
Phylodynamics of the Emergence of Influenza Viruses
after Cross-Species Transmission
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Abstract

Human populations are constantly exposed to emerging pathogens such as influenza A viruses that result from cross-
species transmissions. Generally these sporadic events are evolutionary dead-ends, but occasionally, viruses establish
themselves in a new host that offers a novel genomic context to which the virus must adjust to avoid attenuation. However,
the dynamics of this process are unknown. Here we present a novel method to characterize the time it takes to G+C
composition at third codon positions (GC3 content) of influenza viruses to adjust to that of a new host. We compare the
inferred dynamics in two subtypes, H1N1 and H3N2, based on complete genomes of viruses circulating in humans, swine
and birds between 1900–2009. Our results suggest that both subtypes have the same fast-adjusting genes, which are not
necessarily those with the highest absolute rates of evolution, but those with the most relaxed selective pressures. Our
analyses reveal that NA and NS2 genes adjust the fastest to a new host and that selective pressures of H3N2 viruses are
relaxed faster than for H1N1. The asymmetric nature of these processes suggests that viruses with the greatest adjustment
potential to humans are coming from both birds and swine for H3N2, but only from birds for H1N1.
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Introduction

Influenza outbreaks remain a major life-threatening condition

that generates a serious burden on public health, accompanied by

acute economic losses on a global scale [1]. The etiological agent

of these outbreaks, the influenza A virus, circulates in a relatively

wide range of hosts such as humans, pigs and birds [2], with wild

waterfowl usually considered to be the reservoir host [1]. Because

of the physical proximity of these different hosts, spillovers occur

quite frequently. Although past pandemics in the human

population were caused by such transmissions from one animal

species to another [3,4], host changes rarely lead to epidemics in

the new host [5]. The majority of these cross-species transmissions

actually ends up as evolutionary dead-ends for the virus [6], but

they occasionally lead to stable lineages that establish themselves in

the new host [7].

A key requirement for the emergence of such stable viral

lineages is circumventing host restriction [8]. Influenza A viruses

are known to have mechanisms in place that limit cross-species

transmission, since for instance all viral subtypes are not found in

all potential hosts. Recent studies have shed some light on the

nature of these mechanisms. Specifically, out of up to 14 protein-

coding genes distributed on eight single-stranded negative-sense

RNA segments, the three polymerase subunits (PB2, PB1 and PA)

and the nucleoprotein (NP) that form the ribonucleoprotein (RNP)

have been argued to be closely involved in host restriction [2].

Similarly, the two surface antigenes hemagglutinin (HA) and

neuraminidase (NA) influence viral host restriction [9]. Out of the

six other products, three of them, PB1-F2 [10], PB1-N40 [11] and

PA-X [12], are not found in all viruses and the four others are

splice variants matrix proteins (M2/M1 and M42 in some strains

[13]) and nonstructural proteins (NS2/NS1). Because both M1

and NS2 are involved in RNP transport out of the nucleus, it could

also be argued that they need to be adapted to recognize the host

machinery, and therefore that they participate in host restriction.

To some extent then, previous studies have shown that almost all

influenza A genes, when studied independently, are involved in

host restriction. In a pioneering study, dos Reis et al. focused on the

sites undergoing changes in selective pressures during cross-species

transmission to identify host-specific patterns of adaptation across

the genome of H1N1 viruses [14]. While their approach led them

to discard 93% of the sites prior to analysis (as no evidence of host

adaptation could be found at these sites), hereby reducing a whole-

genome analysis to 294 amino acid sites, it can be posited that a

change of host leaves a more pervasive signature across the entire

viral genome. For instance, codon deoptimization, where sub-

optimal codons replace the original codons, has been suggested as

a vaccine-development strategy [15]. Conversely, if viral hosts

have different codon biases, it can be expected that a host change

will affect viral codon usage, and therefore the G+C composition

at third codon positions (GC3) of all the viral genes. As previous

studies have shown that influenza viruses do indeed exhibit host-

specific GC3 contents ( e.g., [16]), these viruses must be undergoing

a GC3 adjustment after a host change – we here use the phrase of

viral adjustment to describe this process, as GC3 change following a

host change is not necessarily adaptive [17]. However, the

dynamics of viral adjustment are completely unknown. In
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particular, it is unknown (i) if this process depends on the direction

of host change, that is whether the virus leaps e.g. from an avian to

a human host or from human to swine, (ii) if this process depends

on the direction of host change, or (iii) if there is some variation

among influenza A subtypes.

To address these questions, we developed a novel procedure to

estimate the dynamics of the emergence of stable influenza A

lineages following a cross-species transmission. Based on a

phylogenetic approach, we reconstructed the history of both host

and GC3 changes in the two most human-prevalent influenza A

subtypes, H1N1 and H3N2, focusing on three hosts in which both

of these subtypes have established themselves: human, avian and

swine. With the analysis of almost 100 years of complete genomes

collected in North America, we show that two genes, NA and NS2,

adjust to a new host relatively quickly. We also show that the

adjustment process is asymmetric among hosts, with viruses of

avian origin adjusting the fastest. Finally, while the ranking of fast-

adjusting genes is the same for both H1N1 and H3N2 subtypes,

selective constraints of H3N2 are relaxed faster than for H1N1

viruses.

Results and Discussion

Sequence clustering
In order to estimate viral adjustment times in influenza A

viruses after a host change, we retrieved the sequences of complete

genomes of H1N1 and H3N2 subtypes from the Influenza Virus

Resource [18]. We specifically downloaded all the genomes

collected in North America (Mexico, the USA and Canada)

between 1900 and 2009. Only one pandemic H1N1/2009

genome was included in this study [19]. This lead to an average

of 1916 H1N1 and 1050 H3N2 sequences per gene.

After alignment, the size of the data sets was reduced to make

them amendable to the Bayesian relaxed molecular clock analyses.

Pairwise genetic distances were computed and clustered with the

nearest neighbor algorithm; clusters of sequences similar at the

99% level were formed and a sequence representative of each

cluster was drawn (see Methods for details and constraints). This

clustering reduced the size of the data to more manageable

numbers with an average of 75 H1N1 and 43 H3N2 sequences

(Table S1 in File S1). These data sets therefore stand as

representative samples of the exhaustive whole-genome diversity

deposited in GenBank (as of January 2010). This reduction step

affects the hypothesis underlying the coalescent process used as a

prior distribution in the estimation of divergence times used below.

However, since we (i) did not attempt to reconstruct ancestral

demographics (viral incidence), (ii) used the same process to

analyze both subtypes and (iii) expected that most adjustment

periods did not occur following recent host changes, this reduction

step is unlikely to bias the comparison of adjustment dynamics of

H1N1 and H3N2 viruses.

H1N1 and H3N2 subtypes evolve with extensive
reassortment

Under this general framework, we reconstructed dated phylo-

genetic trees for all ten ’canonical’ protein-coding genes of

influenza viruses [20,21] of the H1N1 (Fig. S1-S10 in File S1)

and H3N2 subtypes (Fig. S11-S20 in File S1) under a relaxed

molecular clock [22]. Note that we assumed a single (time-

homogeneous) model of evolution instead of using nonhomoge-

neous models [23]; this choice could potentially impact the

estimated trees, but a number of empirical studies have now shown

that this concern may not be warranted ( e.g., [4,7]). Because the

natural host of influenza viruses is considered to be avian [24], we

expected that bird viruses would diverge first in all estimated trees.

We also expected to find similar phylogenies for all ten genes

within a given subtype, as the data come from the same individual

viruses. However, the trees estimated here show a variety of

scenarios, all with a posterior probability of 1 at the root node.

Only PB2 and PA consistently show an avian-first split across the

two subtypes, along with NP in H1N1 and NA and NS2 in H3N2

subtypes (Fig. S1-S20 in File S1). Known reassortment events are

also recovered here, as in the case of A/Saskatchewan/5131/

2009(H1N1), one of the two ’’H1N1_Canada_Human_2009’’

genomes in Fig. S1-S10 in File S1, which is a reassortant virus for

which: (i) HA and NA are derived from the non-pandemic A/

Brisbane/59/2007 human virus, as seen in Fig. S4 and S6 (File

S1), (ii) PB2, PB1, PA, NP, M and NS are of swine origin (Fig. S1-

S3, S5 and S7-S10 in File S1) and (iii) that this virus emerged

during the late 1990’s; all these results are consistent with the

original study [19], which therefore suggests that our results are

not data-dependent. These results nonetheless highlight that

extensive amounts of reassortment (exchange of RNA segments

between viruses) exist, at least within each subtype.

Some genes evolve faster in H3N2 than in H1N1
A by-product of the relaxed molecular clock models used here is

the estimation of gene-specific absolute rates of evolution. Figure 1

shows that these rates are systematically larger for H3N2 than for

H1N1 viruses, with a genome-wide average of 2:38|10{3 (SEM

~1:48|10{4) and 2:01|10{3 (SEM ~2:33|10{4) substitu-

tions/site/year, respectively, but not significantly so (test on the

intercept: t8~0:67, P~0:5245). These estimates are very close to

those previously reported [25] or with earlier knowledge of relative

rates of evolution of H3N2 and H1N1 viruses [26]. The rate

difference between the two subtypes appears to be significant (at

the 5% level) only for three genes (HA, NA and NS2; Fig. 1).

Because H3N2 has been the dominant subtype in human

populations for the 40 years preceding 2009, it can be posited

that these genes are under stronger selective pressure than in

H1N1 subtypes.

The most salient feature of Fig. 1 is the linear relationship, on a

loge - loge scale, between the gene-specific rates of evolution of

H3N2 and H1N1 subtypes (P~6:8|10{5; R2~0:66) which

indicates that the fast-evolving genes are the same in both

subtypes. The simplest explanation, mechanistic in nature, would

be that each gene accumulates substitutions at a gene-within-

subtype specific rate, that is, follows a strict molecular clock [27].

However, this hypothesis is strongly rejected (Table S2 in File S1).

An alternative explanation is that the fast-evolving genes (HA and

NA) are expressed at the surface of the viral particle and are

directly involved in the immune escape of the virus, while the slow-

evolving genes all have internal functions [25]. NS2, which is also

a fast-evolving protein, interacts directly with a host protein [28]

and might therefore be involved in an ’arms race’ with the host,

leading up to high rates of evolution.

Estimation of GC3 adjustment times
All the results above are consistent with previous reports, but

they do not inform us on the time it takes for a virus to adjust to a

new host. We define this duration by the period delimited by two

events: a host change, followed by a change of viral GC3 content

in the new host. Host changes were mapped using a simple

maximum likelihood model [29,30] on the phylogenetic trees

estimated above. To ease computations, observed GC3 compo-

sitions were discretized (clustered) and, just like host changes,

mapped on the estimated phylogenetic trees. This process was

Timing Viral Adjustment after a Host Change
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repeated for each gene of the influenza A genome, in each

subtype.

Four remarks are necessary at this point. First, GC3 content is

often used to monitor viral codon optimization after a host change,

as in HIV-1 [31] and bacteriophages [32]. Furthermore, codon

usage has been shown to be host-specific in the case of influenza

viruses [16]. Here for instance, three human and swine data points

in PB2 of H1N1 are in the avian GC3 cluster (Fig. S22 in File S1),

and the phylogenetic analysis clearly demonstrates their recent

avian origin (Fig. S1 in File S1). Yet, a change in GC3 composition

does not necessarily reflect an adaptive process (see below). A

critical asset of our computational approach is that we do not

assume any adaptive process. Second, this process of GC3 change

following cross-species transmission is obviously gradual. Similar

processes have been documented both experimentally in HIV-1

[31] and computationally in bacteriophages [32], and no evidence

ever suggested any form of stepwise (instantaneous) adjustment.

Our discretization of the process can therefore be seen as a

heuristic, but one that makes the computation more straightfor-

ward than fitting a diffusion process and determining the point at

which e.g. 95% of the GC3 content has reached a new stationary

phase. Third, an alternative to reconstructing changes of GC3

clusters would have been to reconstruct the sequences of ancestral

genomes in order to compute GC3 contents on these ancestral

genomes. However, while accuracy of ancestral sequence recon-

struction can be high (w90%) with four amino acid sequences

[33], the actual performance of these methods with dozens of

DNA sequences is unknown. Although ancestral state reconstruc-

tion might be more powerful, we opted here to reconstruct

changes of GC3 contents directly. Fourth, phylogenetic uncer-

tainty could be taken into account in our reconstructions of both

host and GC3 changes, for instance by running the algorithm on

all the trees sampled from the posterior distribution. We did not

attempt to perform this computationally demanding analysis, as

the objective here essentially aims at demonstrating the feasibility

of the approach.

While we can estimate the dates beginning and terminating a

branch on which each event (host-switch, GC3 cluster change)

occurred, we do not know the exact time when each event took

place. Nonetheless, we can define two durations, a maximum and

a minimum duration indicated as maxt and mint , respectively, as

in Fig. 2. The estimated adjustment periods used henceforth are

the arithmetic averages of maxt and mint .

GC3 adjustment is faster in H3N2 than in H1N1
The GC3 adjustment process following a host change implicitly

assumes that all three hosts have different GC3 compositions, and

that the GC3 content of viruses tends to reflect that of their host.

We detected a significant difference in the GC3 compositions of

Figure 1. Posterior mean rates of evolution of H3N2 vs. H1N1 viruses. Results are shown on a loge - loge scale (in substitutions/site/year).
The gray line represents the first bisector (line of equation y~x), while the red line represents the linear fit to the data. Bars: limits of the 95% Highest
Posterior Densities.
doi:10.1371/journal.pone.0082486.g001

Figure 2. Estimation of adjustment times. Schematic representa-
tion of the method developed to estimate adjustment times. A host-
switch event occurred along the red branch, and a GC3 cluster change
occurred along the blue branch. Time t flows from the past to the
present (bottom axis), and divergence times are estimated for nodes
(see vertical broken lines). The two durations of interest are maxt and
mint . See text for details.
doi:10.1371/journal.pone.0082486.g002

Timing Viral Adjustment after a Host Change
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the transcriptome of all three hosts (F2,77179~862:81,

Pv2:2|10{16), with birds having the largest GC3 content,

followed by swine (Fig. S21 in File S1). Notably, GC3 contents of

influenza viruses coming from specific hosts are ranked in the same

order (Fig. S22-S23 in File S1), but tend to be twice as high as

those of their host. This might explain why decreasing GC3 trends

have been observed within host-specific influenza viruses ( e.g.,

[16]). We observed such trends here, but most of them were not

significant, even using robust regressions (Table S3 in File S1).

This approximate stationarity of within-host GC3 contents gives

further ground to our discretizing them. Indeed, our assumption of

the existence of host-specific viral GC3 content demands that GC3

content be approximately constant in time. If this were not the

case, we would not be able to draw horizontal lines in Fig. S22 and

S23 (File S1) to represent boundaries between these host-specific

GC3 contents.

GC3 compositions of each gene of both H1N1 and H3N2

clustered into two groups (as determined by median split

silhouettes; Fig. S22-S23, Table S3 in File S1) for most genes,

typically clustering human and swine hosts together. In order to

simplify the algorithm, we forced clustering to have two groups for

each gene. As above for rates, we found a ( loge - loge ) linear

relationship in terms of GC3 adjustment durations between the

two subtypes (Fig. 3). In particular, (i) GC3 content of H3N2

viruses adjusts faster than in H1N1 viruses (F4,5~67:65,

P~0:0012) and (ii) the same ordering of genes exists for both

subtypes (P~0:0006; R2~0:96). It is interesting to note that genes

that are fast adjusting are also involved in the final stages of the

viral cycle, NS2 mediating the export of newly synthesized RNPs

from the nucleus [34] and NA mediating virus release from the

infected cell [35]. Note that some genes are missing from Fig. 3

because they did not show any evidence for a combined host/GC3

change in our genome catchment. These are H3N2 genes PB1,

NP, M2 and M1. Ordering for these genes in both subtypes was

achieved by fitting a linear model (ANOVA) that describes mean

GC3 change times as a function of two factors: gene segment and

direction of host change. Results show that these two factors have

a very significant effect (P~1:25|10{6 and 5:74|10{10,

respectively; Fig. 4), so that three points can be made.

First, the rank ordering of genes by their adjustment time differs

from their ranking in terms of rates of evolution (Fig. 1 vs. 3). While

NA is the fastest adjusting gene, HA appears to be the second

slowest adjusting gene when information around the root node is

used (Methods), ranking just after NS1. While the position of NS1

is consistent with a previous study [14], that of HA is in contrast to

its high rate of evolution and the body of literature implicating HA

in host preference, or to the idea that HA and NA need to be co-

evolving as they both target the same sialic acids on the host cells

[5]. Here however, genes are not ordered with respect to their

importance in evading ongoing host immune responses or other

form of adaptation, but with respect to how their GC3 content

adjusts to that of their host. One potential explanation of the

difference between evolution and adjustment rates is that highly

expressed influenza genes adjust rapidly since the virus highjacks

the host translation machinery. However, while a number of

studies have examined expression patterns of hosts genes [36], very

little is known about expression patterns of viral genes during the

course of an infection. Further research in viral transcriptomics is

therefore warranted.

Second, some of the H1N1 genomes included in our alignment

come from human viruses that reappeared in 1977 after a 20-year

gap ( e.g., [23]). The presence of these genomes in our data could

potentially bias downwards our estimates of adjustment times for

H1N1 viruses, or at least increase the variance of these time

estimates [37]. However, none of the H1N1 viruses that

reappeared in 1977 underwent a change of host, so that these

viruses were not included in our calculation of adjustment times.

More crucially, removing these genomes (in gray in Fig. S1-S10 in

File S1) from the analyses estimating divergence times did not alter

our estimates of tMRCA, the age of the root (Fig. S24 in File S1).

Furthermore, previous work showed that the rate of evolution of

these reintroduced sequences is similar to that of seasonal H1N1

sequences [23]. Altogether, our results are therefore robust to the

presence of these re-emergent viruses.

Third, GC3 adjustment times also depend on the direction of

host change (Fig. 4). This little-studied aspect outside of human

transmission [7] reveals that across both H1N1 and H3N2

subtypes, adjustment of human viruses to avian hosts is the slowest,

while adjustment of viruses coming from an avian host is very fast,

with an average v10 years (Fig. 4). On the other hand, subtypes

show a difference in the GC3 adjustment speed of viruses coming

from swine, with an average of 35 years for the H1N1 subtype vs. 5

years for H3N2. This difference between the adjustment dynamics

of avian and swine viruses is somewhat unexpected, as swine is

often considered to be the ’mixing vessel’, harboring both types of

sialic acids in its respiratory tracts and being therefore able to be

infected by both avian and human viruses [38]. However, even if

cross-species transmission requires some adaptive process, we

show next that GC3 adjustment is probably not adaptive per se.

GC3 adjustment reflects relaxed selective pressures
As viruses use the translational machinery of their host to

translate their own mRNA, their codon usage and hence their

GC3 content is expected to be under selective pressure to adapt to

the pool of transfer RNA of their host [39]. To assess the role of

selection during the GC3 content adjustment process, we tested for

evidence of positive selection along the lineages starting from

cross-species transmission and ending at the GC3 cluster change.

Table S4 in File S1 shows that no such evidence could be detected.

This result could be due to (i) the inclusion of w1 consecutive

branches in the foreground lineages, (ii) selective forces acting on

the background branches or to (iii) the non-distinction of the

different directions of host change in this particular test. Current

codon models allow us to have only one set of foreground branches

[40], while with three hosts we would require six such sets, as done

in the GC3 content analysis above (Fig. 4). It could also be possible

to test for all possible combinations of foreground branches as

recently proposed [41]. This procedure would circumvent the

issue of using the same data twice, once to identify branches of

interest and a second time to test for positive selection. However,

while that approach would identify the branches along which

positive selection can be detected [41], it would fail to test the

specific hypothesis of presence of positive selection in the lineages

between the cross-species transmission and the GC3 cluster

change.

More critically, we find that shorter log adjustment times are

significantly correlated with higher estimates of selection coeffi-

cients in the case of H3N2 (v̂v under H1; P~0:0066, R2~0:44),

but not in the case of H1N1 viruses (P~0:7995). This result shows

that relaxation of selective pressures plays a key role in the

adjustment of H3N2 to a new host. While the lack of signal for

H1N1 viruses might be due to v rate ratios that are specific to the

direction of host change, the population genetics of the two

subtypes might also explain the difference. While both H1N1 and

H3N2 viruses are expected to undergo frequent bottlenecks during

their spread among hosts populations (and hence increase drift),

the larger population sizes found in H3N2, the dominant subtype

for w40 years since the 1968 pandemic, are expected to facilitate

Timing Viral Adjustment after a Host Change
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the action of selection. Altogether, the differential incidence

between the two subtypes could explain the stronger role of

relaxation of selective pressures in H3N2 across the three hosts

studied here.

The origin of the adjustment process can be revealed by

considering the effective number of codons (ENC). In spite of most

relationships between ENC and GC3 being significantly positive

(Fig. S25 in File S1), our data show no evidence for codon bias.

Indeed, for the genes sampled here, ENC is never below the 35

threshold, which is usually taken as an indicator of strong codon

bias [42] and ENC is almost always above 50 (Fig. S26-27 in File

S1). Altogether, our results suggest that GC3 adjustment is

essentially driven by mutational bias in H1N1 and H3N2 viruses,

with a larger role of relaxed selective pressures in H3N2 viruses.

Future work should focus on the differential dynamics of H1N1

and H3N2 subtypes, potentially taking inspiration from the use of

nonhomogeneous models as in [23], but developed at the codon

level.

Conclusions

We showed here that studying cross-species transmissions of

influenza A viruses that established themselves as stable lineages

sheds some unsuspected light on the dynamics of two major

subtypes. In particular, we demonstrated that both H1N1 and

H3N2 subtypes have the same fast-adjusting genes in terms of

GC3 content (Fig. 3), while H3N2 viruses adjust significantly faster

(Fig. 3), in particular when coming from avian hosts (Fig. 4).

We also showed that two genes, NS2 and NA lead the pace of

this adjustment process in both subtypes (Fig. 3). These genes play

a key role in the final stages of the viral cycle in host cells (export of

viral genome from nucleus and release of viral particles out of host

cells, respectively), which consequently might be the limiting step

of the adjustment process to a new host.

Although we did not attempt to validate the method on

simulated data, extensions could consider using heterogeneous

models [23]. Our results should also be validated by analyzing

other, more extensive, data sets, beyond North America, to

confirm (i) the relationship between adjustment rates of H1N1 and

H3N2 viruses and (ii) the disconnect between viral adjustability

Figure 3. GC3 adjustment times of H3N2 vs. H1N1 viruses. Results are shown on a loge - loge scale (in years). The gray line represents the first
bisector (line of equation y~x), while the red line represents the linear fit to the data. Bars: SEMs (95% Highest Posterior Densities, not shown, tend to
be larger – see Fig. S27 in File S1). ? : the HA value for H3N2 was tentatively derived using branches around the root node.
doi:10.1371/journal.pone.0082486.g003

Figure 4. Factor effects in the linear model (ANOVA) that was
fitted to adjustment times (in years). The directions of host change
are avian-to-human (A-H), avian-to-swine (A-S), human-to-avian (H-A),
human-to-swine (H-S), swine-to-avian (S-A) and swine-to-human (S-H).
Adjustment times are in years. See text for details.
doi:10.1371/journal.pone.0082486.g004

Timing Viral Adjustment after a Host Change
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and evolutionary rate. Finally, our results highlight the importance

of obtaining complete genome data through surveillance program

in order to unravel the dynamics of influenza viruses, and not just

from the standpoint of GC3 adjustment. We argue that only such

complete genome information will help us understand how

emerging pathogens acquire the ability to be efficiently transmitted

within their new host [43]. The most likely answer may not lie in

the identification of signature amino acid sites, but rather in the

determination of epistatic interaction of sites within [44] and

among segments [45].

Materials and Methods

Data collection and alignment
Whole genome sequences of H1N1 and H3N2 subtypes of all

influenza A viruses collected between 1900 and 2009 (as of

January 2010) in North America (Mexico, the USA and Canada)

in avian, human and swine hosts were retrieved from the Influenza

Virus Resource [18]. Only one pandemic H1N1/2009 genome

was included in this study, A/Canada-AB/RV1531/2009(H1N1) ;

A/Saskatchewan/5131/2009(H1N1) is a seasonal (pre-pandemic)

H1N1 virus [19]. The complete influenza genome includes the ten

’canonical’ protein-coding genes [20,21], consisting of the three

polymerase subunits PB2, PB1 and PA, the hemagglutinin (HA)

and neuraminidase (NA) antigens, the nucleoprotein (NP),

ribonucleoprotein exporter (NS2, also called NEP), interferon

antagonist (NS1), ion channel protein (M2) and the matrix protein

(M1). Each gene was aligned at the protein level with Muscle [46]

and back-translated to nucleotide alignments with Pal2Nal [47].

At this stage, manual adjustments were performed, in particular

for the M2, M1, NS2 and NS1 genes. Improperly annotated or

misaligned sequences were discarded. In total, our initial

alignments contained 19,159 H1N1 and 10,498 H3N2 genes

(Table S1 in File S1).

Sequence clustering
In order to decrease sample size to make alignments amenable

to phylogenetic analysis without compromising data quality,

sequences similar at the 99% threshold were removed from the

alignment as done in a previous study [21]. Briefly, pairwise

genetic distances were computed with PAUP? [48] under the

GTR + C + I model of evolution. Sequences were then clustered

with DOTUR [49] at the 99% similarity level using the nearest

neighbor algorithm. We checked that each cluster thus identified

contained sequences coming from only one single host (Fig. S28 in

File S1); when this was not the case, a sequence from the most

common host was selected at random; we then tested that such

cases correspond to unsustained cross-species transmission events

(Fig. S1-S20 in File S1), so that these cases are not included in our

dating analyses. Note that the H1N1 1918 human virus [50] was

not included in the final data. Accession numbers of the genes

retained are shown in Fig. S1-S20 in File S1.

Phylogenetic analyses
The most appropriate model of evolution for each of the ten

’canonical’ gene of each subtype was chosen according to the

Akaike Information Criterion in jModelTest [51] (Table S5 in File

S1). The strict molecular clock was tested with PAML ver. 4.4b

[52] under the TipDate model [53] using the trees estimated

under a relaxed molecular clock implemented in BEAST ver. 1.6.1

[54].

Divergence times were estimated by assuming an uncorrelated

lognormal prior distribution to describe the evolution of the rates

of evolution [22]. A Bayesian coalescent skyline prior with ten

breakpoints and stepwise splines [55] was placed on times. Markov

chain Monte Carlo samplers were run for 1 billion steps with a

thinning of 5000 steps for each gene, and in duplicate to check for

convergence. Tracer (tree.bio.ed.ac.uk/software) was used to

monitor the runs and to determine the burn-in periods. An in-

house Perl script was then used to remove the burn-in period of

each pair of runs, concatenate the log files and run TreeAnnotator

[54]. The relaxed-clock trees are, by construction, rooted ( e.g.,

[21,56]).

Timing GC3 adjustment after a host change
Host changes were determined by mapping ancestral hosts on

the phylogeny of each gene under a simple maximum likelihood

approach [29,30] assuming that all three hosts had the same rate

of change (more sophisticated models where all rates were different

tended to exhibit convergence issues on our data). The APE

library [57] in R [58] was used for this purpose. Placement of host-

switch events was determined manually according to reconstructed

ancestral mapping (Tables S6-S7 in File S1).

GC3 content and effective number of codons (ENC) were

calculated for each gene with GCUA [59]. Gene-specific GC3

distributions were discretized by Partition Around Medoids

clustering, where the optimal number of clusters was determined

by Median Split Silhouettes (for details, see [60]). Ancestral GC3

cluster assignments were reconstructed with a maximum likelihood

model as above [29,30]. Stabilization of GC3 content was inferred

when (i) a host change occurred along a lineage and (ii) a

subsequent change of GC3 cluster occurred. Because of the

uncertain ancestral reconstructions for the two branches emanat-

ing from the root, these two branches were left out of the

computations. Adjustment times were inferred as depicted in Fig.

2.

We also downloaded from ensembl release 62 [61], available at

ensembl.org/info/data/ftp, the complete transcriptomes of the

hosts: chicken ( Gallus gallus – chosen arbitrarily out of the three

completed bird genomes with turkey and zebra finch, as of

October 2011), human ( Homo sapiens) and pig ( Sus scrofa). The

transcriptomes were analyzed with GCUA and tested for

transcriptomes-wide differences in their GC3 composition. Genes

with no termination signal as per GCUA or with w20,000 bases

were discarded, leaving 17,087 avian genes, 46,040 human genes

and 14,056 swine genes.

Detection of selection
In order to test for positive selection at some sites along the

branches between a host change and a change of GC3 cluster, we

ran branch-site codon models [40] as implemented in codeml ver.

4.4d [52]. Nonsynonymous to synonymous rate ratios (v) are used

to measure selection in protein-coding genes, with vv1 indicating

negative selection, v~1 neutral evolution and vw1 positive

selection. Branch-site codon models allow v to vary both along the

sequence and along some pre-specified branches, called the

foreground branches, while the ratio in the other branches, or

background branches, is kept constant and v1. A likelihood ratio

test (LRT) was used to test the null hypothesis H0 that there is no

positive selection at any site along the foreground branches. The

alternative H1 is that there is evidence for positive selection at

some sites in the foreground branches. The LRT test statistic was

conservatively assumed to follow a x2 distribution with one degree

of freedom rather than the appropriate mixture distribution [40].

Sites potentially evolving adaptively were inferred with a Bayes

empirical Bayes method [62] at the 95% posterior probability

cutoff. All regressions performed in this study were based on robust

linear models [63].

Timing Viral Adjustment after a Host Change
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