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Abstract: In the past decades, borylation reactions have received extensive research interest and
have developed into effective tools in the synthesis of versatile organoboron compounds. Boranes
and symmetrical diboron compounds are commonly utilized as borylating reagents in these
transformations, especially in the borylation reactions of unsaturated bonds. More recently, several
types of unsymmetrical diboron reagents have been synthesized and applied in these borylation
reactions, allowing for complementary chemo- and regioselectivity. This review aimed to highlight
the recent development in this rising research field, focusing on new reactivity and selectivity that
originates from the use of these unsymmetrical diboron reagents.

Keywords: diboron reagents; borylation reaction; regioselectivity; metal-catalyzed; metal-free;
mechanistic study

1. Introduction

Organoboron compounds, especially boronic acids and their derivatives, have served as the
preeminent practical building blocks for the construction of molecular complexity and diversity for
decades [1]. Due to their versatile reactivity, they play a pivotal role as practical and fundamental
platform molecules in synthetic organic chemistry. It has been well documented that they can be
used as essential carbon nucleophiles in many types of transformations to introduce functional
groups. In addition to various reactions that build up carbon-carbon bonds (e.g., Suzuki–Miyaura
coupling) [2], a variety of carbon-heteroatom bonds can be constructed through the transformation of
organoboron compounds (e.g., via oxidation and Chan–Lam coupling) [3,4]. This has stimulated the
tremendous application of organoboron compounds in the preparation of synthetical intermediates,
organic materials, fine chemicals, and drug candidates. Meanwhile, the development of efficient
and convenient strategies to introduce boryl groups into readily-obtained organic feedstocks has
been persistently pursued [5–12]. Given the versatility of organoboron compounds, increasing their
accessibility from other readily available raw materials will not only enrich the library of borylated
structural units, but also provide opportunities for rapid diversification of the raw materials.

Typically, to access organic boronic acids or boronates, there are two main pathways (Scheme 1A).
One pathway takes advantage of the transformation of organic halides. The other relies on the addition
of B–H or B–M (boron–metal) bonds to unsaturated compounds, such as alkenes and alkynes.

Usually starting with the organic halides, highly reactive organometallic intermediates with C–M
(carbon–metal) bonds, such as C–Li and C–Mg bonds, are first prepared via halogen–metal exchanges.
Then, transmetalation with borates provides borylated products. Alternatively, C–M bonds can also
be obtained via oxidative addition processes. In 1995, Pd-catalyzed borylation of aryl halides was
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achieved by Miyaura et al. with bis(pinacolato)diborane (B2pin2) for the first time, by using the
intermediary C–Pd bonds [13]. Since then, many researchers have been committed to the development
of new synthetic routes to construct C–B bonds via similar strategies. The latter protocol has been used
more widely than the former organometallic pathway, due to its relatively milder reaction conditions
and higher functional group compatibility.Molecules 2018, 23, x FOR PEER REVIEW 2 of 17 
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Scheme 1. (A) Two main pathways for the preparation of organoboron compounds; (B) representative
borylating reagents.

When the starting materials are changed to unsaturated compounds, the addition of B–H bonds
of organoboranes can be achieved via stoichiometric [14,15] or catalyzed [16] hydroboration pathways.
More recently, many types of difunctionalization reactions [10–12] that incorporate boryl groups have
also been studied. In these cases, diboron reagents are usually utilized as the boryl source, involving
key intermediates that contain B–M bonds [17,18].

Various organoboron compounds can be accessed via the above-mentioned protocols. As for the
borylating reagents (Scheme 1B), symmetric diboron reagents, especially B2pin2, have been utilized
most frequently. Recently, unsymmetrical diboron reagents have been developed and applied in
many borylation reactions with unsaturated bonds. Interesting chemo- and regioselectivity has been
observed in many cases. These advances are highlighted herein, with a focus on clarifying the different
selectivity for these unsymmetrical diboron reagents.

2. sp2-sp3 Diboron Reagents

An excellent review article has been published on the preparation, properties, and application
of sp2-sp3 diboron reagents [19]. The following provides a brief summary of these types of reagents,
which will not only complement the context of this topic, but will also benefit an understanding of
borylation reactions.

Generally, monoquaternization of sp2-sp2 diboron reagents produces sp2-sp3 diboron reagents.
Such transformations have been explored for a long time since it is not only a research interest of
main group chemistry, but also the crucial conversion in the activation of various sp2-sp2 borylating
reagents [20,21]. The latter process is usually achieved via the assistance of additive, single Lewis
bases, which produces lengthened, polarized, and more reactive B–B bonds. In the in situ generated
sp2-sp3 diboron reagents, the nucleophilicity of the unquaternized sp2 boron atoms is enhanced, which
facilitates their transfer to active metal catalysts or organic electrophiles. Therefore, broadly defined,
sp2-sp3 diboron reagents can be seen as the active boryl source in most borylation reactions.

In 2009, a preactivated sp2-sp3 diboron reagent, pinacolato diisopropanolaminato diboron (PDIPA
diboron), was developed by Santos et al. [22], which contained mixed sp2-sp3 hybridized boron atoms
and a lengthened, active B–B bond. Such a structure removes the requirement for an external base in
the boryl transfer process. Santos and Marder et al. [23], applied this preactiviated reagent into the
copper-catalyzed β-boration of α,β-unsaturated conjugated compounds, including esters, ketones,
nitriles, and amides under ligand and base-free conditions (Scheme 2A). The sp2-hybridized boron
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moiety of PDIPA diboron was selectively transferred to the β-position of electron-poor olefins. Later,
the same group completed a copper-catalyzed regio- and stereoselective boration of electron-deficient
allenoates [24], thereby installing a boron moiety on the β-position with exclusive (Z)-double bond
geometry (Scheme 2B). In all of these cases, the Bpin moiety was selectively transferred.
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Scheme 2. Pinacolato diisopropanolaminato diboron (PDIPA diboron) in copper-catalyzed addition
reactions under representative reaction conditions. (A) Using α,β-unsaturated conjugated compounds
as the starting materials; (B) using allenoates as the starting materials.

More recently, taking advantage of the novel sp2-sp3 hybridized diboron reagent and rhodium
catalyst, the Aggarwal’s group achieved the first Markovnikov asymmetric hydroboration of
inactivated terminal alkenes (Schemes 2 and 3) [25]. In this reaction, very high levels of regioselectivity
and enantioselectivity could be obtained without the need for directing groups or electronically
biased alkenyl substrates. A variety of the functional groups were compatible with the obtained
reaction conditions, and many terminal alkenes underwent the hydroboration process easily, except for
1,1-disubstituted alkenes and conjugated diene. The reaction was designed as an interrupted diboration
reaction. Commonly, after the insertion of a Rh–B bond into carbon-carbon double bonds, a secondary
C–B bond could be introduced via σ-bond metathesis between the terminal Rh(III)–alkyl species and
an sp2-sp2 diboron reagent. This process was inhibited when an sp2-sp3 diboron reagent was used
because one of its boron centers was coordinatively saturated, rendering metathesis unfeasible. Instead,
a protodemetalation process occurred and created the desired Markovnikov hydroboration products.Molecules 2018, 23, x FOR PEER REVIEW 4 of 17 
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3. sp2-sp2 Diboron Reagents

When one of the two same masking groups of symmetrical diboron reagents, such as B2pin2,
is replaced by another bidentate ligand, an unsymmetrical sp2-sp2 diboron reagent is obtained. In
this case, the two boryl moieties of the reagent will be different and, consequently, its applications in
different borylation reactions will have to deal with the selectivity problems. These transformations
will be discussed according to the specific types of reactions below.

3.1. Addition Reactions: Diboration

The Bsp2–Bsp2 hybridized unsymmetrical diboron reagent Bpin–Bdan (pinacolato-1,8-
diaminonaphthalenato diboron) was developed by Suginome et al., who applied this reagent into the Ir-
or Pt-catalyzed addition reactions of alkynes [26]. This diboration transformation yielded differentiated
1,2-diboronylalkenes, with Bdan groups incorporated into the terminal carbon regioselectivity
(Scheme 4A). It is worth mentioning that the regioselectivity of the reactions stayed high, regardless
of the variation of the electronic and steric factors in the alkynes. The electron-withdrawing and
-donating functional groups on the aryl groups were well-tolerated. The 2-thiophenyl and aliphatic
terminal alkynes also resulted in corresponding regioselective products.Molecules 2018, 23, x FOR PEER REVIEW 5 of 17 
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Scheme 4. (A) Using unsymmetrical diboron reagent Bpin–Bdan in the Ir- or Pt-catalyzed
diboration of alkynes with Bpin–Bdan; (B) The diborylated compound using in the Suzuki-Miyaura
coupling reaction.

In addition, the two incorporated boryl moieties, Bpin and Bdan, could be easily differentiated
in the following Suzuki-Miyaura coupling reactions, where Bpin, at the internal position, reacted
preferentially (Scheme 4B). Such selectivity was contrary to the situation when both boryl groups were
Bpin units.

During the preparation of this manuscript, Huang, Liu, and Peng disclosed a similar diboration
process of terminal alkyl alkynes [27]. In this approach, no noble catalyst was used, and LiOH
was utilized as the catalyst. A highly regio- and stereoselectivity was observed. Two boryl groups
of Bpin–Bdan were incorporated into carbon-carbon triple bond in cis fashion. Unlike the Ir- or
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Pt-catalyzed approach, the Bdan moiety was incorporated at the internal position. In spite of
this difference, the prior reactivity of Bpin in the Suzuki-Miyaura coupling remained unchanged.
Trisubstituted alkenes could be obtained via the chemoselective sequential cross-coupling reactions
(Scheme 5).
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Scheme 5. LiOH-catalyzed diboration of alkynes and its application.

Uchiyama et al. described an unprecedented trans-selective diboration reaction of propargylic
alcohols through a pseudo-intramolecular reaction [28]. Heteroatoms were installed on the acetylene
skeleton to coordinate and activate B–B bonds of diboron reagents, in order to reduce activation energy.
The propargyl alkoxides were first prepared by deprotonation between propargyl alcohols and bases.
The interaction between the formed anion and a diboron compound allowed the direct diboration of
the C-C triple bond without any catalyst, creating a product containing the oxaborole ring unit. When
Bpin–Bdan was used as the borylating reagent, the reaction produced the vinyldiboronates in a stereo-
and chemoselective manner (Scheme 6).
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In 2017, Santos et al. reported a substrate-assisted, transition-metal-free diboration reaction of
alkynamides with Bpin–Bdan (Scheme 6) [29]. The installation of an amide directing group was used
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to control selectivity. The diboration transformation proceeded in a highly regio- and stereoselective
fashion, and exclusively produced trans-vinyldiboronates. Bdan and Bpin were installed at the α- and
β-carbon atoms of alkynamides, separately, in moderate to excellent yields, whose chemoselective
arylation would produce densely-functionalized alkenes.

A density functional theory (DFT) study was performed to probe the reaction mechanism.
Deprotonation of N–H in alkynamides with sodium hydride generated the charged Lewis base
A, a naked anion with the metal counterion chelated by a crown ether. Thus, the difference in Lewis
acidity of the two boron atoms in Bpin–Bdan could facilitate the selective complexation of base A to
the Bpin moiety. With such an assistive effect, the transfer of the Bdan group to the α-carbon atom was
favored (relative 0.0 kcal/mol), compared with the more energy-demanding β-carbon attack pathway
(16.2 kcal/mol). Finally, an intramolecular bind between the resulting anion and Bpin produced the
target product.

In addition to Bpin–Bdan, unsymmetrical Bpin–BMes2 could also be employed in the diboration
of alkynes, which was disclosed by Yamashita et al. in 2016 [30]. A simple treatment of the aromatic
and aliphatic terminal alkynes with Bpin–BMes2 in toluene resulted in two cis-isomers of diborated
products. In the presence of a catalytic amount of nBuLi, the selectivity was altered and trans-diboration
products resulted. When internal alkynes were used, tetrasubstituted syn-diborylalkenes could be
obtained, in spite of lower reaction rates (Scheme 7).Molecules 2018, 23, x FOR PEER REVIEW 7 of 17 
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Scheme 7. Bpin–BMes2 in the diboration of alkynes.

In 2015, Santos et al. disclosed a platinum-catalyzed regio- and chemoselective diboration of
1,1-disubstituted allenes, using Bpin–Bdan as the borylating reagent and producing vinyl and allyl
boronates in good to excellent yields (Scheme 8) [31]. Chemoselective transfer of the Bpin moiety to
the internal sp-hybridized carbon atom was observed. The Bdan moiety was incorporated into the
terminal unsubstituted carbon atom. It should be noted that the ratios of several obtained isomers
could be adjusted and even overturned, depending on the structure of the starting materials (a choice
of catalyst and ligand combinations).

In 2015, Fernández et al. reported a diboration reaction of olefins using Bpin–Bdan, under
metal-free conditions (Scheme 9) [32]. Both terminal and internal alkenes were suitable starting
materials. When the former type of substrates was used, the Bdan moiety was incorporated into the
internal position with high regioselectivity preference. Mechanistically, Lewis acid-base adducts were
formed in the beginning via the interaction between the alkoxide anion and the one boron atom of
Bpin–Bdan to form the corresponding diborated alkenes. Due to the π-donation from the nitrogen lone
pair to the boron orbital in the Bdan moiety, the boron atom of the Bpin moiety has a stronger Lewis
acidity and, hence, a stronger affinity with alkoxide. Then, a selective nucleophile transfer was possible
to deliver Bdan to the olefins. As for the substrate scope, allylbenzene, vinylcyclohexane, chain internal
olefins, cis-3-hexene, and cyclic olefins were all suitable starting materials. Furthermore, the addition
of cyclic olefins with Bpin and Bdan moieties took place in syn fashion. However, vinylarenes failed to
undergo the diboration process.
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Scheme 9. Diboration of alkenes.

Fernández et al. also studied the diboration reaction of diazo compounds, which were prepared
in situ from N-tosylhydrazones of aldehydes and ketones, using Bpin–Bdan [33]. After the metal-free
process, the different boryl moieties of the mixed diboron reagent were both connected to the former sp2

carbon atoms of the diazo compounds, producing gem-diborated products (Scheme 10). A concerted,
yet asynchronous reaction pathway was proposed based on DFT calculation.

In 2017, taking advantage of a cyclohexyl-substituted pyridine(diimine) cobalt methyl complex,
Chirik et al. described the 1,1-diboration of readily available terminal alkynes using diboron
reagents (Scheme 11) [34]. Such an addition reaction contrasted all other previously reported
transition metal-catalyzed 1,2-diboration reactions. In this reaction, 1,1-Diboron olefins containing
two identical or two different boryl groups could be obtained, using symmetrical (Bpin–Bpin) or
unsymmetrical (Bpin–Bdan) diboron reagents separately. When using the mixed diboron reagent, the
reactions proceeded efficiently and stereoselectively to produce trisubstituted olefins. The resultant
chemically-differentiated boron substituents allowed for selective Suzuki-Miyaura coupling reactions,
leaving Bdan intact.
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3.2. Addition Reactions: Hydroboration

Fernández, Carbó and Cid studied the application of Bpin–Bdan in organocatalytic β-boration
of α,β-unsaturated carbonyl compounds in 2014 (Scheme 12) [35]. In the presence of a suitable
base, selective activation of Bpin–Bdan with alkoxide was achieved, giving an MeO−→Bpin–Bdan
adduct, which was demonstrated to be favorable compared with the MeO−→Bdan–Bpin adduct both
experimentally and theoretically. Then, the Bdan moiety was directly transferred to the β-positions of the
activated C–C bonds as a formal boron nucleophile with regioselectivity. This selectivity was also derived
from the Lewis acidity difference of the two boron atoms, as mentioned above. The same strategy was
then applied to the β-boration of α,β-unsaturated imines formed in situ [36]. An asymmetric version of
this type of transformation was also described via the assistance of chiral phosphines.
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Scheme 12. Organocatalytic β-boration of α,β-unsaturated carbonyl compounds with Bpin–Bdan.

Copper-catalyzed borylation reactions of unsaturated compounds, such as alkenes, alkynes,
and arynes, have been well-developed as a relatively cheap method to incorporate boryl groups.
A variety of reactions involving the addition of boryl groups, including hydroboration, diboration,
borylstannylation, and carboboration, have been studied, which enabled a quick access to highly
functionalized organoboron compounds.

Commonly, borylcopper species A, containing a Cu–B single bond, is considered to be the active
catalyst in borylation reactions [12]. Subsequent insertion of a carbon-carbon triple or double bond into
the Cu–B bond generates a β-boryl organocopper species B, which is followed by a reaction with an
electrophile to produce the intermediate C, which then reacts with B2pin2 to accomplish the catalytic
process. When Bpin–Bdan is used as the borylating reagent in such reactions, a Cu–Bdan species will
be generated via σ-bond metathesis first, due to the selective interaction between the more Lewis acidic
Bpin moiety and the alkoxy moiety of the precatalyst, Cu–OR. The transformation will add the Bdan
unit to the unsaturated bonds (Scheme 13). More importantly, the Cu–Bdan species, in combination
with suitable catalysts and ligands, is able to provide completely different regioselectivity compared
with the traditional the Cu–Bpin species. This will be detailed hereinafter.
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In 2014, Yoshida et al. developed the first general α-selective formal hydroboration of terminal
alkynes (Scheme 14) [37]. Accordingly, diverse branched alkenylboron compounds were obtained
exclusively. The use of Bpin–Bdan as the boryl source in the presence of a Cu–NHC (N-heterocyclic
carbene) catalyst was essential to convert the common β-selectivity with B2pin2. Regardless of the
electronic and steric nature of terminal alkynes employed, Markovnikov-type hydroboration products
could be obtained in high yield and with high regioselectivity.
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Scheme 14. Cu-catalyzed hydroboration of terminal alkynes.

Later, another protocol for hydroboration of alkynes with Bpin–Bdan was disclosed by Santos et
al. (Scheme 15) [38]. In this case, activated alkynes, such as alkynoates and alkynamides, were utilized.
Aqueous and open-air conditions made this copper(II)-catalyzed process operationally feasible and
simple. The reaction also proceeded in a remarkably chemo-, regio-, and stereoselective manner,
producing (Z)-β-Bdan enoates and enamides in good-to-excellent yields.
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3.3. Other Types of Addition Reactions

As mentioned above, the Cu–Bdan species could be added to terminal alkynes in a regioselective
manner, which was inverse to the selectivity of the Cu–Bpin species. Taking advantage of this
property, Yoshida et al. performed a Cu-catalyzed, three-component coupling reaction, which
created borylstannylated products of alkynes (Scheme 16) [39]. Inverse regioselectivity was observed
when using Bpin–Bdan, compared with B2pin2 [40]. Bu3SnOMe was used to supply the stannyl
group and to capture the Cu–C bonds as an electrophile, as indicated in Scheme 13. A variety of
cis-boryl(stannyl)alkenes could be easily prepared from terminal alkynes. In addition, allenes were also
used as starting materials, and also underwent regio- and stereoselective borylstannylation reactions
to provide (Z)-1-stannyl-2-boryl-2-alkenes. In this case, the Bdan moiety was transferred to the internal
sp-hybridized carbon atom of allenes.
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In 2014, Miura et al. performed a copper-catalyzed three-component reaction, which achieved the
aminoboration of bicyclic alkenes with diboron reagents (B2pin2 or Bpin-Bdan) as the nucleophilic
boron source and hydroxylamines as the amination reagent [41]. Two effective catalytic systems that
promote this transformation were described after extensive screening of reaction variables without the
formation of ring-opened byproducts. Various bicyclic alkenes, including oxa- and azabicycloalkenes,
were suitable starting materials for this stereoselective aminoboration transformation. When B2pin2

was used, the difunctionalized products were less stable in several cases, which made the purification
step problematic. To solve this problem, the crude materials were converted into the more stable Bdan
derivatives, enabling the corresponding products to be isolated by column chromatography. Several
examples that directly harnessed Bpin-Bdan as the borylating reagent were also explored. Similarly,
the Bdan moiety was selectively transferred to alkenes (Scheme 17).

Later, the same authors described a Cu-catalyzed aminoboration of unactivated terminal
alkenes [42]. Interestingly, regioselectivity could be well regulated by a suitable combination of
employed ligands and diboron reagents. According to the data on reaction condition screening, in the
presence of B2pin2, the change of ligands alone could result in opposite regioselectivity. As indicated
in Scheme 18, with isolated Cu(xantphos)Cl and NaOtBu as the precatalyst and base, respectively, the
terminally-borylated products have good yield with high regioselectivity (93:7). Conversely, a series of
NHC ligands primarily led to the opposite regioisomer and IPr produced the highest regioselectivity
(4:96). However, the yield of such an aminoboration reaction was poor (24%). When the borylating
reagent was replaced with Bpin–Bdan, the reaction was improved significantly with a greatly increased
yield and the maintenance of the unique regioselectivity. With these two conditions, a variety of
valuable β-borylalkylamines were obtained regiodivergently.
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Scheme 18. Regiodivergent Cu-catalyzed aminoboration of terminal alkenes.

In 2016, another aminoboration of alkenes reaction was described by Miura et al. [43]. In
this case, alkenyl 1,8-diaminonaphthyl (DAN) boronates were used as the starting materials
(Scheme 19). The reaction proceeded in a regio- and stereoselective fashion to form the corresponding
β-boryl-α-aminoboronic acid derivatives. The exploration began with (E)-2-octenyl DAN boronate,
B2pin2, and O-benzoyl-N,N-dibenzylhydroxylamine. An extensive screening of reaction parameters
demonstrated that the aminoboration proceeded smoothly at room temperature in the presence of a
combination of Cu(OAc)2, 1,3-Bis(diphenylphosphino)propane (dppp), and LiOtBu. A high syn/anti
diastereoselectivtiy (99:1) was observed. Due to the instability of the obtained products, in situ
oxidation by NaBO3·H2O was applied to facilitate the isolation of products. Another solution to solve
the instability problem relied on the utilization of Bpin–Bdan. The standard Cu(OAc)2/dppp catalyst
system used for B2pin2 was also suitable for Bpin–Bdan. Then, the more stable and easily handled
Bdan moiety was introduced to the products, directly isolating the formed β-Bdan-α-aminoboronic
DAN boronates.
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In 2017, Yoshida et al. described the first Cu-catalyzed Bdan-installing carboboration reaction
using Bpin–Bdan [44]. Under CuCl/dppf (1,1′-Bis(diphenylphosphino)ferrocene) catalysis, a direct
and regioselective approach to produce alkylboron compounds was established via three-component
reactions (Scheme 20). As for the substrate scope, carbon-carbon double bonds attached to silicon
atoms exhibited superior reactivity. Various substituted vinylsilanes underwent the carboboration
reactions in a chemoselective and regioselective fashion. In addition, a vinylborane was also found to
be a suitable starting material, and produced 1,2-diborylalkane bearing differentiated masked Bdan
and Bpin boryl moieties.
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4. Conclusions

Unsymmetrical diboron reagents, whether sp2-sp3 or sp2-sp2 hybridized, have been shown
to be suitable borylating reagents in a variety of addition reactions, such as hydroboration and
difunctionalization of alkenes or alkynes. Both metal-catalyzed and metal-free approaches for
these transformations have been well established, offering diverse, densely functionalized alkyl
and alkenyl boronic derivatives. Notably, the different regioselectivity of unsymmetrical diboron
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reagents compared with that of common symmetrical diboron reagents shows the potential of these
borylating reactions to complement the existing borylating methods. In spite of these achievements,
some problems still need to be addressed. First, the most commonly used Bpin–Bdan reagent usually
transfers its Bdan to any unsaturated bonds. The obtained products will require additional deprotection
steps to continue the transformation to relatively active boron species. Therefore, the development
of the new masking groups is still very useful. In addition, the mechanism of the above-mentioned
reactions still needs to be clarified, such as the driving force of the observed regioselectivity, and the
cooperation and interaction of catalysts, ligands and substrates.
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