kg + 0.29 mcg/kg/h N RR

Joshi (2007)35

RCT
Post-operative 141 Fentanyl

Sufentanil
2 mcg/kg
0.2 mcg/kg

N RR

Kawaai (2010)36

Cross-over RCT
Healthy volunteers 13 Dexmedetomidine 0.5 mcg/kg + 0.2–0.4 mcg/kg/h N RR

Vt

Kunusoth (2019)37

RCT
Peri-procedural 60 Midazolam 0.1 mg/kg N RR

Lau (1993)38

Cohort
Post-operative 20 Midazolam

Fentanyl
0.07 mg/kg
0.8 mcg/kg

N RR

Leino (1999)39

Cross-over RCT
Healthy volunteer 6 Morphine 0.039 mg/kg + 0.215 mg/kg/h N RR

Vt

Lesage (2009)40

RCT
Post-operative 80 Sevoflurane

Midazolam
Fentanyl

8%
9 mcg/kg
0.6 mcg/kg

Y RR
Vt

Lodenius (2016)41

Cross-over RCT
Healthy volunteer 11 Dexmedetomidine

Propofol
0.59 mcg/kg + 0.53 mcg/kg/h
74.5 mcg/kg + 48.6 mcg/kg/h

N RR
Vt

(Table 1 continues on next page)
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Study Population N Medications Dose Mechanical
ventilation (Y/N)

Respiratory
parameter

(Continued from previous page)

McHardy (2000)42

RCT
Peri-procedural 81 Midazolam

Propofol
1.2–1.3 mg
11 mg

N RR

Montravers (1992)43

Cross-over RCT
Healthy volunteer 10 Midazolam 0.1 mg/kg N RR

Vt

Morel (1986)44

Crossover RCT
Healthy volunteer 8 Ketamine 1 mg/kg N RR

Vt

Natalini (2011)45

Cross-over RCT
ICU 14 Remifentanil 0.05 mcg/kg/min Y RR

Vt
ΔPes

Niesters (2013)46

Cross-over RCT
Healthy volunteer 20 Remifentanil 50 mcg N RR

Ninomiya (2016)47

Cross-over RCT
Healthy volunteer 21 Midazolam 0.05 mg/kg N RR

Vt

Nunez-Ponce (2014)48

RCT
Peri-procedural 60 Dexmedetomidine 0–0.7 mcg/kg/h N RR

Ogawa (2008)49

Cohort
Healthy volunteers 13 Dexmedetomidine 0.5 mcg/kg + 0.2 mcg/kg/h N RR

Vt

Prabhudev (2017)50

RCT
Peri-procedural 144 Midazolam

Fentanyl
0.035 mg/kg
50 mcg

N RR

Preston (1987)51

RCT
Healthy volunteers 15 Morphine 7.5–30 mg N RR

Rasmussen (2006)52

RCT
Peri-procedural 39 Propofol 4 mg/kg/h N RR

Rocco (2010)53

Cohort
ICU 36 Remifentanil 0.07 mcg/kg/min Y RR

Rosa (1992)54

Cohort
Peri-procedural 10 Propofol 0–1.2 mg/kg N RR

Vt

Samuel (1977)55

Cohort
ICU 10 Morphine 0.14 mg/kg Y RR

Vt

Sarton (1999)56

Cross-over RCT
Healthy volunteer 16 Morphine

Fentanyl or Morphine
100 mcg/kg
30 mcg/kg/h
30 mcg/kg/h

N RR
Vt

Senoglu (2009)57

Cohort
ICU 15 Dexmedetomidine 0.5 mcg/kg/h Y RR

Senoglu (2010)58

RCT
ICU 40 Dexmedetomidine or Midazolam 1 mcg/kg + 0.5 mcg/kg/h

0.05 mg/kg + 0.1 mg/kg/h
Y RR

Sivasubramani (2019)59

RCT
Peri-procedural 60 Midazolam or Dexmedetomidine 0.05 mg/kg

0.17 mg/kg + 0.5 mcg/kg/h
N RR

Spens (1996)60

RCT
Peri-procedural 69 Propofol 2.5 mg/kg N RR

Vt

Tanaka (1998)61

Cohort
Peri-procedural 30 Fentanyl

Propofol ± Fentanyl
2 mcg/kg
0.5 mg/kg + 3 mg/kg/h
2 mcg/kg

N RR

Thakore (2009)62

RCT
Post-operative 100 Fentanyl 0.2 mcg/kg + 0.4 mcg/kg/h N RR

Umuroglu (1997)63

RCT
Peri-procedural 30 Propofol

Midazolam
1.25 mg/kg + 3 mg/kg/h
0.1 mg/kg + 0.1 mg/kg/h

N RR

Van de Velde (2005)64

RCT
Peri-partum 50 Remifentanil

Diazepam
0.115 mcg/kg/min
14.5 mg

N RR

Table 1: Characteristics of included studies.

Articles
failure.67 This literature review focused on physiological
effects on ventilatory control sheds additional insights
on the precise interactions between sedation and
ventilation.

Pressure support ventilation may mask the effect of
sedation on respiratory effort. In the absence of venti-
lation, specific sedatives reduced tidal volume. This
www.thelancet.com Vol 68 February, 2024
reduction in tidal volume can arise from an increase in
airway resistance with a consequent increase in the
work of breathing, or from depression of respiratory
drive and effort.43 The effects of sedation on respiratory
effort and mechanics are complex; Aliverti et al. found
that diaphragm contractility was more depressed than
rib cage muscle contractility following administration of
7
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Fig. 2: Influence of different sedative classes on tidal volume and respiratory rate in patients who are on mechanical ventilation and not on
mechanical ventilation. Dots are point estimates for the mean and bars span 95% confidence intervals for the mean.
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propofol.16 Because tidal volume during pressure sup-
port ventilation is largely determined by respiratory
mechanics, ventilation likely masks the effect of seda-
tion on respiratory effort. This observation suggests that
the effects of sedation on respiratory effort should be
directly monitored. Respiratory effort is an important
mediator of clinical outcomes: decreased respiratory
effort from sedation can contribute to disuse atrophy
and dysfunction of the diaphragm.68,69 In contrast, these
agents may be favourable in patients with high effort
levels to reduce respiratory effort and high tidal volumes
to mitigate the risk of patient self-inflicted lung injury
and diaphragm injury from excessive ventilatory
effort.9,70 During the weaning phase, depression of res-
piratory effort may contribute to weaning failure and it
may be preferable to avoid sedatives that depress res-
piratory effort or respiratory rate. Clinicians should
appreciate the potential for certain sedatives to depress
respiratory effort in mechanically ventilated patients
without any apparent effect on respiratory rate or tidal
volume.
Our study identified propofol, benzodiazepines and
inhaled anaesthetics as agents which may decrease
respiratory effort, as evidenced by a decrease in tidal
volume rather than respiratory rate. The mechanism
for reduced respiratory effort is different for each class
of sedative. Propofol has been previously shown to
reduce minute ventilation beyond an isolated reduction
in respiratory rate and this depression in ventilatory
response occurs in a non-linear dose dependent
manner.71,72 This is thought to occur through a reduc-
tion in the ventilatory response to hypercapnia seen
even at subanaesthetic doses of propofol.73 As noted
above, the effects of benzodiazepines are complex, as
tidal volume may fall as a consequence of increased
upper airway resistance. Administration of diazepam
decreased phrenic nerve conduction by up to 80%.74

Inhaled anaesthetics decrease tidal volume and in-
crease respiratory rate through unclear mechanisms,
though some studies have demonstrated an increase in
PaCO2, which may in part explain an increase in res-
piratory rate.75
www.thelancet.com Vol 68 February, 2024
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These findings have important implications for
managing patients with acute respiratory failure.
Limiting lung stress during ventilation is critical to
preventing lung injury, and sedatives that reduce res-
piratory effort and tidal volume may preferred in the
acute phase of lung injury. Notably, because they induce
a rapid shallow breathing pattern, inhaled anesthetics
may be the ideal sedative for lung- and diaphragm
protective ventilation; the rapid respiratory rate will
maintain diaphragm activity (since the patient will
trigger the ventilator) but with a reduction in effort and
tidal volume to avoid barotrauma and diaphragmatic
myotrauma. This sedation strategy may be most bene-
ficial to facilitate the early weaning of neuromuscular
blockade.

Opioids are widely known to depress respiratory rate
through direct inhibition of the central nervous sys-
tem.76 Depression of neural respiratory rate during
weaning of mechanical ventilation can delay the transi-
tion to spontaneous ventilation as patients will not
trigger the ventilator unless their intrinsic neural res-
piratory rate exceeds the set rate. This could in theory
contribute to prolonged mechanical ventilation and
subsequent diaphragm disuse. Analgesia-first sedation
strategies are currently recommended to ensure pain
control in mechanically ventilated patients.77 Opioids in
low doses have minimal effects on respiratory drive, and
avoiding excessive doses of opioids might facilitate
weaning from the ventilator.24

Drugs classified as “other hypnotic agents” (e.g.,
ketamine, dexmedetomidine) appear to have little or no
effect on tidal volume or respiratory rate as indicated by
our study. This may make them useful agents for
conscious sedation and management of agitation during
the weaning phase of mechanical ventilation. This may
be particularly true with ketamine which has both
amnestic and analgesic properties where patients are
also experiencing a component of pain, such as post-
operative, trauma or burn patients.78 Further clinical
investigation is required to clarify the potential value of
this strategy. Given the known adverse effects of eto-
midate on adrenal function, it is not likely to benefit
patients even though it can effectively maintain respi-
ratory drive and respiratory rate during sedation.

There are several limitations with our study. Medi-
cations were grouped by classes to facilitate analysis and
we did not examine differences between agents within a
single group. This is most important in the “other
hypnotics” group as medications like dexmedetomidine
and ketamine act through different mechanisms.
Additionally, our analytical approach could not account
for differences in dose or duration of administration,
although the dosages studied were within the typical
range of doses employed in clinical practice. It is well
known that medications possess strikingly different
context-sensitive half-times and this likely modifies the
physiological effects of these agents on respiratory
www.thelancet.com Vol 68 February, 2024
control. Finally, we had insufficient information from
this review to draw conclusions about the effects of
sedation on other relevant respiratory parameters
including airway occlusion pressure, electrical activity of
diaphragm and esophageal pressures. There is a marked
paucity of studies reporting these parameters with
administration of sedatives prohibiting inclusion in a
systematic review.

In summary, different sedative classes exert different
effects on respiratory control. Opioids reduce respira-
tory rate with less effect on tidal volume. Inhaled an-
esthetics decrease tidal volume with a corresponding
increase in respiratory rate. Benzodiazepines and pro-
pofol are associated with a reduction in tidal volume
without any effect on respiratory rate. Hypnotic agents
have little or no effect on average on either respiratory
rate or tidal volume. This information can help guide
the selection of sedatives to optimize management of
mechanically ventilated patients in the acute and
weaning phases of respiratory failure.

Contributors
Quickfall and Goligher conceived the idea. Quickfall, Sklar, and
Goligher designed the study. Quickfall and Sklar led the data collec-
tion. Tomlinson conducted the analysis. Quickfall prepared the first
draft of the manuscript, and all authors revised the manuscript for
intellectually important content. Quickfall, Sklar, Tomlinson, and
Goligher had access to the primary data for analysis. All authors
reviewed the final version of the manuscript. agreed to submit the
manuscript for publication.

Data sharing statement
Data and review protocol used for this analysis will be available
following publication upon reasonable request submitted to the corre-
sponding author subject to the investigators’ approval of a proposed
analysis plan.

Declaration of interests
Dr. Goligher reports receiving grants from the Canadian Institutes of
Health Research and National Sanitarium Association; consulting fees
from Lungpacer Medical, Stimit LLC, and Bioage; honoraria for lectures
from Vyaire, Draeger, and Getinge; advisory board participation for
Getinge (current) and Lungpacer (previous); and receipt of equipment
for research from Timpel and Lungpacer.

Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.
org/10.1016/j.eclinm.2023.102417.
References
1 Reade MC, Finfer S. Sedation and delirium in the intensive care

unit. N Engl J Med. 2014;370(5):444–454.
2 Zhang Z, Chen K, Ni H, Zhang X, Fan H. Sedation of mechanically

ventilated adults in intensive care unit: a network meta-analysis. Sci
Rep. 2017;7:44979.

3 Celis-Rodríguez E, Díaz Cortés JC, Cárdenas Bolívar YR, et al.
Evidence-based clinical practice guidelines for the management of
sedoanalgesia and delirium in critically ill adult patients. Med
Intensiva. 2020;44(3):171–184.

4 Marra A, Ely EW, Pandharipande PP, Patel MB. The ABCDEF
Bundle in critical care. Crit Care Clin. 2017;33(2):225–243.

5 Owen GD, Stollings JL, Rakhit S, et al. International analgesia,
sedation, and delirium practices: a prospective cohort study.
J Intensive Care. 2019;7(1):25.

6 Devlin JW, Skrobik Y, Gélinas C, et al. Clinical practice guidelines
for the prevention and management of pain, agitation/sedation,
9

https://doi.org/10.1016/j.eclinm.2023.102417
https://doi.org/10.1016/j.eclinm.2023.102417
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref1
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref1
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref2
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref2
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref2
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref3
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref3
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref3
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref3
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref4
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref4
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref5
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref5
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref5
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref6
http://refhub.elsevier.com/S2589-5370(23)00594-1/sref6
www.thelancet.com/digital-health


Articles

10
delirium, immobility, and sleep disruption in adult patients in the
ICU. Crit Care Med. 2018;46(9):e825–e873.

7 Kim WY, Suh HJ, Hong SB, Koh Y, Lim CM. Diaphragm
dysfunction assessed by ultrasonography: influence on weaning
from mechanical ventilation. Crit Care Med. 2011;39(12):2627–
2630.

8 de Vries H, Jonkman A, Shi ZH, Spoelstra-de Man A, Heunks L.
Assessing breathing effort in mechanical ventilation: physiology
and clinical implications. Ann Transl Med. 2018;6(19):387.

9 Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to mini-
mize progression of lung injury in acute respiratory failure. Am J
Respir Crit Care Med. 2017;195(4):438–442.

10 Chanques G, Constantin JM, Devlin JW, et al. Analgesia and
sedation in patients with ARDS. Intensive Care Med.
2020;46(12):2342–2356.

11 Kassis EB, Beitler JR, Talmor D. Lung-protective sedation: moving
toward a new paradigm of precision sedation. Intensive Care Med.
2023;49(1):91–94.
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