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Abstract

The effective reproduction number (<t) is a theoretical indicator of the course of an infectious

disease that allows policymakers to evaluate whether current or previous control efforts

have been successful or whether additional interventions are necessary. This metric, how-

ever, cannot be directly observed and must be inferred from available data. One approach

to obtaining such estimates is fitting compartmental models to incidence data. We can envi-

sion these dynamic models as the ensemble of structures that describe the disease’s natu-

ral history and individuals’ behavioural patterns. In the context of the response to the

COVID-19 pandemic, the assumption of a constant transmission rate is rendered unrealis-

tic, and it is critical to identify a mathematical formulation that accounts for changes in con-

tact patterns. In this work, we leverage existing approaches to propose three

complementary formulations that yield similar estimates for <t based on data from Ireland’s

first COVID-19 wave. We describe these Data Generating Processes (DGP) in terms of

State-Space models. Two (DGP1 and DGP2) correspond to stochastic process models

whose transmission rate is modelled as Brownian motion processes (Geometric and Cox-

Ingersoll-Ross). These DGPs share a measurement model that accounts for incidence and

transmission rates, where mobility data is assumed as a proxy of the transmission rate. We

perform inference on these structures using Iterated Filtering and the Particle Filter. The

final DGP (DGP3) is built from a pool of deterministic models that describe the transmission

rate as information delays. We calibrate this pool of models to incidence reports using Ham-

iltonian Monte Carlo. By following this complementary approach, we assess the tradeoffs

associated with each formulation and reflect on the benefits/risks of incorporating proxy

data into the inference process. We anticipate this work will help evaluate the implications of

choosing a particular formulation for the dynamics and observation of the time-varying trans-

mission rate.
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Author summary

Policymakers use the effective reproduction number (<t) to determine whether an epi-

demic is growing (<t > 1) or shrinking (<t < 1). One can estimate this quantity by simu-

lating compartmental models fitted to data. These models can be seen as the ensemble of

two structures: one that describes the course of a disease in an individual and another one

that accounts for behavioural patterns. Nevertheless, these estimates are sensitive to the

assumptions embedded in the model, such as the formulation of the time-varying trans-

mission rate. In this paper, we couple an SEIR-type structure with three complementary

formulations: 1) non-negative random-walks (Geometric Brownian Motion) 2) non-neg-

ative random-walks pulled toward a long-term goal (Cox-Ingersoll-Ross) 3) Gradual

approximations towards a long-term goal (exponential smoothing). We refer to each cou-

pling as a Data Generating Process (DGP). In essence, we simulate trajectories from these

DGPs to identify plausible sets of transmission rates (based on incidence and mobility

data) that explain Ireland’s first COVID-19 wave. Here, we assume that mobility data is a

proxy measurement for the transmission rate. These DGPs yield similar average estimates

for <t, albeit with dissimilar degrees of uncertainty. Finally, we reflect on the tradeoffs of

choosing each particular formulation.

Introduction

Since early 2020, SARS coronavirus 2 (SARS-CoV-2) has spread throughout the seven conti-

nents, causing a COVID-19 pandemic of catastrophic consequences, including the loss of mil-

lions of lives and jobs. In the early days of the pandemic, given the absence of vaccines and the

lack of effective therapeutics, governments primarily relied on non-pharmaceutical interven-

tions (NPIs) to reduce the transmission of SARS-CoV-2, thereby lowering the death toll.

Although effective in preventing deaths [1], NPIs such as mobility restrictions and stay-at-

home orders impose a burden on society with economic and psychological costs [2]. In addi-

tion to this, the effectiveness of these interventions wanes over time as compliance progres-

sively diminishes. Following these considerations, policymakers strive to find an adequate

balance between the interventions’ severity and acceptable transmission levels. In this deci-

sion-making process, the effective reproduction number plays a crucial role. Briefly, the effec-

tive reproduction number, <t, is the time-varying average number of secondary cases caused

by a primary case at a calendar time t [3, 4], and it is a theoretical indicator of the course of an

infectious process [5]. Above the epidemic threshold (<t > 1), each infectious person leads to

more than one secondary infectious person, and the disease is (re)emerging [6]; below that

threshold, there is limited secondary transmission. In practice, policymakers can use <t in two

ways. First, as a guide to assess in near real-time whether the interventions are succeeding (<t

< 1) or whether it is required to increment the response’s strength [4]. Second, in retrospective

analyses to assess how policy decisions, population immunity, and other factors have impacted

transmission at specific points in time [7].

Generally speaking, <t is the result of a combination of intrinsic (decline in susceptible

individuals) and extrinsic (change in contact patterns due to the implementation of control

measures) factors [4], for which there are no readily available measurements. One, therefore,

must resort to statistical methods to obtain an approximation of this epidemic indicator. On

one end of the spectrum, we find widely applicable and context-independent empirical meth-

ods such as the two-step Bayesian procedure proposed by Cori and colleagues [8, 9] and the

likelihood-based estimation procedure proposed by Wallinga and Teunis [10]. At the other
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end of the spectrum, we can infer <t from compartmental models calibrated to incidence data

[11], which is the focus of this paper. In addition to serving as vehicles to obtain estimates,

these mechanistic models are based on a scientific understanding of infectious disease dynam-

ics [12], which one can interpret as a dynamic hypothesis of the underlying process that pro-

duces the observable behaviour patterns. This feature implies that fitting a compartmental

model to data also tests a hypothesis that links structure to behaviour [13]. It thus follows that

parameter estimates derived from this procedure have an interpretation in the real world. Not-

withstanding these advantages, <t estimates from compartmental models are sensitive to data

availability and assumptions in the model structure [7].

One such assumption is the transmission rate’s dynamics. In the context of the COVID-19

pandemic, the assumption of a constant transmission rate is rendered unrealistic, apart from a

few days in the initial phase of the outbreak [14, 15]. The rationale is that under the imminent

surge of cases, governments implemented NPIs at early stages to reduce the number of con-

tacts among the population. Modellers thus are required to describe formally the changes in

the transmission rate over time. For instance, in measles studies [16–18], it is not unusual to

assume term-time forcing structures [19], where the contact rate experiences sudden changes

in time (e.g., because of school holidays). Other approaches have adopted smoothly-varying
functions [19] to model the transmission rate in tuberculosis outbreaks [20]. In COVID-19

analyses, the transmission rate has been described as episodes of constant contact rates sepa-

rated by change points where a transition occurs [14, 21]. These are likely once-off models,

more appropriate for retrospective analyses, whose formulations are not designed to incorpo-

rate new data that account for policy changes (unless the structure is modified).

Nevertheless, ascertaining which deterministic formulation is the most adequate is far from

straightforward. Its search involves several trial-and-error iterations and model comparisons

until a satisfactory structure is found. If one aims for near real-time estimates, random-walk

formulations offer a flexible device to uncover the underlying transmission rate dynamics [22].

This type of structure does not impose stringent constraints on the transmission’s rate shape,

facilitating the incorporation of new data without structural modifications. This approach has

been applied to studying an influenza pandemic [22, 23] and Ebola outbreaks [24, 25].

Although random-walk models yield fits to incidence data, the match between observed and

simulated data may be achieved at the expense of large uncertainty bounds. Moreover, under

this framework, the inference of time-independent parameters requires burdensome computa-

tional efforts. More recently, the extensive research provoked by the COVID-19 pandemic

prompted researchers to use non-traditional sources of data to infer the transmission rate. In

particular, mobility data has been assumed as a proxy for the changes in the transmission rate

[26]. In doing so, the dynamics exhibited by the transmission rate have an inherently plausible

explanation (changes in human behaviour measured by mobile devices) so that models can

more easily incorporate new incidence measurements. However, it should be mentioned that

this approach entails a stringent assumption wherein one tacitly assumes a perfect correlation

between changes in mobility data and effective contact patterns. Thus, discrepancies between

actual and assumed transmission rates may result in unnecessary corrections to the estimates

of other unknown parameters.

Consequently, this paper aims to draw upon the strengths of the approaches described

above to formulate a complementary process for estimating <t from compartmental models.

Specifically, we build three structures or Data Generating Processes (DGP) that accounts for

Ireland’s first COVID-19 wave. Two DGPs incorporate stochastic features in the transmission

rate, whereas the other formulation is exclusively deterministic. These structures are comple-

mentary in the sense that the results obtained from one DGP inform the subsequent one.

Below, we describe each DGP in detail, the inference process to obtain estimates for<t and
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other unknown quantities (Fig 1), and finally, discuss the results. All the analysis is performed

in R, mainly supported by the statistical packages pomp [27] and Stan [28]. The code is freely

available at https://github.com/jandraor/time_varying_beta.

Results

Context

By the end of February 2020, more than sixty countries had detected at least one case of

COVID-19 [29], including Ireland, where the first confirmed case was announced on the 29th
of February. Twelve days after this event, the Irish Government ordered the closure of all

schools, colleges, and childcare facilities, followed by a stricter stay-at-home mandate imple-

mented on the 27th of March. These interventions resulted in low incidence and mortality

rates, which allowed easing the restrictions from mid-May. In Fig 2A and 2B, respectively, we

present the number of daily (y1
d) and weekly cases (y1

w) detected from the first report up to the

point where the restrictions began to be lifted, a period that we refer to as the first wave.

In a nutshell, stay-at-home orders and similar measures aim to restrict the movements of a

population so that the risk of exposure to a transmissible pathogen is reduced. Impractical sev-

eral years ago, the advent of smartphones has permitted us to gauge patterns in population

mobility in real-time. For instance, since the 13th of January, 2020, Apple has provided an

index that quantifies the level of mobility by transportation type (driving, transit, and walking).

Apple generates this data by counting the number of requests made to Apple Maps for direc-

tions. Fig 2C shows Ireland’s daily driving mobility levels during the first wave (y2
d), and Fig

2D, the value at the end of each week (y2
w) from the 29th of February 2020. This dataset, along

with the incidence reports (S1 Data), will serve as the basis to calibrate the proposed compart-

mental models below.

State-Space models

Xt � pyX;tðxtjxt� 1Þ ð1Þ

Yt � pyY;tðytjxtÞ ð2Þ

One can frame the inference process for compartmental structures following the terminology

provided by state-space models (SSM) [30], also known as Partially observed Markov process

models [31]. Through an SSM, one conceives a DGP as a generative probabilistic model that

consists of two discrete-time Markovian mechanisms. The first mechanism (Eq 1) describes

the evolution over time of the system’s latent states (X), where Xt is drawn conditionally on the

previous state of the latent process (Xt−1) according to the density pyX;tðxtjxt� 1Þ. Therefore, the

DGP is a Markov chain [32], as the state of the latent variable at time t depends only on its pre-

vious state and the distribution from which it comes. In the literature, Eq 1 is often referred to

as the latent process model [16] or the system model [33]. Intuitively, this formulation corre-

sponds to the set of causal assumptions (dynamic hypothesis) that explains a phenomenon of

interest in terms of states and transitions (rates). The process model may be defined in contin-

uous or discrete time [31], but only its distribution at discrete times is considered (Xt, Xt+1,

Xt+2, . . ., Xt+h), where t� 1 and h is an integer. For simplicity, we assume that X0 is known.

In epidemiology, it is commonplace to represent the process model via compartmental

structures in which individuals are categorised according to their infection status [34]. We

refer to this categorisation as the within-host profile. Formally, one can employ a system of dif-

ferential equations to build such compartmental models. The reader should recall that any

PLOS COMPUTATIONAL BIOLOGY Inferring Rt from compartmental models using incidence and mobility data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010206 June 27, 2022 4 / 25

https://github.com/jandraor/time_varying_beta
https://doi.org/10.1371/journal.pcbi.1010206


Fig 1. Schematic diagram of the data generating processes (DGPs) explored in this paper. This diagram aims to portray the DGPs as the

ensemble of two components: a measurement or observational model (ellipse) and a process model (rounded rectangle). For instance, DGP1 is

the amalgamation of the measurement model OM1 and the process model PM1. The process model is in turn the ensamble of two structures: a

within-host profile (hexagon) and a time-dependent transmission rate (rhombus). Whereas all process models share a common within-host

profile (SEI3R), they differ in the formulation of the transmission rate: Geometric Brownian Motion (GBM), Cox-Ingersoll-Ross (CIR), and nth-

order exponential smoothing (NTH-SM). The inference method employed on each DGP depends upon the nature of the process model

(Iterated Filtering + Particle Filter for stochastic structures and Hamiltonian Monte Carlo for deterministic ones).

https://doi.org/10.1371/journal.pcbi.1010206.g001
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system of ordinary differential equations dx
dt ¼ f ðxÞ is Markovian. Here, we adopt the SEI3R

profile [15, 35], an extension of the SEIR framework. Under this profile, we stratify individuals

as susceptible (St), exposed (Et), infectious, and recovered (Rt). We further disaggregate the

infectious class by medical status, resulting in three compartments: preclinical (Pt), clinical (It),

and subclinical (At) (see Materials and methods section for the complete description). The

three DGPs presented in this paper share the SEI3R profile (Fig 1).

On the other hand, the exact state of the population at any given time is generally not

observable and must be inferred from available data via statistical inference [36]. It is thus nec-

essary to formally relate (Eq 2), at each discrete time (t� 0), latent states to noisy measure-

ments via a measurement or observational model [33], where each Yt is drawn conditionally on

the most recent state of the latent variable, according to the density pyY;tðytjxtÞ. This work

draws on incidence and mobility data to formulate such measurement models.

Fig 2. Incidence and mobility data. (A) Daily number (rhombus-shaped points) of COVID-19 cases detected during

Ireland’s first wave, from the 29th of February 2020 to the 17th of May 2020. The x-axis indicates the date in which the

infected individuals were swabbed. The line represents the smoothed trend (via LOESS method) from the data (B)

Weekly number of COVID-19 cases detected in during Ireland’s first wave. The x-axis indicates the number of weeks

since the first case was detected. (C) Apple data for Ireland from the 29th of February 2020 to the 17th of May 2020.

Points represent the normalised amount of daily requests for driving directions. These indexes are normalised to the

value on the 28th of February 2020. We highlight points every 7 days. These highlighted points are used to calibrate

DGP1 and DGP2. The line represents the smoothed trend (via LOESS method) from the data. (D) Normalised amount

of daily requests for driving directions at the end of each week starting from the 29th of February 2020. These bars

correspond to the highlighted points in C.

https://doi.org/10.1371/journal.pcbi.1010206.g002
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DGP1—Geometric Brownian Motion

bt ¼ zZt ð3Þ

dZ
dt
¼ aZtdW ð4Þ

dW � Normalð0;
ffiffiffiffiffi
dt
p
Þ ð5Þ

Thus far, we have not yet defined the time-varying effective contact rate or transmission rate

(βt). When defined, this component is integrated with the SEI3R profile to form a process

model (Fig 1). For this and the other two DGPs, we formulate βt as the product of two compo-

nents (Eq 3). Here, z denotes the transmission rate’s initial value. Namely, β0 = z. From this

definition, it follows that Zt represents the transmissions rate’s change over time relative to its

initial value, where Z0 = 1. In relation to Zt dynamics, we initially opt for a flexible approach to

build this first process model (PM1). Specifically, we define dZ
dt in terms of Geometric Brownian

Motion (GBM) with no drift (Eqs 4 and 5), an approach adopted in previous studies of influ-

enza and Ebola [22–25]. This stochastic structure is a model for the change in a random pro-

cess, dZt, in relation to the current value, Zt, where the proportional change dZ
Zt

follows

Brownian motion [37]. That is, normal distributed random jumps (dW) moderated by a vola-

tility parameter (α). We do not imply that the actual transmission rate follows a random walk.

In fact, the expected value of Zt is constant over time (Z0); strictly speaking, a martingale [37].

In practice, however, we use this structure as a scaffold to obtain some idea of the non-linear

structure of the process without committing to a particular form of non-linear model [38].

This procedure resembles the use of smoothing splines to estimate coefficients that are allowed

to vary as smooth functions of other variables [39]. Although not a requirement for this work,

smoothing splines also have a Bayesian interpretation under certain conditions [40]. In partic-

ular, we use the GBM structure to generate non-negative random walks from an initial value

(Fig 3A displays a set of possible trajectories). The main benefit from random walks is that at

each time t, we propose several possible paths that the transmission rate may take and then use

the available data to determine their plausibility [22]. In doing so, we unravel the dynamics of

the effective contact rate. Formally put, we approximate p(xt|y0:t), the filtering distribution [30]

(see Material and methods).

As noted above, the measurement model is the link between the process model and the data

whereby one quantifies (through likelihood densities) the relative consistency of each set of

parameter values, or model configuration, with observations. This quantification allows us to

perform inference on time-varying and time-independent parameters. Thus, any misspecifica-

tion in the measurement formulation can lead to overly confident conclusions [12] or biased

estimations. In light of its importance, we prevent the consequences of model misspecification

by proposing and testing six candidates that account for the incidence data (y1). Moreover, a

subset of these candidates incorporate mobility data (y2), assuming that this dataset is a proxy

observation of the relative contact rate (Zt).

Before defining each candidate, we clarify certain assumptions regarding the available data-

sets. On the one hand, for the incidence data (y1), we posit that actual periodic (daily or

weekly) symptomatic COVID-19 cases (Ct) stem from the transition Pt! It. Our assumption

implies that individuals seek the healthcare system for a diagnostic test as soon as they develop

symptoms. Furthermore, under this formulation, it is implicit that underreporting is due to the

non-identification of asymptomatic cases. On the other hand, for mobility data (y2), we

emphasise its proxy nature. Contrary to the incidence time series, it is not anticipated that
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models yield faithful replications of Apple’s mobility indexes. Should that be the case, we

would have included this data (directly or parametrically) in the process model. However, we

refrain from doing so as we deem there may be instances where the two elements are not

strongly correlated. To illustrate this point, we consider the case in which the government

relaxes social distancing mandates and individuals adopt a mask-wearing behaviour. Under

these circumstances, the resulting increase in mobility and social contacts due to relaxed rules

do not necessarily entail an equivalent effect on the effective contact rate given that individuals

properly wear face coverings during their interactions. Hence, rigid structures in the process

model may lead to unrealistic corrections in other parameters. As opposed to such inflexibility,

we expect that the mobility data acts as a nudge on the transmission rate, guiding the latter

towards the former only when plausible. In light of these considerations, for candidates 1 and

2, we formulate the observation of daily symptomatic COVID-19 cases (y1
d) as independent

Poisson and Negative Binomial counts, respectively. Then, we add an observational mecha-

nism that relates Apple’s daily driving data (y2
d) to the transmission rate’s relative level (Zt),

Fig 3. Brownian motion trajectories. (A) 200 simulations from a transmission rate described in terms of Geometric

Brownian Motion. We generate these simulations from DGP1’s Maximum Likelihood Estimate (MLE) using the

Euler-Maruyama algorithm. The highlighted trend corresponds to the mean trajectory path. (B) 200 simulations from

a transmission rate described in terms of the Cox-Ingersoll-Ross model. We generate these simulations from DGP2’s

Maximum Likelihood Estimate (MLE) using the Euler-Maruyama algorithm. The highlighted trend corresponds to the

mean trajectory path.

https://doi.org/10.1371/journal.pcbi.1010206.g003
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yielding candidates 3 and 4. Finally, even though King and colleagues [41] recommend that

“models should be fit to raw, disaggregated data whenever possible and never to temporally accu-
mulated data”, on candidates 1 and 3, we modify their periodicity from daily to weekly mea-

surements, resulting in candidates 5 and 6. It should be noted that the use of weekly

measurements has been performed previously in similar studies [22–25]. We refer the reader

to S1 Text for the complete set of equations.

Having defined process and measurement structures, we proceed to the inference stage

(Table 1 summarises the results). Since non-linear SSM do not allow closed-form solutions

[30] to calculate likelihood values, we must resort to simulation-based approaches such as

Sequential Monte Carlo, also known as the Particle Filter. Naturally, these estimates must be

robust so as to guide the inference process. By robustness, we refer to the quality that the Parti-

cle Filter returns similar likelihood values for various runs from a single model configuration.

Furthermore, as with any Monte Carlo approach, it is expected that as the number of samples

tends to infinity, the likelihood error (among various runs) converges to zero. To test this fea-

ture, we run the Particle Filter using the R package pomp, which implements the Sequence

Importance Sampling algorithm [42]. In particular, through these runs, we evaluate likelihood

estimates for each model candidate by varying the number of particles (samples), the integra-

tion step size, and the model configuration (see the complete analysis in S1 Text). The results

indicate that measurement models that account for daily incidence observations as Poisson

counts lead to unstable estimates. This finding suggests model misspecification in candidates 1
and 3, which are discarded from the pool.

To the remaining candidates, we estimate their latent states. Given its strength to infer

time-varying random variables in the state space, the Particle Filter is also appropriate to

numerically approximate (via samples) filtering distributions [33]. Nevertheless, drawing rele-

vant samples requires plausible fixed-parameter values. Here, we assume that three parameters

in PM1 are unknown: the effective contact rate at time 0 (z), the initial value of preclinical indi-

viduals (P0), and the volatility parameter (α). Moreover, additional parameters may be

required depending upon the specific measurement model. To infer such parameters, we

employ the Iterated Filtering algorithm [31, 43]. This Maximum Likelihood estimation method

has been designed to perform statistical inference on SSM and has been widely used to study

infectious disease models [16, 17, 31, 41, 44]. Briefly, Maximum likelihood via Iterated Filter-

ing (MIF) is a modified version of the Particle Filter, in which a sequence of filtering opera-

tions converges to the Maximum Likelihood Estimate (MLE). The key feature in this

procedure is the set of stochastic perturbations applied to the unknown parameters in between

the sequence of filtering operations, resulting in the selection of plausible parameter values in

the light of the available data. Furthermore, the synergy between MIF and the Particle Filter

permits us to calculate uncertainty bounds around the MLE. In particular, we use the Profile
Likelihood method [45] and its refined version, the Monte Carlo-adjusted profile [46]. Ulti-

mately, all of this information facilitates the construction of the parameters’ likelihood surface.

Table 1. Measurement model candidates.

Id Frequency Incidence Mobility Converges Fits incidence

1 Daily Pois No No N/A

2 Daily Nbin No Yes Yes

3 Daily Pois Yes No N/A

4 Daily Nbin Yes Yes No

5 Weekly Pois No Yes Yes

6 Weekly Pois Yes Yes Yes

https://doi.org/10.1371/journal.pcbi.1010206.t001
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For each model, we leverage its likelihood surface to draw sets of point estimates from the

neighbourhood surrounding the MLE [41]. These draws are subsequently plugged into the

Particle Filter. In addition to likelihood estimates, pomp returns, for every run, a set of samples

representing the filtering distribution at each time t. Then, we assign a weight to each run

based on its relative likelihood. In doing so, we account for parameter uncertainty in the

results. Finally, we summarise the results by computing weighted averages on the samples.

This procedure allows us to calculate the uncertainty in the predicted latent states by the filter-

ing distribution. The reader can find the complete set of results in S2–S5 Text.

The inference process on Candidate 2 (see S2 Text) reveals that this model yields a filtering

distribution that fits the observed daily incidence. Interestingly, although Candidate 2’s mea-

surement model does not incorporate mobility data in its structure, the predicted relative con-

tact rate captures the observed mobility indexes, albeit with a large degree of uncertainty. This

finding supports the argument that such a dataset could be an adequate proxy for the relative

contact rate. Then, one would logically expect that incorporating Apple’s data into the mea-

surement model (as we did for Candidate 4) would diminish the resulting uncertainty in the

filtering distribution. However, the results (see S3 Text) show that the enhanced fit on the

effective contact rate stems from unrealistic corrections to the predicted incidence, rendering

Candidate 4 unreliable. On the other hand, we notice that Candidate 5’s filtering distribution

and parameter estimates convey similar insights to those of Candidate 2 (see S8 Text Section

1). Therefore, the change in periodicity does not result in severe loss of information. Yet more

important, the crucial feature of the weekly formulation is that it allows integrating mobility

data seamlessly into the measurement model (Candidate 6). This integration is accomplished

without compromising the prediction on incidence counts and simultaneously reducing the

uncertainty in the relative contact rate’s fit. This behaviour differs from the unrealistic fit

achieved by Candidate 4. We ascribe the resulting harmony between the two datasets to the

stringency imposed by the Poisson distribution, which implicitly prioritises incidence counts

over mobility indexes. In consequence, we select Candidate 6’s measurement model (Eqs 6–8)

as the structure (OM1) that completes DGP1’s formulation (Fig 1).

dC
dt
¼ ZPt � Ctdðt mod 7Þ ð6Þ

y1
w � PoisðCtÞ ð7Þ

y2
w � NormalðZt; tÞ ð8Þ

Fig 4A presents a comparison between the predicted number of weekly symptomatic cases

from DGP1 and observed incidence. Notice that this is a contrast between measurements (y1
w)

and a latent state (Ct). Although this approach is not generally applicable (comparing measure-

ments to predicted latent states), in this case it is valid given that Ct corresponds to the mean of

the measurement model (Eq 7). In Fig 4A, it can be seen that this model’s filtering distribution

captures the actual values in regions of high plausibility, thus yielding an accurate fit. This result

helps us gain confidence in the model’s structure as an adequate dynamic hypothesis to the

studied phenomenon, considering that it can reproduce the observed behaviour [13]. Similarly,

the estimated relative effective contact rate replicates to a large extent its assumed measurement

values (Fig 4B). As expected, the filtering distribution does not capture all of the measurements

(Weeks 9–11), given the proxy nature of the data. However, these results allow us to elucidate

the trajectory of the effective contact rate, and in turn, the effective reproductive number (see

Material and methods for the estimation of this quantity). It must be remarked that in the early
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Fig 4. Inference on DGP1. In these three figures, the predicted values stem from DGP1’s filtering distribution.

Further, in the LHS, the solid line indicates the median, and the darker and lighter ribbons represent the 50% and 95%

CI, respectively. (A) Comparison between the predicted incidence (solid line and ribbons in the LHS; violin plots in

the RHS) and weekly detected cases from Ireland’s first COVID-19 wave (rhombi in the LHS; horizontal dotted lines

in the RHS). (B) Comparison between the predicted relative transmission rate (solid line and ribbons in the LHS;

violin plots in the RHS) compared to Apple’s mobility indexes in Ireland (points in the LHS; horizontal dotted lines in

the RHS). (C) Predicted effective reproduction number (solid line and ribbons in the LHS; violin plots in the RHS).

Horizontal dashed lines denote the epidemics threshold.

https://doi.org/10.1371/journal.pcbi.1010206.g004
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stages of this outbreak, the dynamics of the transmission rate determined the level of<t. This

characteristic occurs when the susceptible fraction is close to one, as was the case during the

first wave [47]. In Fig 4C, we present the estimated <t, where it can be observed that the behav-

iour change (presumably caused by mobility restrictions and people’s awareness) led to an <t

close to or below the epidemics threshold, bringing about a lowering of the incidence rate.

DPG2—Cox-Ingersoll-Ross

dZ
dt
¼ nðu � ZtÞ þ

ffiffiffi
a
p

ZtdW ð9Þ

The dynamics of the transmission rate (Fig 4B) uncovered by DGP1 exhibit a compelling pat-

tern. The transmission rate gradually decays for several weeks from its initial value until it lev-

els off around a determined value. In other words, a pattern that resembles goal-seeking
behaviour [48]. Based on this recognition, we formulate the relative transmission rate in terms

of the Cox-Ingersoll-Ross (CIR) model [49]. This formulation (Eq 9) is a compromise between

the rigidity of a deterministic structure and the flexibility offered by random walks. Under this

structure, the randomly-moving quantity of interest (Zt) is elastically pulled toward a central

location or long-term goal, υ. The strictly positive parameter ν determines the speed of adjust-

ment. In practice, we can interpret the long-term goal as the minimum level of mobility that

the restrictions can achieve and the adjustment parameter as the rate at which individuals

adopt such mandates. Hence, inferring these parameters permit the characterisation of the

implemented interventions, a piece of information that cannot be estimated from DGP1. The

randomness in this process stems from the diffusion process (second term). That is, stochastic

variations from the deterministic trend. More importantly, unlike those in the Vasicek and

Ornstein-Uhlenbeck structures, this particular diffusion process precludes negative values [37],

a sine qua non to describe transmission rates. Logically, we ensemble this structure with the

SEI3R profile to build the process model (PM2). As with DGP1, we assess the convergence of

likelihood estimates obtained from the amalgamation of PM2 and the previously defined six

measurement model candidates (see S1 Text Section 3). The results reveal an identical pattern

to that observed in DGP1. Therefore, it is warranted to integrate PM2 and OM1 (Fig 1) to

form a DGP that we refer to as DGP2. In Fig 3B, we present simulated trajectories from this

DGP, obtained from a single set of parameters (MLE).

The main objective for building DGP2 is to estimate its latent states conditional on the avail-

able data. To do so, we repeat the process applied to DGP1. Specifically, we first perform param-

eter inference and construct DGP2’s likelihood surface using MIF and the Particle Filter. The

next step consists of drawing samples from the MLE’s neighbourhood to plug them into the Par-

ticle Filter. There is a slight alteration in this process, however. Previously, we selected parameter

combinations that yielded likelihood values near the MLE to construct DGP1’s neighbourhood.

We then identified the bounds of these parameters to construct a four-dimensional hypercube.

From this object, we obtained independent and uniformly distributed samples for each parame-

ter. In light of DGP2’s complex parameter space, we opt for a copula [50] instead of a hypercube.

The copula is a multivariate cumulative distribution for which the marginal probability distribu-

tion of each variable is uniform, but there is dependence (correlation) among the random vari-

ables (unknown parameters). In doing so, we mitigate biases caused by point estimates that

yield abnormal likelihood values. The reader can find the complete set of results in S6 Text.

Fig 5 displays the results obtained from the inference process carried out on DGP2. Qualita-

tively, the uncovered values match those obtained from DGP1. Namely, DGP2 produces an

accurate fit of the incidence data (Fig 5A), and the inferred relative contact rate captures most
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Fig 5. Inference on DGP2. In these three figures, the predicted values stem from DGP2’s filtering distribution.

Further, in the LHS, the solid line indicates the median, and the darker and lighter ribbons represent the 50% and 95%

CI, respectively. (A) Comparison between the predicted incidence (solid line and ribbons in the LHS; violin plots in

the RHS) and weekly detected cases from Ireland’s first COVID-19 wave (rhombi in the LHS; horizontal dotted lines

in the RHS). (B) Comparison between the predicted relative transmission rate (solid line and ribbons in the LHS;

violin plots in the RHS) compared to Apple’s mobility indexes in Ireland (points in the LHS; horizontal dotted lines in

the RHS). (C) Predicted effective reproduction number (solid line and ribbons in the LHS; violin plots in the RHS).

Horizontal dashed lines denote the epidemics threshold.

https://doi.org/10.1371/journal.pcbi.1010206.g005
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of the mobility data (Fig 5B), resulting in a similar prediction of the effective reproduction

number (Fig 5C). This outcome provides reassurance on the estimated transmission rate as an

adequate account of the observed time series. That is, from two DGP that differ in the trans-

mission rate’s formulation, we estimate equivalent trajectories. DGP2, though, does not reduce

significantly the uncertainty (see S6 Text Section 2.3.7) in the parameters (ν and υ) that charac-

terise the implemented NPIs.

DGP3—Adaptive expectations

bt ¼ zZ1
t ð10Þ

dZi

dt
¼

ðu � Zi
tÞ

ðn� 1=nÞ
for i ¼ n

ðZiþ1
t � Zi

tÞ

ðn� 1=nÞ
for i < n

8
>>>>>><

>>>>>>:

ð11Þ

The trajectories derived from the two previous DGPs (DGP1 and DGP2) suggest that it is rea-

sonable to assume that the transmission rate’s dynamics indeed follow a goal-seeking pattern

(Eq 10). This conjecture is in agreement with the economic theory of adaptive expectations.
First applied by Irving Fisher [51], this hypothesis posits that individuals gradually adjust their

beliefs, and hence behaviour, in order to eliminate the discrepancy between the current state

and a desired one [52]. In this case, such a discrepancy is the gap between individuals’ behav-

iour at a given time t and the level of mobility that the restrictions (implicitly) aim to achieve.

Mathematically, the nth-order information delay or exponential smoothing (Eq 11) provides a

formal description of such an adjustment. This deterministic formulation describes the

changes in current behaviour (Z1
t ) as the result of a series of intermediate exponential adjust-

ments (dZi

dt ), which one can interpret as the multiple stages intervening since the Government

decrees mobility restrictions to the point where individuals alter their behaviour in accordance

with the new rules. The delay order (n) represents the number of stages, where the most simple

case (n = 1), the 1st-order information delay, is equivalent to the deterministic term in Eq 9.

On the other hand, when n!1, the dynamics follow a term-time forcing pattern.

To establish the exact number of stages, we evaluate the performance of nine candidate

structures (n = 1, . . ., 9) in explaining the available data (incidence and mobility). From this

evaluation, we ensemble the selected candidate with the SEI3R profile to generate the process

model (PM3) of the third DPG (DPG3) presented in this paper (Fig 1). To complete DGP3’s

description, we formulate a measurement model (OM2) for the observed daily reported cases

(y1
d). As with DGP1 and DGP2, we assume these counts result from a Poisson distribution (Eqs

12 and 13). Moreover, OM2 does not include a structure relating mobility data to the relative

transmission rate. We base this decision on the results shown in the previous sections. Since the

mobility data is an imperfect predictor of the transmission rate, its inclusion in the inference

process of a rigid deterministic structure may lead to forced model fits, resulting in undesired

biases in parameter estimations. In relation to the inference process, since PM3 is deterministic,

the inference of the filtering distribution becomes the estimation of DGP3’s expected value. We

approximate such expected value from a Bayesian perspective [53, 54] using Hamiltonian

Monte Carlo [55] via Stan. The complete set of results can be found in S7 Text.

dC
dt
¼ ZPt � Ctdðt mod 1Þ ð12Þ
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yd
1
� PoisðCtÞ ð13Þ

To illustrate the selection of DGP3’s process model, we present the estimated expected val-

ues (fits) for each of the nine candidate structures (Fig 6). We depict expected values through

simulated trajectories generated from one hundred draws from each model’s posterior distri-

bution. The results indicate that all of these structures yield similar fits to the incidence data.

Using the mean absolute scaled error (MASE), a metric designed to measure the accuracy of

time-series predictions [56], we notice diminishing marginal gains in accuracy as the order (of

the number of stages) increases. These gains, though, are so tenuous that they do not provide

clear guidance about which model to choose. To further complicate matters, the lower the

delay order, the higher the likelihood value. Nevertheless, when we compare the expected rela-

tive transmission rate to mobility data, it can be seen that some structures approximate better

the latter than others. If we accept the premise that mobility data is a proxy (supported by the

results from DGP1 and DGP2), yet imperfect, measurement of the relative transmission rate,

we can then lean towards the delay order that yields the lowest MASE (n = 4). From this struc-

ture’s posterior distribution, we estimate, among others, the adjustment rate (ν; mean = 0.05,

sd = 0.001), the minimum level of mobility (υ; mean = 0.11, sd = 0.005), and the effective

reproduction number (discussed below). Notice that the particular form of the non-linear con-

tact rate restricts the marginal distributions of ν and υ to such an extent that most of the proba-

bility mass concentrates on extremely narrow neighbourhoods. Despite this, those estimates

resemble DPG2’s MLE (ν = 0.05, υ = 0.19), which help us gain confidence in the overall

process.

Acknowledging that the performance metrics above (MASE and likelihood values) do not

lead to an unambiguous choice, we explore the implications of selecting an alternative mea-

surement model. As it is widely known, the Poisson distribution is a discrete probability distri-

bution in which the observation mean equals the variance [32]. Hence, using this distribution

as a measurement model imposes a stringent assumption on the observational process of inci-

dence counts. By contrast, the Negative Binomial distribution offers a more flexible framework

to account for overdispersion in daily incidence. Moreover, the Negative Binomial converges

to the Poisson distribution under a specific configuration. For this reason, we test the implica-

tions of this alternative formulation. See the complete set of results in S7 Text Section 4.

Indeed, the posterior distribution suggests the presence of a small amount of overdispersion in

the incidence data. However, such gain in realism is achieved at the expense of a degenerate
posterior distribution. Succinctly, any of the model candidates coupled with the Negative bino-

mial distribution yields a posterior distribution of two distinct modes, even from a single

unknown parameter. This kind of behaviour is not unusual in Ordinary Differential Equation

models. For instance, Gelman and colleagues [57] report a similar experience in the calibration

of a simple mechanistic model of planetary motion.

In the set of bimodal distributions returned by Stan, we recognise two types of modes. One

that corresponds to a region of unrealistic parameter values for which the HMC algorithm

reveals pathological behaviour (divergences and low E-BFMI) [55] in the sampling procedure,

rendering the inference from these samples unreliable. Conversely, the Markov chains that

land in the other type of mode do not trigger any warnings from Stan. Furthermore, these

well-behaved modes are located in regions similar to those found using the Poisson distribu-

tion. Following an exploratory analysis, we find that well-behaved modes and the set of poste-

rior distributions obtained from the Poisson model provide similar (although not identical)

information. Overall, the choice of the Poisson distribution and the delay order (4th) is the

outcome of considering as a whole the information provided by the previous DGPs, and the

two explored measurement models. This assessment, therefore, implies that we envision the
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Fig 6. Inference on DGP3. Comparison between expected values and data. On the LHS, for each model, we show 100

overlapped simulations of the predicted incidence against daily case counts. On the RHS, for each model, we show 100

overlapped simulations of the predicted relative transmission rate against Apple’s mobility data. In this plot, we estimate the

predicted values from the posterior distribution of each of the DGP3’s nine candidate process models.

https://doi.org/10.1371/journal.pcbi.1010206.g006
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Poisson measurement model as an approximation that does not compromise the insights from

the inference process. However, one cannot generalise this result to other applications. That is,

taking the Poisson distribution as a default. On the contrary, it is imperative to test the

assumptions embedded in any proposed measurement model and evaluate the trade-offs

entailed by each alternative.

Discussion

Novel datasets that may assist modellers in gaining deeper insight into the dynamics of an

infectious disease deserve a thorough examination. This task entails establishing adequate

links between the data and a dynamical hypothesis. Far from trivial, one may derail the entire

inference process by adopting a misspecified structure. For this reason, a robust approach

involves the assessment of various levels of model complexity that account for the available

data, which inevitably involves trade-offs [58]. This work highlighted the implications of com-

mitting to a particular model formulation. As seen above, DGP1 and DGP2 (DGPs with a sto-

chastic process model) can only incorporate the mobility data if they are formulated in terms

of weekly observations. Notwithstanding that this requirement reduces the number of data

points available for the inference process, the loss of information is negligible. In contrast, a

rigid structure such as DGP3 (whose process model is deterministic) restricts the use of mobil-

ity data only as a discriminant criterion.

With regards to the inference of fixed parameters, DGP1’s well-behaved parameter space

yields smooth quadratic profiles from which parameter uncertainty can be seamlessly calcu-

lated. Interestingly, when we amalgamate all the likelihood estimates, we obtain surfaces that

resemble likelihood profiles. As a result, from three approaches (MCAP, profile, surface), we

estimate similar confidence intervals. DGP2’s parameter space is, on the other hand, of chal-

lenging exploration. In fact, the volume of high plausibility is so tightly concentrated that some

regions in the MLE’s neighbourhood yield vast negative log-likelihood values. To address this

issue, we iterated over several hypercube sizes and densities until obtaining quadratic profiles,

although not as smooth as those obtained from DGP1. Despite this hurdle, we obtain similar

confidence intervals from the three quantification approaches. Regarding DGP3, given the

Bayesian approach used to estimate its parameters, we refer to such uncertainty bounds as

credible intervals. We obtain well-behaved quadratic posterior distributions for the nine can-

didate process models whose inference is backed by successful diagnostics unique to HMC.

However, parameter estimates (posteriors) vary by the delay order, requiring a subjective

assessment to determine which structure is more appropriate. Lastly, we consider the differ-

ences in computational burden between the inference methods (MIF + Particle Filter and

HMC). Whereas performing parameter inference on DGP1 and DGP2 took roughly 14 and 20

hours, respectively; fitting DGP3’s nine candidate models required 6 hours of computational

time.

Likewise, the inference of the time-varying quantities deserves close inspection. DGP1 and

DGP2 are more flexible than DGP3 in quantifying uncertainty. We illustrate this point with

Fig 7B and 7C. Here, we notice that DGP3 generates an estimate of the relative transmission

rate and the effective reproduction number with narrow uncertainty intervals in comparison

with those generated by the other DGPs. This apparent precision is the result of committing to

a particular form of non-linear model, which imposes a stringent constraint in the shape of the

transmission rate. By choosing the 4th-order information delay structure, we implicitly discard

the possibility for the other formulations to be true, reducing the uncertainty in the estima-

tions. However, we demonstrated that the nine delay orders account similarly for the incidence

data, and to various degrees of accuracy, for the mobility data. Thus, we interpret the wide
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intervals generated by DGP1 and DGP2 as the uncertainty in the delay order plus the measure-

ment error. This interpretation suggests that DGP3’s plausible model candidates are subsumed

under DGP1 and DGP2.

To conclude with this comparative analysis, we reflect on the role of DGPs presented in this

paper. Owing to its flexible formulation, we can employ DGP1 for both retrospective and near

real-time analysis (at least for the period where demographic processes do not significantly

Fig 7. Comparison of predicted latent states. In this plot, predicted values stem either from the filtering distribution

(DGP1 and DGP2) or the posterior predictive distribution (DGP3). Here, DGP3’s process model corresponds to the

structure that describes the transmission rate in terms of a 4th-order information delay. Further, solid lines indicates

the median, and the ribbons represent the 95% CI. (A) Comparison between predicted incidences by DGP (solid lines

and ribbons) and weekly detected COVID-19 cases (rhombi) in Ireland during the first wave. (B) Comparison between

predicted relative transmission rates by DGP (solid lines and ribbons) and Apple’s driving mobility indexes (points) in

Ireland during the first wave. (C) Predicted effective reproductive numbers by DGP (solid lines and ribbons) during

Ireland’s first COVID-19 wave. The dashed horizontal line denotes the epidemics threshold.

https://doi.org/10.1371/journal.pcbi.1010206.g007
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impact the dynamics of the pandemic). In contrast, DGP2 and DGP3 formulations are con-

text-dependent, restricted to retrospective analyses. Under this last role, we note that common

patterns emerge from the three DGPs. Notwithstanding structural differences, all of them pro-

duce accurate fits to the incidence data (Fig 7A). Naturally, the stochastic process models repli-

cate every feature in the data, whereas the deterministic one captures the underlying trend.

Furthermore, the estimated medians for the relative transmission and the effective reproduc-

tion number (Fig 7B and 7C) tell similar stories. That is, individuals gradually decreased their

movements following public health advice, which led to a decline in the transmission rate.

This reduction pulled <t below the epidemics threshold, causing the incidence rate to subside.

It should be noted that this mobility reduction levels off later in Ireland’s first wave, suggesting

a limit on the effectiveness of the implemented policies. We interpret this limit as the mini-

mum mobility required for running essential services.

Finally, even though the primary interest of this work has been on estimating the effective

reproduction number (<t), a by-product from this inference process is the approximation of

the basic reproductive number (<0). This widely accepted metric [59] is defined as the aver-

age number of secondary infections produced when one infected individual is introduced

into a totally susceptible population [3]. In the context of Ireland’s COVID-19 epidemic, we

derive similar <0 estimates from the three DGPs (DGP1: 95% CI[4.5—6.9], DGP2: 95% CI

[4.4—6.8], DGP3: 95% CI[5.8—7.0]). These estimates are in close agreement with a previous

modelling study on the COVID-19 pandemic in Ireland [35], albeit well above the initially

reported <0 = 2.2 value from Wuhan [60]; a value that has been adopted as the reference

point by the World Health Organization and other research groups [15, 61]. Other streams

of research, however, argue that the initial estimate was low [62], and instead, advocate for

higher values (4.5 [62]; 4.7—6.6 [63]). Moreover, the reader should recall that <0 is a con-

text-dependent metric, and variations are expected due to population heterogeneity (e.g.,

age, spatial location, host genetics). In any case, we acknowledge the limitations that stem

from the calibration of homogeneous population models, which require high <0 values to

achieve accurate fits [17]. To address such limitations, future research should test the impact

of disaggregating (by age or location) the structures presented in this paper. Another

research avenue could explore the effect of replacing the deterministic rates in the within-

host profile of these DGPs with stochastic ones that account for demographic and environ-

mental effects.

Materials and methods

SEI3R profile

This within-host profile (Eqs 14–20) is formulated based on the work from Davies and col-

leagues [15]. Here, we assume that individuals are initially susceptible (S) and become exposed

(E), at a rate λ, after effective contact with an infectious person (I, P, A). After a latent period

(σ−1), exposed individuals follow one of two paths. With probability ω, following a period (η−1)

of preclinical infectiousness (P), individuals develop full symptoms while transmitting the

pathogen. This stage is known as the clinical infection state and lasts for γ−1 days. On the sec-

ond path, with probability 1−ω, individuals enter a subclinical state (A) with none (asymptom-

atic) or mild symptoms (paucisymptomatic), who are not captured by the healthcare system.

Individuals on this path recover after κ−1 days and are relatively (μ) less infectious than their

counterparts on the clinical path. Finally, individuals from both paths eventually converge to

the recovered state (R), in which they are no longer infectious and are immune to re-infection.

In S2–S6 Text, we provide the values for fixed parameters and initial states and their respective
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sources.

dS
dt
¼ � Stlt ð14Þ

dE
dt
¼ Stlt � sEt ð15Þ

dP
dt
¼ osEt � ZPt ð16Þ

dI
dt
¼ ZPt � gIt ð17Þ

dA
dt
¼ ð1 � oÞsEt � kAt ð18Þ

dR
dt
¼ kAt þ gIt ð19Þ

lt ¼
btðPt þ It þ mAtÞ

Nt
ð20Þ

Basic and effective reproductive number

To derive an analytical expression for the basic reproduction number (<0) from the SEI3R

profile, we employ the next generation matrix method [64]. That is, we rewrite the infected

states’ transitions (rates) in the form of two matrices. The first matrix F corresponds to the

rate of appearance of new infections in each compartment of infected individuals, and the sec-

ond matrix V corresponds to the rate of other transitions between compartments of infected

individuals. From these matrices, we define the next generation matrix as FV� 1
, whose largest

eigenvalue (spectral radius) corresponds to <0 [65]. We obtain the spectral radius’s analytical

solution (Eq 21) using the software system Mathematica (see Github repository). Following

this expression, we can define (Eq 22) the effective reproductive number (<t) as the product

between <0 and the susceptible fraction (
St
Nt

).

<0 ¼ zZ0½ogþ Zþ ð1 � oÞmk� ð21Þ

<t ¼ <0

St

Nt
ð22Þ

Filtering distribution

pðxtjy1:t� 1Þ ¼
R

pðxtjxt� 1Þpðxt� 1jy1:t� 1Þdxt� 1 ð23Þ

pðxtjy1:tÞ ¼
pðytjxtÞpðxtjy1:t� 1Þ

pðytjy1:t� 1Þ
ð24Þ

The essence of the state-space approach is to estimate the state of a dynamical system using a
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sequence of noisy measurements made on the system. We formulate this problem in terms of

a recursive filter whose purpose is to construct the state’s posterior probability density function

(pdf) based on all available information, including the set of received measurements [33]. For-

mally, p(xt|y1:t). We refer to this pdf as the filtering distribution, whose inference process con-

sists of two stages: prediction and update.

The prediction stage (Eq 23) draws on the plug-and-play property [17] to generate, from

simulations of the process model p(xt|xt−1), a vector of predictions that describe the state at

time t (xt), which are conditional on the previously estimated state (xt−1|yt−1). Then, the update

operation (Eq 24) uses the latest measurement to modify the prediction pdf (p(xt|y1:t−1)). In

practice, we assign weights to the prediction vector based on its plausibility, which is estimated

from the measurement model p(yt|xt). With these weights, we use the Sequence Importance

Sampling algorithm [42] to produce samples that describe the filtering distribution. It is

important to remark that this is a sequential process (hence the name Sequential Monte

Carlo), executed every time a measurement is received. Moreover, in this simplified formula-

tion, it is assumed that X0 and θ (Eqs 1 and 2) are known. We refer the interested reader to [30,

33] for a complete treatment of this approach.
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