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Abstract

Microbial communities are of considerable significance for biogeochemical processes, for

the health of both animals and plants, and for biotechnological purposes. A key feature of

microbial interactions is the exchange of nutrients between cells. Isotope labelling followed

by analysis with secondary ion mass spectrometry (SIMS) can identify nutrient fluxes and

heterogeneity of substrate utilisation on a single cell level. Here we present a novel

approach that combines SIMS experiments with mechanistic modelling to reveal otherwise

inaccessible nutrient kinetics. The method is applied to study the onset of a synthetic mutu-

alistic partnership between a vitamin B12-dependent mutant of the alga Chlamydomonas

reinhardtii and the B12-producing, heterotrophic bacterium Mesorhizobium japonicum,

which is supported by algal photosynthesis. Results suggest that an initial pool of fixed car-

bon delays the onset of mutualistic cross-feeding; significantly, our approach allows the

first quantification of this expected delay. Our method is widely applicable to other microbial

systems, and will contribute to furthering a mechanistic understanding of microbial

interactions.

Introduction

Microbial communities underpin many globally important processes, from biogeochemical

cycles [1] and the ecology of aquatic [2] and terrestrial food webs [3,4], to wastewater treat-

ment [5,6] and the health of agricultural soils [7]. A key feature of the interactions within these

communities is the exchange of metabolites between species [8]. In aquatic environments,
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photosynthetic carbon fixation by phytoplankton supports higher trophic levels, but also pro-

vides an important carbon source for heterotrophic bacteria [9,10]. Conversely, bacteria have

been shown to provide limiting nutrients to algae, including nitrates, phosphates and iron

[11], vitamins [12,13] and carbon dioxide [14]. Depending on environmental conditions,

these metabolite exchanges control the outcome of microbial interactions, from parasitic,

through commensal, to mutualistic [15,16].

To exploit microbial communities for biotechnological applications, it is crucial to be able

to predict and control microbial interactions. Extensive studies of natural microbial communi-

ties using metagenomics, metatranscriptomics and metaproteomics have provided consider-

able insight into potential metabolite exchanges [17,18]. However, to obtain a fully predictive,

mechanistic understanding of microbial interactions it is also essential to use bottom-up

approaches employing laboratory model systems and mathematical models [19,20]. For exam-

ple, the comparison of a nutrient-implicit Lotka-Volterra model with experiments studying

co-cultures of genetically engineered strains of yeast that each provide a different essential

nutrient to the other demonstrated a limiting nutrient-induced shift from mutualism via para-

sitism to competition [21]. Moreover, studies of engineered yeast communities combining

agar pad experiments and models incorporating nutrient diffusion revealed that cross-feeding

interactions influence genetic drift during spatial expansion [22], and that spatial self-organisa-

tion favours cooperation over cheating [23].

The exact metabolic interactions within microbial communities are often unknown. Sec-

ondary ion mass spectrometry (SIMS, NanoSIMS), an imaging mass spectrometry technique

capable of analysing single microbial cells, reviewed in [24–27], has been instrumental in iden-

tifying new symbioses and microbial interactions for both cultured and non-cultured associa-

tions [28–30]. Moreover, the metabolic activity and phylogenetic identity (16S rRNA) of single

cells can be linked by combining in situ hybridization methods with SIMS [31,32]. Using SIMS

and NanoSIMS to visualise and quantify substrate utilisation in single cells, filaments, and col-

onies of microbial cells has helped to determine the heterogeneity of single cell metabolic activ-

ity [31,33], sub-cellular location of assimilated substrates [34,35], nutrient exchanges between

symbiotic partners [28,29] and the effect of physical attachment on carbon and nitrogen fluxes

between bacteria and microalgae [36,37].

In these studies, SIMS was primarily used to visualise and measure nutrient assimilation

and transfer. In the dilute aquatic environment, microbial interactions will involve dynamic

nutrient exchanges, particularly at the onset of association, when metabolite fluxes may be

quite different from those arising during a stable, long-term interaction. Here we explore the

establishment of mutualistic interactions with a well-characterised model system: a co-culture

of the cobalamin (vitamin B12) dependent, photosynthetic alga Chlamydomonas reinhardtii
metE7 strain [38] and the B12-producing, heterotrophic bacterium Mesorhizobium japonicum
(previously Mesorhizobium loti [39]). This laboratory model system has environmental rele-

vance because omics studies have shown that vitamin-mediated mutualistic interactions

between microalgae and bacteria are widespread in terrestrial and marine environments [18].

Further, the system has been extensively studied in the laboratory. Previous studies of a closely

related system comprising the naturally B12-dependent alga Lobomonas rostrata, have demon-

strated mutualistic growth dynamics predicated on the exchange of vitamin B12 and organic

carbon photosynthate [38,40]. The relative proportions of the two organisms are stably main-

tained over hundreds of generations, but can be perturbed by supplementation with cobalamin

or an organic carbon source like glycerol [40]. The effect of environment geometry on the

mutualistic dynamics of spatially separated populations was also recently modelled mathemati-

cally, and realised experimentally [41]. Here, SIMS experiments that follow the temporal varia-

tion in 13C labelling are combined with a mechanistic, nutrient-explicit model to gain further
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insight into how these organisms interact. In principle, isotope labelling and SIMS alone could

quantify all nutrient exchanges of interest. In practice, however, this would require a myriad of

time-consuming experiments in order to separate the coupled dynamics. The value of our

mechanistic model is to allow information about the nutrient kinetics to be deduced from a

minimal, and feasible to perform, set of experiments. Further, the model helps suggest which

metabolic processes are most significantly contributing to observations, permits use of the

SIMS data to explore potential mechanisms for the observed single cell heterogeneity and, in

future, could help identify trends in how metabolic processes and nutrient dynamics change

under different environmental conditions.

Mechanistic model

To better understand the carbon kinetics revealed by isotope labelling experiments and the

underlying mutualistic microbial dynamics of the algal-bacterial co-culture, a mechanistic

model was formulated. The nutrient-explicit model (shown schematically in Fig 1) does not

rely on detailed metabolic fluxes but nevertheless aims to capture the essential nutrient

exchanges between the algae and bacteria. Algal population growth depends on the external

concentration of B12 v, which originates from bacterial release. Similarly, bacterial population

growth depends on the external concentration of algal-derived dissolved organic carbon

(DOC), modelled as an effective single carbon source co. All other nutrients are assumed to be

non-limiting. The exchange of B12 and DOC thus provides mutualistic coupling between the

two species. The nutrient-limited growth is modelled using a Monod model, and a logistic

term is added to model the long-term growth of limited batch cultures [42].

Finally, the co-culture is assumed to be well-mixed, such that

da
dt
¼ ma a 1 �

a
Ka

� �
v

Kv þ v

� �

ð1Þ

and
db
dt
¼ mb b 1 �

b
Kb

� �
co

Kc þ co

� �

; ð2Þ

with a and b the algal and bacterial cell densities respectively, μa and μb the maximum growth

rates (defined here with units h−1), Ka and Kb the carrying capacities (here with units cells/mL),

and Kv and Kc the half-saturation concentrations (here with units mol/mL). The carbon

Fig 1. Schematic to illustrate the nutrient kinetics included in the algal-bacterial co-culture model. Vitamin B12 is

released by bacteria and required for algal growth. Bacterial growth is dependent on DOC produced by algae. Also

considered are: algal photosynthesis, carbon storage, and DOC exudation from excess photosynthesis; bacterial

respiration and DIC uptake.

https://doi.org/10.1371/journal.pone.0251643.g001
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biomass concentrations for algae and bacteria are given by

ca ¼
a

Ya;c
ð3Þ

and cb ¼
b

Yb;c
ð4Þ

respectively, with Ya,c and Yb,c the carbon yield parameters, which are defined as the number

of cells formed per mole of carbon (i.e. with units cells/molC) and assumed to be constant.

Although dissolved inorganic carbon (DIC) is assumed to be non-limiting (as in the experi-

ments), accounting for DIC kinetics was essential to connect the model to SIMS experiments,

where isotope labelling relied on assimilation of 13C via DIC. Heterotrophic bacteria must

respire to produce the ATP required to drive cellular metabolism [43], therefore a significant

fraction of the carbon consumed by bacteria will be transformed into carbon dioxide through

respiration. This is modelled using the bacterial growth efficiency (BGE), defined as

Z0 ¼
_cb

_cb þ rr
; ð5Þ

with _cb the bacterial carbon biomass growth rate and rr the respiration rate. In order for the

carbon fluxes to remain balanced, while also maintaining an active carbon turnover at carrying

capacity, η0 decreases to zero as the bacterial cell density increases to carrying capacity. There-

fore

Z0 ¼ Z 1 �
b
Kb

� �

; ð6Þ

with η the maximum BGE, i.e. the growth efficiency for the exponential growth phase when

b�Kb. For η!1, respiration goes to zero and does not affect carbon uptake. Instead, with

η!0 respiration rate is high compared to growth rate and thus strongly affects the carbon

kinetics. The total rate of carbon uptake by bacteria is given by ru ¼ _cb þ rr and so from Eqs

(2) and (4)-(6)

ru ¼
mb b
Z Yb;c

co

Kc þ co

� �

ð7Þ

and the total bacterial respiration rate, defined as DIC production, is therefore given by

rr ¼ 1 � Z 1 �
b
Kb

� �� �

ru: ð8Þ

As any living cell, heterotrophic bacteria can assimilate inorganic carbon through carboxyla-

tion reactions [44,45]. The model incorporates this observation by including a DIC uptake

parameter X, defined as

X ¼
rDIC

u

ru
; ð9Þ

with rDIC
u the DIC uptake rate and ru the total carbon uptake rate.

Further, the model minimally describes photosynthesis and carbon storage in algae by split-

ting algal carbon biomass into two internal components, photosynthetically-active carbon ca,p,

available for exudation, and stored carbon ca,s, used for biomass growth, in storage compounds
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(e.g. starch) and for cellular maintenance. We define the fraction of carbon ‘stored’ by algae as

�s ¼
ca;s

ca
; ð10Þ

from which a rate of storage can be defined as

rs ¼ _ca;s ¼
�s _a
Ya;c

: ð11Þ

For simplicity, the model does not consider the carbon concentrating mechanism of C.

reinhardtii explicitly. Instead carbon dioxide and bicarbonate are considered as one entity (i.e.

DIC) and photosynthetic assimilation of DIC corresponds to the uptake of both forms of inor-

ganic carbon. Total carbon must be conserved and therefore the rate of photosynthetic carbon

assimilation is given by

rp ¼
_a

Ya;c
þ re; ð12Þ

with _a=Ya;c the algal carbon biomass growth rate and re the total rate of DOC exudation by the

whole algal population, which is assumed to be linearly dependent on the algal cell density and

the fraction of stored carbon, such that

re ¼ ð1 � �sÞpc a: ð13Þ

The parameter pc is assumed to be constant and can be interpreted as a measure of the rate of

DOC release by algae per unit of photosynthetically-active algal biomass. Thus, the model effec-

tively describes DOC exudation as originating from excess algal photosynthesis. Taking all

these different contributions to the carbon kinetics into account, the model defines the rate of

change of the DOC and DIC concentrations as

dco

dt
¼ re � 1 � Xð Þru ð14Þ

and
dci

dt
¼ rr � X ru � rp; ð15Þ

respectively.

For the B12 kinetics, the internal B12 recycling dynamics for algae and bacteria are

neglected, including the reacquisition of released vitamins by the bacteria. The experimental

details of the vitamin import/export dynamics have yet to be investigated for our system, so it

is not possible to describe it as has been done for some bacterial systems [46]. Here, the total

B12 uptake rate for the whole algal population is given by

rv ¼
ma a
Ya;v

v
Kv þ v

� �

; ð16Þ

with Ya,v the B12 yield for algae in the exponential growth phase, i.e. a�Ka, and has units cells/
molB12. It is assumed that there is a constant B12 release rate per bacterial cell pv, meaning that

dv
dt
¼ pvb � rv: ð17Þ

Combining the differential equations for the carbon concentrations and the definition of

atomic fraction f = 13C/(13C+12C), we can write down differential equations for the dynamics
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of the atomic fractions, observed experimentally using SIMS. Full details are given in Supple-

mentary Methods in S1 Text, as an example, the atomic fraction for bacteria can be shown to

be given by

dfb
dt
¼ X fi þ ð1 � XÞfo � fbð Þ

mb

Z

co

Kc þ co

� �

; ð18Þ

with fb, fi and fo the atomic fractions of 13C for bacteria, DIC and DOC respectively, and all

other parameters as previously defined.

In summary, the mechanistic model describes algal growth dependent on B12 produced by

bacteria, with photosynthetic uptake of DIC accounting for the algal carbon biomass growth

and DOC exudation. The bacterial growth is dependent on the DOC produced by algae, respi-

ration produces carbon dioxide (DIC) and provides the bacteria with the energy they require

to grow. In addition to DOC uptake, bacteria are also able to assimilate DIC through metabolic

carboxylation reactions.

Model parameters

A brief overview of the model parameterisation is provided here; full details can be found in

the Supplementary Methods in S1 Text. Model parameters were estimated by fitting the model

to the experimental results for both growth and isotope fraction simultaneously. The Matlab

ordinary differential equation solver ode45 was used to numerically solve the model equations.

To reduce the number of free parameters, the majority of model parameters were determined

using a simplified version of the co-culture model (i.e. with ϕs = 0, η0 = 1 and X = 0) to run a

global fit of three independent co-cultures (i.e. not the same as the stable isotope experiments

in this work) between C. reinhardtii metE7 and M. japonicum, for which colony forming units,

particle counts and B12 concentrations were measured. The algal and bacterial carbon yields

were estimated from dry mass measurements and EA-IRMS analysis. The carrying capacity

for axenic bacteria was obtained from fitting a logistic growth equation to data obtained by

[40] for M. japonicum grown axenically with 0.1% glycerol. The few remaining parameters

were obtained from fitting the model to the main stable isotope experiments in this work, see

Results. Global parameter optimisations were performed using the GlobalSearch and createOp-
timProblem functions in Matlab’s global optimisation toolbox, with fmincon as the solver for

each minimisation. The results for the model parameters and initial conditions for C. reinhard-
tii metE7 and M. japonicum grown both axenically and in co-culture are given in Table 1.

Although the individual parameters can have different values, it was assumed that the underly-

ing mechanisms of the model are the same for axenic and co-culture conditions. In particular,

it was assumed that the carbon metabolism of bacteria will behave in the same way when they

are grown axenically or in co-culture: growth, carbon assimilation and respiration rate will all

be correlated in the same way for both conditions.

Results

Inorganic carbon acquisition by axenic bacteria

Axenic cultures of the rhizobial bacterium M. japonicum allowed quantification of bacterial

inorganic carbon acquisition and provided a benchmark for applying our SIMS-modelling

approach to the co-culture. M. japonicum was grown axenically for 72 h with 5 mM NaH13CO3

(the labelled DIC source) and different concentrations of unlabelled glycerol, providing a

source of organic carbon. SIMS images (Fig 2A) were used to determine the atomic fraction of
13C, f, for individual bacterial cells. The quantity fb (Fig 2B) represents the average fraction of
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Table 1. Model parameters and initial conditions.

Parameter Symbol Units Axenic algae Axenic bacteria Co-culture

Algal carrying capacity Ka cells mL−1 2.3×106 [a] - 2.3×106 [a]

Bacterial carrying capacity Kb cells mL−1 - 1.3×109 [b] 1.14×109 [a]

B12 half-saturation concentration Kv mol mL−1 2.6×10−14 [a] - 2.6×10−14[a]

DOC half-saturation concentration Kc mol mL−1 - 1.5×10−6 [c] 6.3×10−7 [d]

Maximum bacterial growth rate μb h−1 - 0.15 [c] 0.42 [a]

Maximum algal growth rate μa h−1 0.21 [a] - 0.21 [a]

Algal B12 yield Ya,v cells mol−1 1.13×1019 [e] - 1.13×1019 [e]

Algal carbon yield Ya,c cells mol−1 4×1012 [f] - 4×1012 [f]

Bacterial carbon yield Yb,c cells mol−1 - 5×1014 [f] 5×1014 [f]

B12 release rate pv mol cell−1 h−1 - - 2×10−23 [g]

DOC production parameter pc mol cell−1 h−1 - - 5.4×10−15 [h]

Fraction of storage ϕs 0.87 [i] - 0.9 [j]

Maximum BGE η - 0.51, 0.15, 0.39, 0.63 [c,k] 0.51 [j]

DIC uptake fraction X - 0.046, 0.042, 0.022, 0.009 [c,k] 0.015 [j]

Initial conditions Symbol Units Axenic algae Axenic bacteria Co-culture

Algal cell density a(0) cells mL−1 0.0032 Ka [i] 0 0.005 Ka [l]

Bacterial cell density b(0) cells mL−1 0 8.8×106, 1.6×107, 1.8×107, 1.3×107 [c,k] 0.017 Kb [l]

DOC concentration co(0) mol mL−1 0 4×10−5, 4×10−6, 4×10−7, 1.7×10−7 [c,k] 0.0014 Kc [l]

B12 concentration v(0) mol mL−1 0.374 Kv [i] 0 0

DIC concentration ci(0) mol mL−1 5 Kc 5 Kc 5 Kc

Algal atomic fraction fa(0) 0.0108 - 0.59 [m]

Photosynthetically-active atomic fraction fa,p(0) 0.0108 - 0.65 [m]

Bacterial atomic fraction fb(0) - 0.0108 0.0108

DOC atomic fraction fo(0) 0.0108 0.0108 0.64 [m]

DIC atomic fraction fi(0) 0.65 [i] 0.65 [i] 0.65 [i]

[a] Obtained from fitting a simplified co-culture model (i.e. ϕs = 0, η0 = 1 and X = 0) to population growth and B12 concentration data.

[b] From fitting a logistic growth equation to data obtained by [40] for M. japonicum grown axenically with 0.1% glycerol.

[c] From a global parameter optimisation performed for the four axenic cultures of M. japonicum grown with different concentrations of glycerol, i.e. the growth and

isotope data from all for cultures were fit simultaneously. The residual sum of squares for this global parameter optimisation was 0.58, whereas when respiration was not

included in the model it was 2.24.

[d] From the definition Kc ¼
Kb

Yb;ckb;c
, with non-dimensional parameter kb,c = 3.6 obtained from [a].

[e] From the definition Ya;v ¼
Ka

Kvka;v
; with non-dimensional parameter ka,v = 7.8 obtained from [a].

[f] From dry mass measurements and EA-IRMS analysis.

[g] From the definition pv ¼
svmaKv

Kb
, with non-dimensional parameter sv = 4.2 obtained from [a].

[h] From the definition pc ¼
scmbKc

Ka
, with non-dimensional parameter sc = 0.047 obtained from [l].

[i] Parameter optimisation results from fitting the model to the axenic, pre-labelling culture of C. reinhardtii metE7. The residual sum of squares for this global

parameter optimisation result was 0.313.

[j] Estimated using parameter optimisation results for the axenic cultures.

[k] For the 0.1%, 0.01%, 0.001% and no glycerol cultures respectively. See S7 Table for details.

[l] Parameter optimisation results from fitting the model to co-culture growth and SIMS data, i.e. fit 1 in S8 Table.

[m] Estimated using the model results for the axenic, pre-labelling culture of algae.

The model parameter values obtained from model parameterisations for C. reinhardtii metE7 and M. japonicum grown both axenically and in co-culture. See

Supplementary Methods in S1 Text for details of the parameterisation methods and S6 Table for details of the non-dimensional model parameters.

https://doi.org/10.1371/journal.pone.0251643.t001
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13C for a distribution of single cell measurements; the effects of single cell heterogeneity are

discussed further below.

Concomitantly to SIMS, bacterial abundance was quantified using viable counts. As

expected, higher glycerol concentrations resulted in faster exponential growth and larger car-

rying capacities (Fig 2C). Even with no glycerol added to the growth medium, bacterial growth

was still observed (see also S7 Fig). This could be due to internal stored carbon carried forward

from the pre-culture or slow growth on other organic carbon sources, e.g. Tris buffer, present

in the media. A similar experiment showed that for two days after transfer into axenic culture

or co-culture the growth of M. japonicum remained the same, and only after this did the

growth curves diverge when M. japonicum in axenic culture stopped growing, whereas in co-

culture the bacteria transitioned to using algal photosynthate which supported further growth

[47]. During the first 24 h, when all cultures analysed were in the exponential growth phase,

Fig 2. Inorganic carbon acquisition by axenic bacteria. (A) Example images of the atomic fraction of 13C, f, obtained

by SIMS analysis of bacterial cells sampled after 24 h of axenic cultures grown with different concentrations of

unlabelled glycerol and 5 mM NaH13CO3. The colour map shows the scale, starting at natural abundance. (B) The

mean atomic fraction of 13C, fb, for dilution-corrected SIMS measurements (for the 0–0.01% glycerol cultures on the

left and 0.1% glycerol culture on the right) demonstrate inorganic carbon acquisition by the bacteria. Error bars

correspond to standard errors. (C) Bacterial growth measured using viable counts, plotted on a logarithmic scale as the

mean of two measurements (with standard error shown as error bars), shows an increase in the exponential growth

rate and carrying capacity for higher initial concentration of glycerol (0–0.01% glycerol cultures shown on the left and

0.1% glycerol culture on the right). Red crosses indicate points that were unexpectedly high (approximately 1×1012 cfu
mL−1) and therefore considered outliers and not included in the parameter optimisation. The results of fitting the

model to both the growth and SIMS data, with parameters and their units as specified in Table 1, are also plotted for

the (B) atomic fraction fb and (C) cell density b. For the 0.1% glycerol culture, shown separately on the right, results

from two different parameter optimisations are compared. For the fit including respiration (solid line), i.e. with η as a

free parameter, the results are given in Table 1. For the fit neglecting respiration (dotted line), i.e. η0 = 1, the parameter

optimisation results are Kc = 6.6×10−6 molC mL−1, μb = 0.15 h−1 and for the 0.1% glycerol culture b(0) = 1.2×107 cells
mL−1 and X = 0.025.

https://doi.org/10.1371/journal.pone.0251643.g002
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greater 13C-enrichment was observed for bacteria grown with a higher concentration of glyc-

erol (Fig 2B). Since only inorganic carbon was labelled, the increase in fb demonstrates DIC

acquisition by M. japonicum.

The co-culture model was applied to interpret the SIMS results for the axenic cultures of M.

japonicum. Mathematically, the model used for axenic bacteria is given by Eqs (2), (14), (15),

(17) and (18), with a = v = re = rp = 0, which describes logistic growth of a bacterial population

growing on a limiting organic carbon source.

The model was applied to globally fit both the SIMS and growth data simultaneously. Two

such global fits were performed, one including respiration and another ignoring it. In the latter

case, the model was unable to reproduce the data well (dotted line in Fig 2B and 2C). This sug-

gests that DIC uptake and respiration are essential to accurately describe the carbon kinetics of

axenic bacteria. The bacteria grown with 0.1% glycerol showed a prominent peak in fb, which

the model without respiration was unable to reproduce (Fig 2B). This can be explained by con-

sidering that only respiration provides the feedback of unlabelled carbon necessary for fb to

decrease. Respiration converts glycerol to CO2, which is released into solution and lowers the

total labelled fraction of DIC. Thus, the labelled fraction of carbon consumed by bacteria

decreases, causing fb to decrease. Fit results for the growth efficiency η2[0.15−0.63] and DIC

uptake parameter X2[0.009−0.046] (S7 Table) are similar to those reported in the literature,

e.g. η2[0.05−0.6] [48] and X2[0.014−0.065] [45]. Moreover, the DIC uptake parameter X was

found to increase as a function of the exponential growth rate μB, according to X = m ln(μB)+n
with m = 0.0167±0.0004, n = 0.0785±0.0013 and R2 = 0.999. A negative correlation between

the growth efficiency η and ln(μB) was found, giving η = p ln(μB)+q with p = −0.10±0.12,

q = 0.12±0.36 and R2 = 0.282 (S7 Table and S8 Fig).

Overall, this study of axenic cultures revealed how the combination of temporal SIMS mea-

surements with modelling can help determine which key metabolic phenomena are responsi-

ble for observed isotope labelling dynamics.

Carbon transfer from algae to bacteria in co-culture

To gain new insights into the establishment of mutualistic algal-bacterial interactions, we

applied the combined SIMS-modelling approach to study a co-culture between C. reinhardtii
metE7 and M. japonicum. The algae were pre-labelled and not washed prior to co-culture inoc-

ulation (see Experimental Procedures and S9 Fig), therefore DOC from the pre-culture was

carried over into the co-culture. This provided the best chance of observing bacterial assimila-

tion of algal derived carbon, given that the time-scale for DOC to become available to bacteria

in the co-culture had not been measured previously.

The labelled carbon kinetics in the co-culture were followed using SIMS over a period of 72

h. SIMS images (Fig 3A) were used to determine the atomic fraction of 13C, f, for individual

bacterial and algal cells. The quantities fa and fb denote the average atomic fractions for a popu-

lation of algae and bacteria respectively (Fig 3B); effects relating to single cell heterogeneity are

considered below. Sustained population growth was observed for both the algal and bacterial

populations (Fig 3C), which implied that the two populations were not limited by nutrients

other than the exchanged metabolites. In spite of algal population growth, fa remained approx-

imately constant throughout the co-culture (Fig 3B), which indicates a likely equilibrium for
13C in algae, with fa equal to the atomic fraction of DIC fi (see Eq (S11) in Supplementary

Methods in S1 Text). Unlike for axenic bacteria, where fb reached a maximum (Fig 2B), for the

co-culture fb continues to increase throughout the experiment (Fig 3B). Bacterial respiration

only has a significant effect on the 13C content of the DIC when the respiration rate is fast

enough. The co-cultured bacteria are growing more slowly than when grown with high

PLOS ONE SIMS-modelling approach to microbial interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0251643 May 20, 2021 9 / 27

https://doi.org/10.1371/journal.pone.0251643


concentrations of glycerol. Therefore, the total rate of respiration is slower, and hence the feed-

back of unlabelled CO2 is also slower. In addition, it should be noted that in the axenic cultures

of bacteria (Fig 2) the only labelled carbon source is the DIC, whereas in the co-culture (Fig 3)

the bacteria can become labelled from both uptake of labelled DIC and labelled algal photosyn-

thate. The continuous increase in fb (Fig 3B) is therefore unlikely to come only from DIC

uptake, suggesting instead that the bacteria assimilated 13C from labelled DOC produced by

the algae. However, on their own, the SIMS results could not provide information on the pre-

cise carbon kinetics within the co-culture. In the early stages of a co-culture the question

remains: are cells growing on mutually produced nutrients excreted into the media, on inter-

nal stores/organic media components or on nutrients carried-over in the media from the pre-

culture? Combining SIMS data with our mechanistic model allowed this question to be

addressed.

Hidden nutrient kinetics

To further analyse the SIMS data and explore possible nutrient kinetics that couple the interac-

tion partners, we formulated a mechanistic model of the algal-bacterial co-culture (as defined

above) and performed parameter optimisations (see Table 1, Supplementary Methods in S1

Text, S5–S8 Tables, and S5 and S6 Figs). Fig 3B and 3C shows two separate global fits of the

model to the algal and bacterial atomic fractions and cell densities. Fit 1 fixed the initial atomic

Fig 3. The algal-bacterial co-culture. (A) Example images of the atomic fraction of 13C, f, obtained by SIMS analysis

of algal and bacterial cells sampled from the co-culture. The colour maps show the scale, starting at natural abundance.

(B) The mean atomic fraction of 13C, fa and fb for algae and bacteria respectively, calculated from the dilution-

corrected SIMS measurements for at least 5 algal cells and 100 bacterial cells per time-point (circles). Error bars

correspond to standard errors. (C) Algal and bacterial growth measured using viable counts, plotted as the mean (with

standard error shown as error bars) of two viable count measurements (circles). The results of fitting the model to both

the growth and SIMS data are also plotted. Fit 1 fixed the initial fo(0) = 0.64, estimated using results for the pre-

labelling culture of algae, whereas fit 2 included fo(0) as a free parameter. The parameter values and initial conditions

are as specified in Table 1 and S8 Table. Although fit 2 fits the data better, it gives a low initial atomic fraction for the

DOC fo(0) and high initial DOC concentration co(0).

https://doi.org/10.1371/journal.pone.0251643.g003
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fraction of 13C for DOC at fo(0) = 0.64, the expected value from the pre-labelled culture of

algae (see Supplementary Results in S1 Text), whereas fit 2 included fo(0) as a free parameter.

Fit 2 may appear to better describe the data, because it better reproduces bacterial growth, but

the parameter optimisation result for fo(0) in fit 2 was close to natural abundance (S8 Table),

which is not realistic for a culture expected to contain some labelled DOC from the highly

labelled algal pre-culture. Neither fit was thus able to quantitatively capture the observations,

which illustrates a trade-off between bacterial growth and isotope labelling that limited the

effectiveness of the co-culture parameter optimisations. This suggests that our model is proba-

bly too simple to be fully quantitative. For example, the carbon yield for the bacterial cells Yb,c

might not be constant, internal storage could have contributed to bacterial growth or algal cell

lysis could have provided a less enriched organic carbon source to the bacteria. Nonetheless,

the results from fit 1 are qualitatively reasonable (the bacterial population is growing, albeit at

a slower rate than expected), and could be used to predict the nutrient kinetics in the co-cul-

ture that are not directly inferable from our measurements.

The co-culture medium was assumed to be initially vitamin-free because bacteria were

washed thoroughly prior to establishing the co-culture and B12 was assumed to have been fully

depleted in the 48 h pre-labelling culture of algae. This is a reasonable simplifying assumption

to make since B12 measurements for axenic cultures of C. reinhardtii metE7 containing 100 ng
L−1 B12 showed that the B12 remaining in the media reached its minimum after two days (S11

Fig). Using parameters from fit 1 (Table 1), the model revealed the potential B12 and DOC

kinetics driving the microbial growth dynamics (Fig 4A and 4B). The vitamin concentration v
increases from zero, peaks, and then starts to decrease after about 40 h (Fig 4A). Conversely,

the DOC concentration co drops from the initial concentration co(0), carried over from the

unwashed algal pre-culture, to a local minimum, and then starts to rise after approximately 30

h (Fig 4B), a few hours before the turnaround in B12 concentration. These results can be inter-

preted in terms of the production/release and consumption of nutrients, and the resulting pop-

ulation growth. At the start of the experiment bacterial DOC uptake during growth was likely

responsible for the initial depletion of DOC (Fig 4B), which occurred at a faster rate than

could be replenished by the algae. The model results also suggest that growing bacteria were

initially producing B12 faster than the algal uptake rate, allowing the vitamin concentration to

increase (Fig 4A). As it did so, the algae grew and photosynthesised, producing DOC to be uti-

lised by the bacteria, which proliferated in turn. The turnaround in the nutrient kinetics occurs

when production/release and consumption rates are matched, seen mathematically by setting
dv
dt ¼ 0 ¼

dco
dt in Eqs (14) and (17). Fig 4A and 4B suggests that beyond the turning point at�30

h, DOC became more abundant as production by algae out-paced bacterial consumption. A

Fig 4. Nutrient kinetics in the co-culture predicted by the model. Concentrations of (A) B12 and (B) DOC in the co-

culture predicted by the nutrient-explicit co-culture model using the parameter optimisation results obtained from fit

1 (Table 1). (C) Isotope labelling rate
dfb
dt calculated using Eq (18).

https://doi.org/10.1371/journal.pone.0251643.g004
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short time later, the concentration of B12 began to decrease as release by bacteria fell below

algal consumption.

Furthermore, the time evolution of the derivative of the bacterial atomic fraction
dfb
dt (obtain-

able from the model; Eq (18)) is seen to mirror closely the fall and rise of the DOC, reproduc-

ing a turnaround at approximately the same time (Fig 4C). The model implies that this is

because the rate of DOC uptake by bacteria is proportional to the DOC concentration, such

that a decrease in the DOC concentration decreases the uptake rate, which directly slows down

the rate of 13C assimilation. Thus, the model, while not providing a fully quantitative descrip-

tion of the growth dynamics, is nevertheless able to predict the temporal variation of the nutri-

ent kinetics from a minimal set of isotope labelling experiments. In future studies, the initial

conditions for the model, e.g. the initial population densities a(0) and b(0), and thus the start-

ing ratio a(0): b(0), could be varied to see how this influences the predicted timescales for the

nutrient kinetics.

Single cell heterogeneity

The SIMS results discussed thus far were averages obtained from several single cell measure-

ments. We now turn to the heterogeneity in atomic fraction revealed by SIMS and not accessi-

ble by other methods such as EA-IRMS (see S3 and S4 Figs for histograms of the single cell

data). For this we concentrated on bacteria which provided better statistics than algae (mini-

mum 80 bacterial cells measured per time point, versus 5−29 cells per time-point for algae).

For unlabelled bacteria at natural abundance the single cell measurements showed a narrow

distribution of atomic fractions (S3 Fig), indicating that all bacteria started at approximately

the same value. For axenic bacteria, increasing the glycerol concentration caused greater DIC

uptake, and 13C was seen to be more widely spread across the population (S3 Fig). For the

highest glycerol concentration, the cell distribution was seen to broaden and then narrow

again over time, corresponding to the rise and fall of the mean atomic fraction, and a transition

of the culture to stationary phase. In contrast, for bacteria in co-culture, the distribution of sin-

gle cell atomic fractions broadened steadily over time (S4 Fig).

These single cell results clearly indicate heterogeneity in isotope labelling across the bacte-

rial populations. To analyse heterogeneity, a stochastic, structured model would strictly be

required, for example as was used to explain how the circadian clock and environmental cycles

affect cell size control and generate two subpopulations in the cyanobacterium Synechococcus
elongatus [49]. Our mean field model could, however, still be usefully applied to simulate het-

erogeneity and investigate potential origins of the observed single cell distributions by solving

the model for parameter values above and below the fit results obtained for the mean atomic

fractions (Table 1). Specifically, we considered the effect of varying the DIC uptake parameter

X, bacterial maximum growth efficiency η and maximum bacterial growth rate μb, with ranges

given in the legend of Fig 5. The resulting variations in predicted bacterial atomic fractions

(shaded areas in Fig 5) could then be compared with the variation observed experimentally,

considered as the standard deviations of the SIMS single cell distributions (error bars in Fig 5).

For axenic bacteria, a distribution in the values of X appeared to best account for the experi-

mental variation (standard deviation) in the atomic fraction fb, especially for the culture grown

at the highest glycerol concentration, where the model successfully reproduced the experimen-

tally observed narrowing of the distribution at long times (Fig 5A). The comparison with

experimental trends for variations in η and μb was less favourable (Fig 5B and 5C). Instead, for

bacteria in co-culture, the progressive broadening of the distribution of fb was best described

by a distribution in μb (Fig 5C), with distributions in η and X not doing as well in the compari-

son (Fig 5A and 5B).
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Discussion

While several studies have demonstrated mutualistic interaction between bacteria and algae

mediated by nutrient exchange [36,37,40], none have integrated time-resolved SIMS with

mechanistic modelling to elucidate nutrient kinetics, as we have done here. Our approach

allows the quantification of nutrient kinetics that control the inception and temporal develop-

ment of an algal-bacterial mutualism. More broadly, this connects to the question of how co-

occurrence can, on an evolutionary timescale, transform non-specialised relationships into

more specialised partnerships, from streamlined microbial metabolisms [50–52] to plant-

microbe interactions [53,54].

Initially, our SIMS-modelling approach demonstrated the uptake of labelled DIC by the

heterotrophic bacterium M. japonicum, grown axenically on an unlabelled carbon source

(glycerol). This confirmed similar results from previous studies of DIC uptake by heterotro-

phic bacteria [44,45], while also providing more extensive data in terms of temporal dynamics

and concentration of organic carbon. Fractional DIC uptake, described by the parameter X,

Fig 5. Comparison of single cell heterogeneity predicted by the model and measured experimentally with SIMS.

The dilution-corrected results for the mean atomic fraction fb obtained using SIMS (circles with error bars indicating

standard deviations of single cell values). Solid lines indicate the model fit results, while shaded regions indicate

predicted ranges of fb values, when a range in a specific model parameter is considered. (A) The range of X values

considered for 0.1%, 0.01%, 0.001% and no glycerol cultures of axenic bacteria were X2[0.034,0.058], X2[0.031,0.053],

X2[0.016,0.028] and X2[0.007,0.011] respectively. For the co-culture the range considered was X2[0.011,0.019]. (B)

The range of η values considered for 0.1%, 0.01%, 0.001% and no glycerol cultures of axenic bacteria were η2
[0.21,0.81], η2[0.05,0.25], η2[0.09,0.69] and η2[0.33,0.93] respectively. For the co-culture the range considered was

η2[0.11,0.91]. (C) For axenic cultures of bacteria μb2[0.11,0.19] and for the co-culture μb2[0.34,0.50] in units of h−1.

Variation in X best accounts for the observed temporal trends in the standard deviations of the single cell data for the

axenic cultures, whereas variation in μb best accounts for the co-culture results.

https://doi.org/10.1371/journal.pone.0251643.g005
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and respiration, described by the bacterial growth efficiency parameter η, were found to be

essential for quantitatively describing the results. This was demonstrated by fitting the model

to results of 13C labelling experiments, which provided values for these parameters. The DIC

uptake parameter X was found to increase as a function of the exponential growth rate, and a

faster exponential growth rate corresponded to a higher initial concentration of glycerol. The

increase in X can be reasonably associated with an increase in the carboxylation reactions

responsible for DIC acquisition with faster growth [44,45], however a more detailed model

explicitly considering relevant metabolic processes like carboxylation reactions, respiration

and carbon storage would be required to further investigate the functional relationships

emerging from our data. For example, incorporating these metabolic processes more explicitly

within our SIMS-modelling framework could lead to considering different metabolites that

might in future be interesting to isotopically enrich in order to experimentally test different

metabolic models. Following further testing on this and other model systems, our SIMS-

modelling approach could be used in future studies to investigate how parameters like X and η
are affected by environmental variables, including temperature, nutrient limitation and ener-

getic quality of the organic carbon substrate [43,55].

The SIMS-modelling approach was then used to shed light on the role of nutrient exchange

during the onset of mutualistic interaction in a co-culture of M. japonicum bacteria and vita-

min B12-dependent C. reinhardtii metE7 algae, which has not been previously quantified.

SIMS results showed that the labelling dynamics for bacteria in the co-culture was different to

the axenic cultures. This shows that it is unlikely that the labelling of bacteria in the co-culture

comes only form DIC uptake and suggests that bacteria assimilated algal-derived labelled car-

bon. Using our mechanistic model, we further revealed the nutrient kinetics that couple the

mutualistic partners. Combining SIMS data with the model reasonably predicts that initial

DOC in the co-culture (carried forward from the algal pre-culture) delayed the onset of recip-

rocal mutualistic interaction, defined to start when both partners are growing on reciprocally

produced nutrients. Significantly, our combined SIMS-modelling approach also allowed us to

quantify the delay: microalgae and bacteria started to grow exclusively on what each partner

was producing only after about 30 h into the co-culture.

For comparison, a recent study by [56] quantified a cross-feeding mutualism between two

yeast strains, each genetically engineered to release a metabolite required by the other. A lag

phase of ~25h in the co-culture growth was observed: growth was initially slow and, following

the lag, became faster. Pre-starving one of the yeast strains reduced the lag phase. It should be

stressed that the lag found by [56] is defined in terms of growth rate of cells washed free of

excess nutrients prior to co-culture inoculation, which is distinct from the delay we have

reported. The latter is a delay directly associated with the nutrient kinetics underlying a mutu-

alistic interaction and specifically defines the shift from growth using internal stores or nutri-

ents carried over from pre-cultures to growth dependent on the exchange of nutrients between

the interaction partners. These kinetics would be difficult to observe using current methods

(e.g. it is not possible to measure them using growth measurements alone or by probing gene

activation), but can naturally be studied using our combined modelling and SIMS method.

Compared to other synthetic studies [21–23], our method will also be advantageous for relat-

ing microbial growth and nutrient dynamics, and for studying interactions between wild-type

microorganisms, including environmental species, that are not possible to genetically engi-

neer, but for which it is straight forward to isotope label nutrients supporting their growth.

We emphasise that the present study considers the onset of a mutualistic interaction

between algae and bacteria, which interacted in co-culture for only a few generations. This

contrasts with recent experimental evolution investigations on cross-feeding bacteria that have

demonstrated how, over hundreds of generations, the production of communally valuable
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nutrients can stimulate the metabolism of mutualistic microbial partners, increasing the pro-

ductivity and stability of the partnerships [57–60]. In our study, C. reinhardtii metE7 and M.

japonicum have not had time to evolve and metabolically adapt to each other. Instead, their

interaction seems predicated purely on the exchange of vitamin B12 and DOC. Indeed, DOC

necessary for bacterial growth was found to be present in the supernatant of axenic algal cul-

tures (S12 Fig); conversely, B12 levels in the media of axenic cultures of M. japonicum were

found to be substantial and sufficient to sustain algal growth [47]. Furthermore, the same

study demonstrated that B12 production by M. japonicum is no greater on a per cell basis when

cocultured with metE7 than when cultured axenically with glycerol; this suggests that there is

no induction of B12 synthesis by metE7. The interaction we have studied is thus a simple cross-

feeding of metabolites released in suspension (as described by our model) and represents the

very first stage of what could evolve into a metabolically more complex relationship, as shown

for bacteria [57–60], should the microbial partners continue to interact.

Exploiting the single cell resolution of SIMS, our results also revealed the heterogeneity of

carbon uptake across a bacterial population. The distribution of atomic fractions for axenic

bacteria displayed a width (standard deviation) that was non-monotonic with time, whereas

for the bacteria in co-culture with algae, this width increased monotonically. To explain these

trends, we simulated the variation of phenotypes across the bacterial population using our

model, which was solved with parameter values above and below the fit results. A distribution

in inorganic carbon uptake parameter X gave the best agreement with experiment for axenic

cultures, whereas a distribution in bacterial growth rate μb best accounted for the co-culture

measurements. Regarding the latter, it could reflect the heterogeneous environment for bacte-

ria growing on algal exudates comprising a mix of compounds, each corresponding to a differ-

ent growth rate. Conversely, axenic bacteria were fed on a single carbon substrate. Future

studies could compare structured mechanistic models and computer simulations that describe

variation in population dynamics and nutrient kinetics across microbial populations

[49,61,62] with the approach to modelling heterogeneity used here.

After a broader validation and potential refinement of the model, our approach of combin-

ing mathematical modelling with isotope labelling and EA-IRMS/SIMS can be applied to

revealing quantitative details in microbial interactions, both in the laboratory and the environ-

ment. The approach is particularly relevant in situations where several metabolic processes are

simultaneously present and therefore make carrying out several individual isotope labelling

measurements difficult. Our model offers a simple and mechanistic platform that would not

require significant modifications to describe a variety of microbial systems, including those

involving several species, provided the relevant biological parameters can be determined.

Table 2 summarises the steps required for applying our method to such systems.

For example, it would be interesting to apply our method to study tripartite interactions

between bacteria, microalgae and fungi [63] involving the exchange of key metabolites such as

carbon compounds and nitrates (that could be followed using isotope labelling), and vitamins

(i.e. using bioassays to test model predictions). This would accelerate discovery towards a

mechanistic understanding of microbial interactions and, in complement with top-down

omics approaches [17,18], move towards application of our approach to complex synthetic

and environmental microbial communities.

Materials and methods

Algal and bacterial strains

The B12-dependent alga used in this work was C. reinhardtii metE7 [38]. The B12-producing

bacterium used was M. japonicum (MAFF 303099), previously named Mesorhizobium loti
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[39], originally a gift from Prof Allan Downie, John Innes Centre, UK. We used viable counts

on enriched plates and microscopy (nucleic acid staining and fluorescence imaging) to check

that contaminants were not growing in our cultures.

Growth conditions

Cultures were grown in a 12 h−12 h light-dark cycle at 25˚C, shaking at 120 rpm. The intensity

of the photosynthetically active radiation was approximately 70 μmol m−2 s−1, measured using

a Skye PAR sensor (SKP 215). Tris-minimal medium was used for all cultures, meaning that C.

reinhardtii metE7 grew phototrophically in our experiments. Tris-minimal medium is based

on TAP [64] but omits the acetic acid and HCl is used to titrate to pH 7 [65]. Trace element

solutions (S1 Table) were adapted from [66] to include cobalt, since it is required as the central

ion of vitamin B12. The cobalt concentration was chosen to be the same as in Hutner’s trace

elements [67]. Cyanocobalamin (referred to as B12 throughout this work), glycerol and sodium

bicarbonate were added to the medium as required (S2 Table).

Dissolved sodium 13C-bicarbonate (Sigma-Aldrich NaH13CO3, 98 atm% 13C) was used for

the stable isotope labelling of microbial cultures (the work-flow is illustrated in S1 Fig). A sam-

ple from the 600 mL axenic pre-culture of algae was washed and re-suspended in 1 L of fresh

media containing 7.5×10−14 mol mL−1 B12 (i.e. 100 ng L−1 B12) and 5 mM NaH13CO3. This pre-

labelling culture of algae was grown for 48 h (see Supplementary Information for the experi-

mental and model results for this culture). An axenic pre-culture of bacteria was grown in

media with 0.1% (v/v) glycerol, which was then sampled, washed and re-suspended in 750 mL
fresh media containing 5 mM NaH13CO3, to which 250 mL of pre-labelled algae was added to

initiate the co-culture. The algae were not washed prior to co-culture inoculation, meaning

that DOC was carried forward from the algal pre-culture. This was done to have the best

chance of observing uptake of algal photosynthate by M. japonicum. In order to also improve

the chances of achieving a reciprocal mutualism within the time frame of the experiment, a rel-

atively high inoculum of bacteria was chosen. The starting ratio of bacterial:algal cells was

approximately 1000:1. The long-term ratios at which the algae and bacteria stably coexist and

Table 2. Summary of how to apply our method to other microbial systems.

Modelling

• Adapt our model to reflect the relevant species and nutrients of interest. In summary, this involves

� Defining nutrient dependent growth rates for each species.

� Defining nutrient uptake and release rates.

� Considering metabolic details relevant to the description of the nutrient dynamics.

• Consider what nutrients could be isotopically labelled and obtain from the model equations for the isotope

dynamics.

Independent parameterisation

• Perform growth experiments to determine growth-related parameters like carrying capacity and maximum

growth rate.

• Obtain as many of the model parameters as possible from independent experimental measurements e.g. carbon

yield from EA-IRMS.

Isotope labelling experiments

• Perform isotope labelling experiments using SIMS, EA-IRMS or other techniques to fit the remaining

parameters and investigate the nutrient dynamics [a].

[a] We suggest that it could be advantageous to first perform bulk isotope analysis like EA-IRMS for parameter

optimisation and studying axenic cultures in different conditions (e.g. nutrient concentrations, light intensity,

temperature). Further investigation of more intricate nutrient dynamics could then be performed using SIMS, which

has the advantage of more easily studying multiple time points from the same culture (because smaller sample

volumes are required compared to EA-IRMS) and can reveal single cell heterogeneity.

https://doi.org/10.1371/journal.pone.0251643.t002
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mutually support one another fluctuates between 10 and 100 bacterial cells to each algal cell

[47]. M. japonicum viable cell density tends to hold steady even after all carbon sources are

removed from the medium, so although there may be some lysis at the onset of the co-culture

it is unlikely to be very substantial. Furthermore, [68] showed that lysis is unlikely to be a suffi-

cient path to delivering B12 to B12 dependent algae. Cultures of axenic bacteria were grown

with 5 mM NaH13CO3 and different concentrations of unlabelled glycerol.

Population growth

Population growth was monitored using viable counts. A series of 10-fold dilutions were per-

formed and aliquots of 20 μL from relevant dilutions (i.e. chosen such that approximately 10

to 100 colonies would result after plating) were spotted onto TY agar plates. The plates were

tilted back and forth to disperse the cells and make the colonies easier to distinguish [69].

Plates were incubated in continuous light at 25˚C for approximately 5 days and in the dark at

30˚C for approximately 2 days, for algal and bacterial colonies respectively. Two independent

viable counts were obtained for each time-point and the results converted to values for the

population size in units of colony forming units per unit volume (cfu mL−1). We note that via-

ble counts cannot detect dormant cells, but provided reasonable estimates of population size,

and particularly the subset that contributes to carbon uptake.

Isotope Ratio Mass Spectrometry

Elemental Analysis-Isotope Ratio Mass Spectrometry (EA-IRMS) was used to measure 13C
ratios for bulk samples of algal and bacterial biomass. The analysis was performed by the God-

win lab, Department of Earth Sciences, University of Cambridge using the Thermo Delta V

Plus and Costech. EA-IRMS also measured total carbon and nitrogen content, which was used

to calculate the C:N ratio and, together with dry mass and cell density measurements, to esti-

mate the carbon yield (i.e. cells molC−1) for algae and bacteria; see Supplementary Methods in

S1 Text and S4 Table for details.

Secondary ion mass spectrometry

Sample preparation. We here briefly outline the SIMS sample preparation procedure; full

details are in Supplementary Methods in S1 Text. Samples were chemically fixed using formal-

dehyde. Vacuum filtration was used to deposit the cells onto 0.22 μm pore size membrane fil-

ters with a�20 nm gold coating. Nucleic acid staining and confocal microscopy (Olympus

Fluoview FV1200) were used to confirm an even distribution of cells on the filter. A single

hole punch was used to cut out 4−6 mm disks from the filter samples. Following this, a Zeiss

laser micro-dissection (LMD) microscope (Zeiss LSM710-NLO, LCI facility, Karolinska Insti-

tute, Stockholm) was used to image the autofluorescence of the algal chlorophyll and create

laser marks on the samples, which were used to easily and quickly locate areas of interest with

the SIMS instrument camera. These LMD images were used to identify algal cells in the SIMS

images and allowed individual algal cells to be differentiated from bacterial microcolonies.

Lastly, samples were placed on conductive sticky tape, mounted onto a glass disk and sputter

coated with gold.

SIMS analysis. SIMS analysis was performed using the CAMECA IMS 1280 at the Nord-

SIM facility (Department of Geosciences, Swedish Museum of Natural History, Stockholm).

The instrument uses a Gaussian focussed primary ion beam of caesium ions (Cs+). For selected

positions on the filter sample, 45×45 μm square areas were pre-sputtered for 10 s with a 3 nA
primary ion beam. Within this pre-sputtered region, 100 scans of a 35×35 μm square area were

measured using a�60−80 pA primary ion beam (spot size of approximately 1 μm). The
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secondary ion mass peaks were measured using an ion counting electron multiplier in peak

hopping mode with a 44 ns electronically gated dead-time. The count times for the 12C14N−,
12C15N− (not used in subsequent analysis) and 13C14N− secondary ion peaks were 1, 0.5 and 2 s
respectively. A mass resolution (M/ΔM) of approximately 6000 for the preliminary experi-

ments (results shown in S10 Fig) and 7000 for the final experiments was used; a mass resolu-

tion of 6000−7000 was sufficient in resolving both the 12C14N− and 13C14N− peaks.

Interference of 11B16O− with the 13C14N− peak at mass 27 was not an issue because no boron or

boron containing compounds were used in the culture media and we measured natural abun-

dance (i.e. mean and standard deviation values of 0.01110±0.00004 and 0.0108±0.0002 for

algae and bacteria respectively) in the unlabelled controls. The SIMS measurements were run

once for bacterial cells and repeated 1−8 times for each algal cell. The WinImage2 software

(CAMECA) was used to obtain the isotope ratio R = 13C/12C for single cells of algae and bacte-

ria (see Supplementary Methods in S1 Text for details). The atomic fraction of 13C, i.e. f = 13C/

(13C+12C), was calculated using

f ¼
R

1þ R
: ð19Þ

Several technical considerations were taken into account (see Supplementary Methods in

S1 Text and S2 Fig for full details). First, a depth analysis was performed by taking repeated

measurements of the same cells, which demonstrated that a single measurement was suffi-

ciently representative for bacteria, whereas for algal cells the mean of three repeated measure-

ments was used to obtain a representative measurement. Second, a scattering effect associated

with highly labelled algae was observed, therefore for the analysis described in this work only

bacteria from scan areas not containing labelled algae were included. Lastly, the dilution effect,

due to chemical fixation and nucleic acid staining introducing unlabelled carbon into cells,

was taken into consideration (S3 Table). To estimate the undiluted atomic fraction of 13C,

SIMS results were dilution-corrected using the method established in [70].

Supporting information

S1 Fig. Work-flow for the stable isotope labelling cultures. Schematic overview and time-

line of the stable-isotope labelling cultures using the alga C. reinhartii metE7 and the bacterium

M. japonicum, as described in detail in the text. The vertical white and grey bars indicate the

12 h light and 12 h dark periods respectively. Samples were taken at different time-points for

single cell carbon isotope analysis using SIMS and bulk carbon isotope analysis of the algal and

bacterial biomass using EA-IRMS.

(TIF)

S2 Fig. Technical considerations for SIMS experiments. (A) The difference between the

atomic fraction of 13C in algal cells obtained from the third and first measurements (Δf = f3−f1)

relative to the mean (�f ¼ ðf1 þ f2 þ f3Þ=3). These results show that the carbon isotopes are not

homogeneously distributed within the algal cells. (B) Example SIMS result for the 12C14N iso-

tope images of bacteria obtained for two repeated measurements at the same sample location.

The colour maps indicate the scale for the SIMS measurements in units of secondary ion

counts, which were accumulated over 100 scans. These results imply that the majority of the

bacterial biomass is sputtered away during the first measurement. (C) Comparison between

the mean and standard deviation of the atomic fraction of 13C in bacterial cells (hfi and σf

respectively) for scan areas of co-culture samples that do not contain any highly labelled algal

cells (black bars) and areas that contain at least one highly labelled algal cell (green bars).

These results imply a scattering effect causes the atomic fractions of 13C obtained for bacterial
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cells to be both higher and more variable when the scan area contains a labelled algal cell. (D)

Atomic fraction of 13C obtained by EA-IRMS and SIMS analysis (black diamonds) for both

algae (left) and bacteria (right), with the red lines showing the results of the least squares fit of

Eq (S4) in Supplementary Methods in S1 Text, using fch = 0.0108 (S3 Table). The D = 0 case is

plotted (black dotted line) to show that if there was no dilution effect the EA-IRMS and SIMS

results would be expected to give the same results. The dilution effect means that the SIMS

measurements provide an underestimate of the true, undiluted f.
(TIF)

S3 Fig. Histograms for the SIMS results of bacterial cells grown in axenic cultures. Histo-

gram plots showing the dilution-corrected SIMS results for the single cell measurements of f.
The number of cells (n) analysed and included in the calculation of the mean is indicated for

each time point. The red stars indicate the points that were considered outliers and therefore

excluded from the calculation of the mean. These small number of data points (i.e. 4 points for

the 6 h sample from the no glycerol culture and 1 point for the 6 h sample from the 0.001%

glycerol culture) with a relatively high atomic fraction of 13C could be the result of experimen-

tal artefacts like sub-resolution organic matter debris or cross-contamination between sam-

ples, see Supplementary Methods in S1 Text for details. Note that different scales have been

used for the vertical axes.

(TIF)

S4 Fig. Histograms for the SIMS results of algal and bacterial cells grown in co-culture.

Histogram plots showing the dilution-corrected SIMS results for single cell measurements of

the atomic fraction of 13C for algal and bacterial cells at different time-points of the co-culture.

The number of cells (n) analysed and included in the calculation of the mean is indicated for

each time point. The red bars indicate the algal cells that were considered ‘outliers’ and not

included in the calculation of the mean because they were close to natural abundance and

therefore considered inactive. The red stars indicate the of bacteria data points that were con-

sidered outliers and therefore excluded from the calculation of the mean. These outliers (i.e. 1

point for the 6 h sample and 3 points for the 48 h sample) could be the result of experimental

artefacts like sub-resolution organic matter debris or cross-contamination between samples,

see Supplementary Methods in S1 Text for details. Note that different scales have been used for

the vertical axes.

(TIF)

S5 Fig. Parameter optimisation for a simplified co-culture model. Fit of data obtained for

co-cultures of C. reinhardtii metE7 and M. japonicum. Each row of plots corresponds to an

independent experiment, with the first column the evolution of algal density, in the second

column the evolution of bacterial density and in the third column the evolution of vitamin

concentration determined by a bioassay, as described in [71]. The mean of each variable

appears as a continuous line, with the shaded region showing the standard deviation for 8, 4

and 5 replicates for experiment 1, 2 and 3 respectively. The global fit with a unique set of

parameters for the three independent experiments is shown in black dashed lines. The hori-

zontal axes show time in days.

(TIF)

S6 Fig. Logistic growth fit for M. japonicum. Data taken from [40] for M. japonicum grown

axenically in 0.1% glycerol was fit with the logistic growth equation b = Kb/(1+M e−r t), with

M = 2.8×104, r = 3.9 and carrying capacity Kb = 1.3×109. No error bars are shown because the

fractional errors for the data points were within 20%, and appear smaller than a data point on
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the graph.

(TIF)

S7 Fig. Fit for the exponential growth rate of bacteria. Plotted points show the viable count

results for the growth of M. japonicum in the co-culture (black) and in the axenic culture

grown without glycerol (grey). The dotted lines indicate the results for the exponential growth

fit using equation b = b(0) exp(μB t), giving b(0) = 1.2±0.01×107 cfu mL−1 and μB = 0.022

±0.005 h−1 for the co-culture and b(0) = 1.5±0.01×107 cfu mL−1 and μB = 0.012±0.004 h−1 for

the axenic culture.

(TIF)

S8 Fig. For axenic bacteria the DIC uptake parameter and bacterial growth efficiency

depend on the initial exponential growth rate. (A) The relationship between the DIC uptake

parameter X and the initial exponential growth rate μB = μb co(0)/(co(0)+Kc) was approximated

with a logarithmic fit using equation X = m ln(μB)+n, giving m = 0.0167±0.0004 and

n = 0.0785±0.0013, with R2 = 0.999. (B) The relationship between the bacterial growth effi-

ciency η and μB was approximated with a logarithmic fit using equation η = p ln(μB)+q, giving

p = −0.10±0.12 and q = 0.12±0.36, with R2 = 0.282.

(TIF)

S9 Fig. The pre-labelling, axenic culture of C. reinhardtii metE7. (A) Example images of the

atomic fraction of 13C, f, obtained by SIMS analysis of algal cells sampled at different time-

points of the pre-labelling, axenic culture grown with 5mM NaH13CO3. The colour map shows

the scale, starting at natural abundance. (B) Histogram plots showing the dilution-corrected

SIMS results for single cell measurements of the atomic fraction of 13C in individual algal cells.

The number of cells (n) analysed and included in the calculation of the mean is indicated for

each time point. The red bars indicate the algal cells that were considered ‘outliers’ and not

included in the calculation of the mean because they were close to natural abundance and

therefore considered inactive. Note that different scales have been used for the vertical axes.

(C) The mean atomic fraction of 13C for the dilution-corrected SIMS measurements (dia-

monds). Error bars, showing the standard error, are small compared to the size of the plotted

points. (D) Algal growth measured using viable counts (cfu mL−1), plotted on a logarithmic

scale as the mean and standard error of two measurements (diamonds). The results of the

model fit, with parameters and initial conditions as specified in Table 1, are also plotted for (C)

fa and (D) a.

(TIF)

S10 Fig. Comparison of the SIMS results for the preliminary experiment, final experiment

and unlabelled control cultures. Preliminary SIMS results (grey circles) for the mean carbon

isotope fraction are compared with the results from the final experiment (black circles) for the

pre-labelling cultures of algae grown with 5 mM NaH13CO3, axenic cultures of bacteria grown

with 0.1% glycerol and 5 mM NaH13CO3 and the algal-bacterial co-culture. Error bars corre-

spond to the standard errors. In the preliminary experiment, control cultures of axenic algae

and a co-culture were grown with 5 mM unlabeled NaHCO3 and a sample at 48 h was taken

and analysed using SIMS to show that the cells remained at natural abundance (red circles).

For algal cells, the preliminary experiment only obtained one SIMS measurement, whereas for

the final experiment the values plotted represent the mean value for algal cells where the single

cell values are the mean of 2–3 repeated SIMS measurements taken at the same location on the

filter. The SIMS results presented here have not been dilution-corrected. Note that different

scales have been used for the vertical axes.

(TIF)
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S11 Fig. Growth and B12 uptake of C. reinhardtii metE7 in axenic cultures containing

7.5×10−14 mol/mL B12 (i.e. 100 ng/L). (A) Growth of C. reinhardtii metE7 in Tris minimal

medium + 7.5×10−14 mol/mL B12 measured by counting cell density using a Z2 particle count

analyser (Beckman Coulter Ltd). (B) Total B12 measured in the cells and media of the C. rein-
hardtii metE7 cultures. (C) B12 remaining in the media of the C. reinhardtii metE7 cultures. A

bioassay, as described in [71], was used to quantify the B12 concentration, which measured the

growth of a B12-dependent Salmonella typhimurium strain AR3612 when incubated with the

sample of interest. Note that the B12 remaining in the media reaches a low point of roughly

1×10−14 mol/mL B12 after 2 days. Why this does not decrease to zero is unclear. Perhaps the

affinity of the algal B12 uptake system is not high enough, or the bioassay overestimates B12,

particularly when there is a lot of algal debris in the media. Error bars: standard deviation

(n = 4).

(TIF)

S12 Fig. The effect of C. reinhardtii metE7 on the growth of M. japonicum. M. japonicum
was cultured in 20 mL TP medium + 0.001% glycerol at 25˚C and 12-hour light (100 μE�m-2�s-

1) and 12-hour dark cycles with 120rpm rotational shaking. After M. japonicum cultures

reached stationary phase, 2 mL of 1) stationary phase metE7 cultured in the same manner but

with 200 ng�L-1 B12 instead of 0.001% glycerol was added to one set of M. japonicum cultures

(black solid line), 2) the same metE7 culture filtered through a 0.4 μm filter (to remove the

cells) was added to the second set (black dashed line), 3) TP medium was added to the third set

(grey line). M. japonicum CFUs were measured before and after addition of these cultures.

Error bars = standard deviation, n = 3.

(TIF)

S1 Table. Trace elements adapted from (Kropat et al. 2011). The concentrations of the dif-

ferent chemical components for each of the seven stock solutions of trace elements for the

Tris-minimal media used in this work. For 1 L of Tris-minimal media, 1 mL of each solution

was added.

(DOCX)

S2 Table. List of cultures. A complete list of the cultures grown as part of the stable isotope

labelling experiments described in this work. Tris-minimal growth medium was used for all

cultures with the addition of B12, glycerol and sodium bicarbonate as listed in this table. These

cultures were grown in 2 L conical flasks except for the pre-cultures, which were grown in 1 L
flasks. Note that for B12 concentrations 1 ng/L = 7.5×10−16 mol/mL.

(DOCX)

S3 Table. The dilution factor results. The dilution factor, D, was obtained from a least

squares fit of Eq (S4) in Supplementary Methods in S1 Text using the curve fitting application

in Matlab and with fch = 0.0108. This table lists the results for D, the 95% confidence bounds,

the number of points in the fit, n, and the least square displacements, R2. For bacteria, the fit

was carried out using only data from axenic cultures.

(DOCX)

S4 Table. C-N content and carbon yield (Ya,c and Yb,c for algae and bacteria respectively).

Summary of the EA-IRMS results for the carbon and nitrogen content and the carbon yield

for the alga C. reinhardtii metE7 and bacterium M. japonicum. The table gives the mean, stan-

dard error and the number of samples included in the mean (n).

(DOCX)
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S5 Table. Fitting intervals for the parameter optimisations. These were the fitting intervals

used for the various free parameters and free initial conditions of the parameter optimisations

run for axenic algae, axenic bacteria and the co-culture. When units are not specified the

parameter/initial condition is in dimensionless units. The fitting intervals for ϕs, η and X came

from their definition requiring these parameters to be between 0 and 1. Other fitting intervals

were chosen to ensure that the parameter optimisation results were reasonable when consider-

ing their biological interpretation. In particular, the choice of fitting intervals was informed by

the physiologically relevant parameter ranges for the mutualistic association of M. japonicum
and L. rostrata provided by (Peaudecerf et al. 2018).

(DOCX)

S6 Table. Non-dimensional model parameters. The non-dimensional model parameter defi-

nitions and estimated values for C. reinhardtii metE7 and M. japonicum grown both axenically

and in co-culture.

(DOCX)

S7 Table. Culture specific model parameters and initial conditions for axenic bacteria.

Model parameter values for the axenic cultures of M. japonicum grown with different concen-

trations of glycerol determined by a global parameter optimisation performed for the four axe-

nic cultures of M. japonicum grown with 0.1%, 0.01%, 0.001% and no glycerol. The global free

parameters were μb and Kc, which were constrained to have the same value for all four cultures.

The free parameters and initial conditions that were permitted to be different for the different

cultures were η, X and b(0). The initial DOC concentration co(0) for the culture grown without

glycerol was also included as a free parameter. The fixed initial conditions were ĉið0Þ ¼

5; v̂ð0Þ ¼ 0; fb(0) = 0.0108, fo(0) = 0.0108, and fi(0) = 0.65, since for the experiments it was

assumed that the DIC was in excess, initially there was no B12 and the bacteria had natural

abundance, the glycerol was unlabelled and the atomic fraction of 13C in the DIC was taken as

the estimate obtained from the parameter optimisation for axenic algae (see Table 1). The

residual sum of squares for this global parameter optimisation result was 0.58, whereas when

respiration was not included in the model it was 2.24.

(DOCX)

S8 Table. Comparison of parameter optimisation results for the algal-bacterial co-culture.

Results of different parameter optimisation results for the co-culture between C. reinhardtii
metE7 and M. japonicum. The only free parameter was sc and the free initial conditions were

âð0Þ; b̂ð0Þ and ĉoð0Þ, with f̂ oð0Þ included as an additional free initial condition for fit 2. The

parameters ϕs = 0.9, η = 0.51 and X = 0.015 were estimated using results from axenic cultures as

specified in the text. All other parameters had values as specified in Table 1. The fixed initial con-

ditions were ĉ ið0Þ ¼ 5 (i.e. DIC concentration in excess), v̂ð0Þ ¼ 0 (i.e. initially no B12 in the

media), fa(0) = 0.59 and fa,p(0) = 0.65 (i.e. using model results for the pre-labelling, axenic culture

of algae, see text for details), fb(0) = 0.0108 (i.e. bacteria initially have natural abundance), and

fi(0) = 0.65 (i.e. from the parameter optimisation result for axenic algae, see Table 1).

(DOCX)

S1 Text. A file that includes the supplementary methods and supplementary results.

(DOCX)
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32. Behrens S, Lösekann T, Pett-Ridge J, Weber PK, Ng WO, Stevenson BS, et al. Linking microbial phy-

logeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed

reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl Environ Microbiol.

2008; 74(10):3143–50. https://doi.org/10.1128/AEM.00191-08 PMID: 18359832

33. Foster RA, Sztejrenszus S, Kuypers MMM. Measuring Carbon and N2 Fixation in Field Populations of

Colonial and Free-Living Unicellular Cyanobacteria Using Nanometer-Scale Secondary Ion Mass Spec-

trometry. J Phycol. 2013; 516:502–16. https://doi.org/10.1111/jpy.12057 PMID: 27007039

34. Raina JB, Clode P, Cheong S, Bougoure J, Kilburn MR, Reeder A, et al. Subcellular tracking reveals

the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria.

Elife. 2017;1–17. https://doi.org/10.7554/eLife.23008 PMID: 28371617

35. Finzi-Hart JA, Pett-Ridge J, Weber PK, Popa R, Fallon SJ, Gunderson T, et al. Fixation and fate of C

and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry.

Proc Natl Acad Sci. 2009; 106(15):6345–50. https://doi.org/10.1073/pnas.0810547106 PMID:

19332780

36. Samo TJ, Kimbrel JA, Nilson DJ, Pett-Ridge J, Weber PK, Mayali X. Attachment between heterotrophic

bacteria and microalgae influences symbiotic microscale interactions. Environ Microbiol. 2018; 20

(12):4385–400. https://doi.org/10.1111/1462-2920.14357 PMID: 30022580
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