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Abstract: Açaí, lychee, mamey, passion fruit and jackfruit are some lesser-consumed tropical fruits
due to their low commercial production. In 2018, approximately 6.8 million tons of these fruits were
harvested, representing about 6.35% of the total world production of tropical fruits. The present work
reviews the nutritional content, profile of bioactive compounds, antioxidant and anti-inflammatory
capacity of these fruits and their by-products, and their ability to modulate oxidative stress due to
the content of phenolic compounds, carotenoids and dietary fiber. Açaí pulp is an excellent source
of anthocyanins (587 mg cyanidin-3-glucoside equivalents/100 g dry weight, dw), mamey pulp is
rich in carotenoids (36.12 mg β-carotene/100 g fresh weight, fw), passion fruit peel is rich in dietary
fiber (61.16 g/100 dw). At the same time, jackfruit contains unique compounds such as moracin
C, artocarpesin, norartocarpetin and oxyresveratrol. These molecules play an important role in the
regulation of inflammation via activation of mitogen-activated protein kinases (including p38, ERK
and JNK) and nuclear factor κB pathways. The properties of the bioactive compounds found in these
fruits make them a good source for use as food ingredients for nutritional purposes or alternative
therapies. Research is needed to confirm their health benefits that can increase their marketability,
which can benefit the primary producers, processing industries (particularly smaller ones) and the
final consumer, while an integral use of their by-products will allow their incorporation into the
circular bioeconomy.

Keywords: mamey; lychee; jackfruit; açaí; passion fruit; immunomodulatory; phenolics; antioxidants;
bioactive compounds

1. Introduction

The search for a healthier lifestyle has led to increased consumption of fruits, vegeta-
bles, and functional foods. Several studies indicate that diets rich in fruits and vegetables
positively correlate with improved health, due to a reduced risk of cancer, obesity, in-
flammatory conditions, and cardiovascular diseases, in addition to their high nutritional
value [1–4]. Fruits and vegetables are rich sources of fiber, vitamins, minerals, and bioac-
tive compounds such as phenolic compounds, carotenoids, and betalains. Recently, these
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compounds and the foods that contain them have been the focal point of researchers due to
their beneficial health effects [5,6].

Tropical fruits are regularly cultivated in the geographical zones that stretch from lati-
tude 23◦27′ N to 23◦27′ S, while some can also be found at 37◦ N, such as in southern Spain.
Temperatures in these areas differ, averaging 25 ◦C throughout the year and oscillating
from 16 to 36 ◦C [7,8]. The economic value and popularity of tropical fruits are varied, as
some are more known and consumed, while others are less known and less consumed [9].
Global production of main tropical fruits was approximately 100.2 million tons in 2018,
with mango, pineapple, papaya, and avocado being the most important (52, 28, 14 and
6%, respectively), in addition to bananas (114 million tons in 2017). However, minor,
less known, and less consumed tropical fruits are several, and some of the important
ones, depending on the geographical zones, include jackfruit (Artocarpus heterophyllus),
lychee (Lychee chinensis) , passion fruit (Passif lora edulis Sims F . f lavicarpa),
açaí (Euterpe oleraceae) and mamey (Pouteria sapota (Jacq.) H. E. Moore & Stearn), which
accounted for an annual production in 2017 of 3.7 million, 3.3 million, 1.5 million, 1.4 million
and 14.66 million tons, respectively [10–16].

In contrast to the highly consumed fruits, lesser-consumed tropical fruits are not widely
traded, but cultivated and consumed mostly locally or regionally. However, their economic
and traditional values and consumption are very important in their original cultivation
regions [9]. Only a minor percentage of the production of these lesser-consumed tropical
fruits is traded in distant export markets; knowledge of these is scarce, and consumption is
very low outside the areas where they are cultivated. Lately, their production and trade are
gaining global importance, especially due to their health benefits. In producing regions,
lesser-consumed tropical fruits play an important role, on food and nutrition security and
as a source of income for local producers. Available household surveys from key producing
areas indicate that the revenue from these fruits can account for up to 75 percent of the
entire income of small rural households [14]. Thus, there is a need to focus on these fruits,
which the present work aims to provide, while also considering the bioactive content of
their byproducts, since they are minimally considered, as compared to the edible pulp.

Açaí grows in palms in the Brazilian Amazon and South America and is characterized
by significant contents of anthocyanins, oleic acid, fiber, and phytosterols. In Brazil, the
consumption of its juice is approximately 2 L per day [17]. Lychee is found mainly in
Southeast Asia (particularly in China, Indonesia, Vietnam, and Thailand), where it is
known by several names, including Chinese cherry, mountain lychee, or water lychee [18].
Mamey, a member of the Sapotaceae family, is native to Mexico, but tropical and subtropical
cultivars can also be found in Central America and some Asian countries [19]. Passion fruit
is native to Brazil, whose production is mainly used to produce juices and beverages, while
its peel is used to produce flour and as a functional food ingredient [20]. Jackfruit, which
belongs to the Moraceae family, is native to India but has been introduced to several tropical
regions worldwide, including Mexico. Its fruits are large, reaching up to more than 50 kg,
available all year, but production peaks are in June and December [21,22].

The health benefits of consuming the less-known tropical fruits are not fully understood,
partly because they have been poorly studied. However, they have been correlated with
interactions between their phytochemicals and key enzymes, cytokines and transcription
factors involved in several signaling cascades. In addition, their effects on the antioxidant
system are also significant since they can maintain and re-establish homeostasis [5,11,23,24].

It has been reported that by-products from lesser-consumed tropical fruits have several
bioactive compounds, such as açaí seed, which can prevent weight gain, adiposity, and
dyslipidemia, according to in vivo data (male mice, C57BL/6) [25]. Lychee peel has consid-
erably higher amounts of phenolic compounds and scavenging capacity than other parts of
the fruit. At the same time, its seeds prevent the growth of cancerous cells, in addition to
antihyperglycemic, antihyperlipidemic, antiplatelet, and antiviral activities [26,27]. Jackfruit
peel extracts have shown a high total flavonoid content, which correlates with its high
antioxidant activity (AOXA) against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical [28].
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Using different by-products from lesser-known tropical fruits as food ingredients is an
area of interest for further research. In this sense, passion fruit peel (PFP) supplementation is
considered an important source of dietary fiber. Studies in humans demonstrated that a diet
supplemented with passion fruit peel (PFP) flour could improve metabolic parameters, such
as reducing fasting glycemia and glycated hemoglobin in type 2 diabetic individuals, as
well as reducing fasting glycemia and triglyceride levels in hypercholesteremic women [29].
It was recently found that mamey is a potential source of pro-vitamin A carotenoids
(pulp) and dietary fiber (peel).Still, their use as a food ingredient is distant from being
commercially available, since there are no reports of actual research because of their small
cultivation area [30,31]. In this sense, some commercially available products have been
developed from different by-products, but they are not widely accessible worldwide, such
as the case of PFP flour developed in Brazil, jackfruit peel and pulp flour in India, lychee
seed oil in China, mamey seed oil in several local markets in Mexico, and newly developed
açaí seed powder in the United States.

Therefore, the present review analyses the nutritional composition and content of bioac-
tive compounds in lesser-consumed tropical fruits, their by-products (peel and seed), and
their antioxidant and anti-inflammatory potentials. The information discussed herein will be
useful to understand their possible health benefits. It will serve to increase their consumption,
as well as to promote the use of their by-products, which are currently underutilized.

2. Methods and Data Collection

Science Direct, Google Scholar, Scopus and Springer databases were used to find
information on the composition and bioactivities of lesser-consumed tropical fruits and
their by-products. Keywords such as “common and scientific name of the fruit” + peel,
pulp, flesh, pomace, seed and by-products, phenolic compounds and bioactivities were
used for the data search. Alternatively, the most characteristic bioactive compound present
in a fruit were searched with the terms “antioxidant” and “anti-inflammatory”. The data
search also included the words “exotic fruits” and “Amazonian fruits” because several
sources include these fruits without listing their names in the title or key words.

3. Chemical Composition of Peel, Seed, and Pulp of Lesser-Consumed Tropical Fruits

Figure 1 shows each tropical fruit’s percentage of pulp, peel, and seed, while Table 1
shows their nutritional composition. Açaí seed is approximately 85 to 90% of the fruit’s
weight, with its pulp (10%) and peel (2%) comprising the rest. Its pulp contains a high
percentage of dietary fiber, carbohydrates, and lipids, while also being a good source of
minerals such as calcium, iron, magnesium, and phosphorus. This fruit is also character-
ized by phenolic compounds, particularly anthocyanins, and some carotenoids, such as
α-carotene, β-carotene, lutein, and zeaxanthin (Tables 1 and 2) [32–35].

Mamey contains mostly pulp (approximately 70%), with its peel and seed making up a
minor percentage of its composition. Its peel is rich in dietary fiber (61.43 g/100 g dw), as com-
pared to the pulp (21.50 g/100 g dw). Its pulp has an energy content of 1287 KJ/100 g dw [31],
while the seed is rich in monounsaturated and polyunsaturated fatty acids.

Peel is the major component of passion fruit (approximately 64%), followed by pulp and
seed. Its seed is rich in dietary fiber, with a 2:1 ratio of insoluble-to-soluble fiber, followed by
protein and lipids. Its fatty acid profile is high in polyunsaturated fatty acids. Its pulp and peel
contain mostly carbohydrates, while some of its most representative bioactive compounds
include vitamin E and some carotenoids such as lycopene and β-carotene [11,36–38].

Lychee seed and peel have similar caloric densities, while the peel is also noteworthy
for its high dietary fiber content. Minerals such as calcium, iron, magnesium, phosphorus,
and potassium are also found in lychee. Its profile of bioactive compounds is character-
ized by vitamin C in all tissues, with the highest concentration in the peel. Its content
of β-carotene in pulp and peel also stands out with 291.4 and 195.09 µg of β-carotene
equivalents/100 g dw, respectively [39,40].
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Jackfruit can weigh between 10 and 50 kg when ripe, with most of its weight (59%)
concentrated in the peel, followed by pulp and seed [41]. Its pulp contains up to 25%
of carbohydrates and low protein content, and it is a good source of minerals such as
potassium, magnesium, iron, and calcium [21].

Most lesser-consumed tropical fruits and their by-products are rich in bioactive com-
pounds such as dietary fiber, vitamins, minerals and phenolic antioxidants, and their
consumption could have positive health effects that can contribute to prevent some dis-
eases. The addition of these fruits to different dishes, as well as a food ingredient in the
development of new food products, is a current trend, for example, in meat products,
breakfast cereals, and bakery products, among others [42].

Table 1. Nutritional composition of pulp, seed, and peel of mamey, açaí, passion fruit, lychee, and jackfruit.

Component Mamey Açaí Passion Fruit Lychee Jackfruit

Water PP: 61.53 ± 0.42% [43] PP: 3.4 g/100 g dw [44]
SD: 57.09 g/100 g fw
PL: 87.14 g/100 g fw
PP: 90.06 g/100 g fw [36]

PL: 68.93 g/100 g
PP: 83.91 g/100 g
SD: 47.11 g/100 g [45]
PP: 80.7% [39]

PP: 72-94 g/100 g fw [46]
SD: 51.0-64.5 g/100 g fw [46]

Energy

PP: 1287 ± 26 KJ/100
g dw [31]
PL:632 ± 18 KJ/100
g dw [31]

PP: 77 kcal/100 g fw [47] NR
PP: 70.2 kcal/100 g [39]
SD: 397.4 g/100 g [45]
PL: 343.04 Kcal/100 g [45]

PP: 88-410 KJ/100 g fw [46]
SD: 133–139 KJ/100 g fw [46]

Protein PP: 4.84 ± 0.07 g/100
g dw [31] PP: 8.1-21 g/100 g dw [44]

SD:13.07 g/100 g dw
PL: 3.40 g/100 g dw
PP: 8.57 g/100 g dw [36]

PP: 6.68 g/100 g dw;
0.7% [39,45]
SD: 4.83 g/100 g dw [45]
PL: 10.86 g/100 g dw [45]

PP: 1.2–1.9 g/100 g fw [46]
SD: 20.19% dw [21]

Lipids PP: 2.82 ± 0.66 g/100
g dw [31] PP: 32.5-48 g/100 g dw [44]

SD: 12.31 g/100 g dw
PL: 4.20 g/100 g dw
PP: 1.11 g/100 g dw [36]

PP: 3.80 g/100 g dw;
0.8% [39,45]
SD: 2.77 g/100 g dw [45]
PL: 6.97 g/100 g dw [45]

PP: 0.1-0.4 g/100 g fw [46]
SD: 11.39% dw [21]

Carbohydrates PL: 65.7 ± 0.4 g/100
g dw [31] PP: 36± 4 g/100 g dw [35]

SD: 71.07 g/100 g dw
PL: 85.78 g/100 g dw
PL: 83.37 g/100 g dw [36]

PP: 85.38 g/100 g dw;
15.3% [39,45]
SD: 86.63 g/100 g dw [45]
PL: 85.38 g/100 g dw [45]

PP: 16-25.4 g/100 g fw [46]
SD: 25.8-38.4 g/100 g fw [46]
SD: 51.82% dw [21]

Total dietary fiber
PP: 21.50± 1.13 dw [48]
PP: 22.29 g/100 g dw [31]
PL: 61.43 g/100 g dw [31]

PP: 44.2 g/100 g dw [44]
SD: 65.60 g/100 g dw
PL: 61.16 g/100 g dw
PP: 7.15 g/100 g dw [36]

PP: 2.47 g/100 g; 2.2% [39,45]
SD: 4.07 g/100 g dw [45]
PL: 18.21 g/100 g dw [45]

SD: 7.10% dw [21]

Total sugars PP: 55.81 ± 0.39 [43] NR NR NR NR

Calcium NR PP: 260 mg/100 g dw [44]
SD:0.030 mg/100 g
PL: 0.25 mg/100 g
PP: 0.05 mg/100 g [36]

PP: 1.80 mg/100 g dw [39] SD: 190 ppm dw [21]

Iron PP: 0.0052–0.0262
g/kg [49] PP: 49.8 mg/kg dw [50]

SD:0.0052 mg/100 g
PL: 3.20 mg/100 g
PP: 0.0055 mg/100 g [36]

PP: 0.8 mg/100 g [39] SD: 148.5 ppm dw [21]

Magnesium PP: 0.28–1.21 g/kg [49] PP: 286 mg/kg dw [50]
SD: 0.094 mg/100 g
PL: 0.12 mg/100 g
PP: 0.02 mg/100 g [36]

PP: 12.90 mg/100 g [39] SD: 240 ppm dw [21]

Phosphorus PP: 0.28–0.30 g/kg [49] PP:186± 1.5mg/100gdw[35] PL: 0.310 mg/100 g [36] NR

Potasium PP: 2.26 g/kg [49] PP: 930 ± 9.9 mg dw [35]
SD: 0.760 mg/100 g
PL: 2.60 mg/100 g
PP: 3.8 mg/100 g [36]

PP: 1067.33 mg/100 g [39] SD: 2470.00 ppm dw [21]

Sodium PP: 0.06–0.10 g/kg [49] PP:6.8± 0.7mg/100gdw[35]
SD: 0.0041 mg/100 g
PL: 0.0022 mg/100 g
PP: 0.0014 mg/100 g [36]

PP: 5.9 mg/100 g [39] SD: 398.50 ppm dw [21]

Zinc NR PP: 2.1 mg/100 g dw [35]
SD: 0.0041 g/100 g
PL: 1.00 mg/100 g [36]
PP: 1.9 mg/100 g [23]

PP: 0.22 mg/100 g [39] SD: 40.85 ppm dw [21]
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Table 1. Cont.

Component Mamey Açaí Passion Fruit Lychee Jackfruit

Vitamin C
PP: 29.37± 3.58 mg of
vitamin C/100 g fw [48] PP: <0.1 mg/100 g dw [44] NR PP: 26.9 mg/100 g [39]

PP: 7.0-10.0 mg/100 g fw
SD: 11 mg/100 g fw [46]

Total saturated
fatty acids SD: 39.91 g/100 g [43] NR SD: 14.69 g/100 g [23] NR NR

Total mono
unsaturated
fatty acids

SD: 48.62 g/100 g [43] NR SD: 17.18 g/100 g [23] NR NR

Total
polyunsaturated
fatty acids

SD: 11.35 g/100 g [43] NR SD: 68.12 g/100 g [23] NR NR

SD: seed; PP: pulp; PL: peel; AAE: ascorbic acid equivalents; dw: dry weight; fw: fresh weight; NR: not reported.
Units are shown unmodified from the original sources.
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mamey [43], passion fruit [36], jackfruit [41] and açaí [32]).

4. Phytochemical Content

Phytochemicals are secondary plant metabolites that protect plant tissues against
various biotic and abiotic stresses. Some of them play important roles in human health,
for example, edible plants contain phenolic compounds, carotenoids, and tocopherols,
which are associated with beneficial effects on the prevention of cardiovascular disease risk
factors, inhibition of inflammation, reducing oxidative stress and preventing or delaying
oxidation by scavenging free radicals [51,52]. Recognizing the presence of phytochemicals
in lesser-consumed tropical fruits and their by-products requires knowing their quantities
and diversity to investigate their possible effects on human health, and this is described
in this section. Table 2 describes the content of several bioactive compounds present in
lesser-consumed tropical fruits and their by-products. It should be noted that flavonoids
are the predominant phenolic species present in these fruits and the ones that this review
focuses on the most; however, other minor components may also be present (such as
non-flavonoids), but have been less studied in these fruits.
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4.1. Phenolic Compounds

Phenolic compounds have a common basic structure with significant diversity, which
is precisely why their physicochemical properties are diverse. Complex glycosylation and
polymerization patterns complicate their extraction, purification, and identification and,
therefore, different methods are required for these purposes [53]. Table 3 shows the content
of phenolic compounds found in lesser-consumed tropical fruits and their by-products, as
obtained by different extraction methods.

Jackfruit peel has the highest phenolic content (4804 mg gallic acid equivalents
(GAE)/100 g dw), which is nearly fivefold higher than passion fruit peel (1061.87 mg
GAE/100 g dw) [22,36,40]. Açaí seed can contain up to 49,099 mg GAE/100 g dw, followed
by jackfruit (971 GAE/100 g dw), passion fruit (346.69 mg GAE/100 g dw) and lychee
(34.72 mg GAE/100 g dw) [22,36,40,54].

Açaí pulp also has a high phenolic content, but it has been observed that its highest
concentration is found in unripe fruits (12,317 mg GAE/100 g dw), which gradually
decreases until fully ripe (3437 mg GAE/100 g dw). It has been observed that, in general,
unripe fruit had the highest phenolic content. Passion fruit (1297.31 mg GAE/100 g dw)
and jackfruit pulp (1034–1157 mg GAE/100 g dw) contain lower concentrations, followed
by lychee (20.30 mg GAE/100 g dw) [22,26,36]. Phenolic compounds in mamey have
also been reported to vary by up to 10-fold from unripe (256.3 mg GAE/100 g fw) to
ripe (23.4 mg GAE/100 g fw) fruit, while senescent mamey fruit shows further decreases
(6.6 mg GAE/100 g dw) [55,56].

4.1.1. Phenolic Acids

The highest concentration of phenolic acids is found in mamey and the lowest in
lychee, with the most representative compounds being p-hydroxybenzoic acid in mamey
(484 mg/100 g dw), gallic acid in açaí (6.87 mg/100 g dw) and 5-caffeoylquinic acid in
jackfruit (3.42 mg/100 g dw) [10,11,20,56–61].

4.1.2. Flavonoids

Flavonoids are subclassified as flavanols, flavonols, flavanones, flavones, flavonones and an-
thocyanins. Total flavonoid concentration in lesser-consumed fruits has been reported as 87,140 mg
of quercetin equivalents (QE)/100 g dw, 227 mg QE/100 g dw and 162 mg QE/100 g dw in jack-
fruit peel, pulp, and seed, respectively. Some specific flavonoids have been reported, such as
158.037 mg of rutin equivalents (RE)/L fw in passion fruit pulp, 65.24 mg QE/100 g fw in mamey
pulp, and 7.0 mg RE/100 g fw in açaí pulp [10,28,48,62].

Flavanols

Catechin and epicatechin can be found in mamey, açaí and lychee pulps as repre-
sentative compounds. Reported values of catechin in mamey and lychee are 11.31 and
0.486 mg/100 g fw, respectively. In açaí pulp, catechin values of 5.07 mg/100 g dw have been
reported. For epicatechin, values of 0.58 mg/100 g fw in mamey pulp and 0.498 mg/100 g fw
in lychee pulp have been reported. In açaí pulp, 2.09 mg/100 g dw of epicatechin was re-
ported. Gallocatechin-3-gallate is found in mamey and açaí pulp, while gallocatechin and
catechin-3-O-gallate is found in mamey pulp. A total flavanol content of 50.65 mg/100 g dw
have been reported in açaí pulp [56–58,60,63,64].

Flavonols

Flavonols are found in most of these less-consumed fruits, except for jackfruit, and are signif-
icant in açaí and lychee. For example, rutin (3.89 mg/100 g dw), quercetin (13,566 mg/100 g dw),
isorhamnetin rutinoside (1.7 mg/100 g dw) and kaempferol (0.521 mg/100 g dw) are found in
açaí pulp, along with others. In mamey pulp, dihydromyricetin (200.77 ppm fw) was reported,
as well as myricitrin (25.48 ppm fw) [10,59,60,63].
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Flavones

Flavones have been identified in açaí pulp, where orientin and isovitexin stand out,
with 15.0 and 12.0 mg/100 g dw, respectively. Passion fruit peel also contains isoorientin,
with 19.63 mg/100 g dw and its pulp has 16.226 mg/L fw [10,11,62]. This phenolic species
is widely spread in the plant kingdom and has been reported in several fruits, vegetables,
cereals, legumes, and wines [65]. Nevertheless, no studies have been addressed to identify
and quantify them in lesser-consumed tropical fruits such as lychee, mamey, jackfruit or
their by-products.

Anthocyanins

Açai pulp is characterized by its abundant anthocyanin content (587 mg cyanidin-3-glucoside
equivalents/100 g dw), although significant variation is common. This is attributed to the fruit’s
high perishability and anthocyanins’ susceptibility to degradation, different extraction, and quan-
tification methods, in addition to seasonal, geographic and ripeness variation [66]. Pelargonidin-
3-glucoside and cyanidin-3-glucoside are among the most representative compounds, with
111.92 and 67.33 mg/100 g dw, respectively [17,60,67,68]. While mamey and jackfruit contain
5.57 and 0.46 mg of total anthocyanins (TA)/100 g fw, respectively [48,69].

4.2. Carotenoids

Carotenoids are an important and widespread type of phytochemicals found in plants
and plant-derived food, bacteria, fungi, and animals, with several health-promoting prop-
erties attributed to them. They are tetraterpene pigments, of which more than 700 have
been identified in nature [70,71]. Carotenoids are commonly found in lesser-consumed
tropical fruits and their by-products.

Carotenoid content in mamey, passion fruit and jackfruit have been reported as
36.12 mg β-carotene/100 g fw, 25.10 mg/100 g fw and 0.592 mg/100 g fw, respectively.
In açaí, concentrations of 4.23 mg/100 g dw have been reported [17,41,48,72]. Açaí con-
tains lutein, α-carotene, 13-cis-β-carotene, and 9-cis-β-carotene [17,67]. Jackfruit pulp
contains trans-lutein (24–44%), trans-β-carotene (24–30%), trans-neoxanthine (4–19%),
9-cis-neoxanthine (4–9%), and 9-cis-violaxanthin (4–10%) [6,73].

Mamey is distinguished for its carotenoid composition, since sixty-two carotenoids
and carotenoid esters in saponified and non-saponified mamey pulp extracts have been
identified. Likewise, twenty-three compounds that belong to seventeen different chemical
classes of carotenoids have been identified. The most representative molecules include
neoxanthin, cryptocapsin, luteoxanthin and capsoneoxanthin [19,70].

Mamey is also notable for its carotenoid content with a kappa terminal group, which
are not very common; the kappa ring is usually hydroxylated, such as in capsanthin,
capsorubin, and cryptocapsin. Studies suggest that mamey contains two enzymes that
carry out the biosynthesis of kappa-carotenoids, one that catalyzes the epoxidation of the
non-hydroxylated β-ring and another that reorganizes the epoxides [30,74]. As noted,
lesser-consumed tropical fruits are a significant source of carotenoids, which is of interest
because of the bioactivities these compounds can perform. Evidences indicate that these
phytochemicals contribute to the decrease in the incidence of diseases and protect against
the recurrence of pathological events [63,71].
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Table 2. Phytochemical content in the pulp, seed, and peel of mamey, açaí, passion fruit, lychee, and jackfruit.

Phenolic Acids

Phytochemical Content

Gallic acid
Mamey PP: 0.47 mg/100 g fw [56]; 1.92 mg/100 g dw [57]; 170.91 ± 0.53 ppm fw [63]
Açaí PP:6.87 ± 0.28 mg/100 g dw [60]
Lychee: cv Qingke: 0.1055, cv Baila: 0.063, cv Jizui: 0.048 mg/100 g fw [58]

p-hydroxybenzoic acid

Mamey PP: 484 mg/100 g dw [63]
Açaí PP: 1.0 ± 0.8 mg/100 g dw [10]
Passion fruit: 0.0124 ± 0.0011 mg/100 g fw [11]
Jackfruit PP: 19.978 ± 1.66 mg/g dw [75]

Protocatechuic acid Açaí PP: 0.717 ± 0.054 mg/100 g [59]; PP: 1.7 ± 0.4 mg/100 g dw [10]
Protocatechuic acid hexoside PP: 0.9 ± 0.6 mg/100 g dw [10]

Chlorogenic acid
Açaí PP: 0.909 ± 0.102 mg/100 g [59]; PP: 5.01 ± 0.78 mg/100 g dw [60]
Passion fruit: 0.0183 ± 0.002 mg/100 g fw [11]
Lychee: cv Qingke:0.008, cv Baila: 0.0219, cv Jizui: 0.064 mg/100 g fw [58]

Caffeic acid
Açaí PP: 0.238± 0.018 mg/100 g [59]; PP: 0.61± 0.22 mg/100 g dw [60]; PP: 1.9± 0.8 mg/100 g dw [10]
Passion fruit: 0.0056 ± 0.0005 mg/100 g fw [11]
Lychee: cv Qingke: 0.0621, cv Baila: 0.0576, cv Jizui: 0.114 mg/100 g fw [58]

Vanillic acid Açaí PP: 4.655 ± 0.233 mg/100 g [59]; PP: 11.0 ± 5.8 mg/100 g dw [10]
Passion fruit: 0.0426 ± 0.0029 mg/100 g fw [11]

Syringic acid Açaí PP: 1.903± 0.120 mg/100 g [59]; PP: 1.62± 0.37 mg/100 g dw [60]; PP: 4.8± 1.1 mg/100 g dw [10]
Lychee PP: 3.96 ± 0.95 µg/g fw [76]

Synapic acid Açaí PP: 0.082 ± 0.010 mg/100 g [59]

p-coumaric acid
Açaí PP: 0.22 ± 0.015 mg/100 g [59]; PP: 1.74 ± 0.33 mg/100 g dw [60]
Passion fruit: 0.024 ± 0.0015 mg/100 g fw [11]
Lychee PP: 0.894 ± 0.119 mg/g dw [76]

Ferulic acid
Açaí PP: 0.322 ± 0.020 mg/100 g [59]
Passion fruit: 0.0015 ± 0.0003 mg/100 g fw [11]
Lychee PP: 6.26 ± 1.01 µg/g fw [76]

Kaftaric acid Açaí PP: 0.86 ± 0.10 mg/100 g dw [60]

5-caffeoylquinic acid
Açaí PP: 4.3 mg/100 g dw [10]
Passion fruit PP: 0.0104 mg/100 g [61]
Jackfruit PP: 3.42 ± 0.04 mg/100 g [20]

4-caffeoylquinic acid Passion fruit PP: 0.012 mg/100 g [61]
Jackfruit 0.144 ± 0.004 mg/100 g [20]

3,5-dicaffeoylquinic acid Passion fruit PP: 0.0576 mg/100 g [61]
Jackfruit PP: 0.131 ± 0.01 mg/100 g [20]

4,5-dicaffeoylquinic Acid Passion fruit PP: 0.0587 mg/100 g [61]
Jackfruit PP: 0.050 ± 0.004 mg/100 g [20]

p-coumaric acid, hexoside Açaí PP: 1.0 ± 0.5 mg/100 g dw [10]
Isomer 1 of feruloyl sinapic acid Açaí PP: 1.3 ± 0.6 mg/100 g dw [10]
Feruroylhydroxypyruvic acid Açaí PP: 1.4 ± 0.5 mg/100 g dw [10]
Isomer 1 of caffeoyl shikimic acid Açaí PP: 1.7 ± 1.5 mg/100 g dw [10]
Isomer 2 of feruloyl sinapic acid Açaí PP: 0.8 ± 0.3 mg/100 g dw [10]
Isomer 2 of caffeoyl shikimic acid Açaí PP: 5.4 mg/100 g dw [10]
Sinapoyl hexose Açaí PP: 1.0 ± 0.8 mg/100 g dw [10]
Feruloylquinic hydroxy acid Açaí PP: 0.7 ± 0.4 mg/100 g dw [10]
Sinapoyl rhamnose Açaí PP: 1.4 ± 0.9 mg/100 g dw [10]
Feruloyl derivative Açaí PP: 2.3 ± 0.7 mg/100 g dw [10]
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Table 2. Cont.

Phenolic Acids

Phytochemical Content

Flavanols

Catechin
Mamey PP: 0.99 -11.31 mg/100 g fw [56]; 75.01 ± 2.67 ppm fw [63]
Açaí PP: 5.07 ± 0.48 mg/100 g dw [60]
Lychee cv Qingke: 0.486, cv Baila: 0.246, cv Jizui: 0.215 mg/100 g fw [58]

Galocatechin-3-gallate Mamey PP: 1.19 mg/100 g fw [56]
Açaí PP: 25.00 ± 0.64 mg/100 g dw [60]

Gallocatechin Mamey PP: 172.85 ± 2.21 ppm fw [63]
Lychee PP: 2307.91 ± 66.76 µg/g fw [76]

Catechin-3-O-gallate Mamey PP: 80.50 ± 0.81 ppm fw [63]

Epicatechin

Mamey PP: 0.58 mg/100 g fw [56];0.78 mg/100 g dw [57]; 24.42 ± 0.97 ppm fw [63]
Açaí PP: 2.03 ± 0.09 mg/100 g dw [60]
Lychee cv Qingke: 0.498, cv Baila: 0.393, cv Jizui: 0.249 mg/100 g fw [58]; PP: cv Hemaoil:
0.0425, cv Feizixiao: 0.0196, cv Lanzuhu: 0.008 mg/100 g dw [64]

Flavonols

Flavonoids

Mamey PP: 65.24 ± 4.49 mg quercetin/100 g fw [48]
Passion fruit PP: 158.037 ± 0.602 mg/L fw [62]
Jackfruit PL: 279 ± 4; PP: 227 ± 31; SD: 162 ± 10 mg quercetin/100 g dw [22]; PL: 87,140 mg
QE/100 g dw [28]

Rutin

Açaí PP: 3.89 ± 0.15 mg/100 g dw [60]; PP: 3.4 ± 0.7 mg/100 g dw [10]
Passion fruit PP: 0.0227 ± 0.0027 mg/100 g fw [11]
Lychee cv Qingke: 0.591, cv Baila: 0.563, cv Jizui: 1.888 mg/100 g [58]; PP: cv Hemaoil: 0.009,
cv Feizixiao: 0.065, cv Lanzuhu: 0.023 mg/100 g dw [20]

Isorhamnetin rutinoside Açaí PP: 1.7 ± 0.3 mg/100 g dw [10]
Dihydromyricetin Mamey PP: 200.77 ± 11.73 ppm fw [63]
Myricitrin Mamey PP: 25.48 ± 3.70 ppm fw [63]

Quercetin
Açaí PP: 13.566 ± 0.098 mg/100 g dw [59]
Passion fruit PP: 0.0416 ± 0.0006 mg/100 g fw [11]
Lychee PP: 1.325 ± 0.007 mg/g dw [76]

Quercetin-3-glucoside Açaí PP: 1.54 ± 0.34 mg/100 g dw [60]
Kaempferol Açaí PP: 0.521 ± 0.036 mg/100 g dw [59]

Flavanones

Naringenin Açaí PP: 1.64 ± 0.48 mg/100 g dw [60]
Hesperidin Açaí PP: 1.96 ± 0.51 mg/100 g dw [60]

Flavones

Isovitexin Açaí PP: 12.0 ± 4.8 mg/100 g dw [10]
Passion fruit PP: 2.76 mg/100 g dw [20]

Homoorientine Açaí PP: 9.9 ± 4.9 mg/100 g dw [10]
Vitexin Açaí PP: 9.8 ± 5.2 mg/100 g dw [10]
Escoparina Açaí PP: 0.6 ± 0.2 mg/100 g dw [10]
Chrysoeriol Açaí PP: 0.5 ± 0.3 mg/100 g dw [10]

Orientin Açaí PP: 15.0 ± 6.3 mg/100 g dw [10]
Passion fruit PL: 0.970 mg/100 g dw [20]

Isoorientin Passion fruit PL: 19.63 mg/100 g dw [62]; PP: 16.226 ± 0.050 mg/L fw [11]
Luteolin Açaí PP: 2.161 ± 0.216 mg/100 g [59]; PP: 0.9 ± 0.3 mg/100 g dw [10]
Apigenin Açaí PP: 1.257 ± 0.134 mg/100 g [59]

Flavonones

Taxifolin deoxyhexose isomer 1 Açaí PP: 2.8 ± 1.7 mg/100 g dw [10]
Taxifolin deoxyhexose isomer 2 Açaí PP: 1.3 ± 0.7 mg/100 g dw [10]
Taxifolin Açaí PP: 1.2 ± 0.4 mg/100 g dw [10]
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Table 2. Cont.

Phenolic Acids

Phytochemical Content

Anthocyanins

Malvidin-3-glucoside Açaí PP: 6.9 ± 0.82 mg/100 g dw [60]
Malvidin-3.5-diglucoside Açaí PP: 11.51 ± 1.37 mg/100 g dw [60]
Cyanidin-3-glucoside Açaí PP: 67.33 ± 1.06 mg/100 g dw [60]; PP: 0.13–541.5 mg/100 g fw [44]
Cyanidin-3-rutinoside Açaí PP: 2.57–1395.3 mg RAE/100 g fw [44]
Pelargonidin-3-glucoside Açaí PP: 111.92 ± 3.04 mg/100 g dw [60]
Peonidin-3-glucoside Açaí PP: 1.32 ± 0.29 mg/100 g dw [60]

Total anthocyanins

Mamey: PP: 5.57 ± 0.07 mg TA/100 g fw [48]
Açaí PP: 35.41 mg of cianidine-3-glucoside equivalent/100 g fw [68]; PP: 587 ± 53 mg
cyanidin-3-glucoside equivalents/100 g of dw [67]
Jackfruit PP: 0.46 mg TA/100 g fw [69]

Proanthocyanidins

Procyanidin B1 Açaí PP: 1.99 ± 0.36 mg/100 g dw [60]

Procyanidin B2 Açaí PP: 5.03 ± 0.4 mg/100 g dw [60]
Lychee PP: cv Hemaoil: 39.93, cv Feizixiao: 0.032, cv Lanzuhu: 0.017 mg/100 g dw [20]

Procyanidin A2 Açaí PP: 11.53 ± 1.53 mg/100 g dw [60]
Lychee PP: cv Hemaoi: 0.018, cv Feizixiao: 0.001 mg/100 g dw [20]

Stilbenes

trans-resveratrol Açaí PP: 0.38±0.14 mg/100 g dw [60]

Carotenoids

Neoxanthin Mamey PP: Genotype 8747: 1.024 ± 0.263, Genotype 11,129: 0.370 ± 0.099 mg/100 g dw [19]
Jackfruit PP: All-trans-neoxanthin: 8.85 µg/100 g wm; 9-cis-neoxanthin: 6.87 µg/100 g [73]

Lycopene Lychee SD: 0.0043 mg/100 g [77]
Violaxanthin Mamey PP: Genotype 8747: 0.360 ± 0.119, Genotype 11,129: 0.164 ± 0.057 mg/100 g dw [19]
Luteoxanthin Mamey PP: Genotype 8747: 0.569 ± 0.163, Genotype: 11,129: 0.180 ± 0.0 80 mg/100 g dw [19]

Lutein and zeaxanthin

Açaí PP: 0.367 ± 0.142 mg/100 g dw [17]; PP: 0.717 mg/100 g dw [44]
Passion fruit Lutein; PL: 0.504 mg/100 g dw [36]; Zeaxanthin; PL: 0.065 mg/100 g dw [36]; PP:
0.044 mg/100 g dw [36]
Passion fruit PP: All-trans-lutein: 37.02 µg/100 g fw; All-trans-zeaxanthin: 0.96 µg/100 g fw [75]

Capsoneoxanthin Mamey PP: Genotype: 8747: 1.428 ± 0.402, Genotype: 11,129: 0.454 ± 0.170 mg/100 g dw [19]

α-Carotene Açaí PP: 0.450 ± 0.002 mg/100 g dw [17]
Jackfruit PP: All trans-αcarotene: 1.24 µg/100 g fw [73]

β-cryptoxanthin epoxide
Mamey PP: Genotype 8747: 0.208 ± 0.058, Genotype 11,129: 0.042 ± 0.020 mg/100 g dw [19]
Passion fruit PL: 0.075 mg/100 g dw [36]; PP: 0.254 µm/100 g dw [36]
Jackfruit PP: 1.21 µg/100 g fw [73]

13-cis-β-Carotene Açaí PP: 0.055 ± 0.037 mg/100 g dw [17]
Jackfruit PP: 2.45 µg/100 g fw [73]

9-cis-β-Carotene Açaí PP: 0.365 ± 0.002 mg/100 g dw [17]
Jackfruit PP: 0.79 µg/100 g fw [73]

β-Carotene

Mamey 1.2–1.5 mg β-carotene/100 g [78]
Açaí PP: 0.010–0.149 mg/100 g dw [44]
Passion fruit PL: 0.272; PP: 1.334 mg of β-carotene equivalents mg/100 g dw [36]
Lychee SD: 2.77 mg/mL [77]; PL: 195.09 mg/mL [39]; PP: 0.291 mg of β-carotene
equivalents/100 g fw [39]
Jackfruit PP: All trans-β-carotene 29.55 µg/100 g fw [73]

Total carotenoids

Mamey PP: Genotype 8747: 8.076, Genotype 11,129: 3.786 mg/100 g fw [19]; PP: 36.12 ± 1.24
mg β-carotene/100 g fw [48]; PP: 1.127 ± 0.005 mg β-carotene/100 g fw [57]
Açaí PP: 4.15 ± 0.41 mg/100 g dw [67]; PP: 4.2345 ± 0.007 mg/100 g dw [17]
Passion fruit PP: 25.10 mg/100 g fw [72]
Jackfruit PP: 0.592 mg/100 g fw [41]; PP: 107.98 µg/100 g fw [73]
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Table 2. Cont.

Phenolic Acids

Phytochemical Content

Tocopherols

Total tocopherols Passion fruit PP: 0.52 mg/100 g fw [72]
δ- Tocopherol Mamey PP: 0.360 ± 0.030 mg/100 g dw [57]

Ascorbic acid

Vitamin C Mamey PP: 29.37 ± 3.58 mg vitamin C/100 g fw [48]
Lychee PP: 34.7 ± 7.8 mg vitamin C/100 g fw [39]

dw: dry weight; fw: fresh weight; PP: pulp; PL: peel; SD: seed; TA: total anthocyanins. Units are shown
unmodified from the original sources.

5. Bioactivities
5.1. Antioxidant Activity (AOXA)

As can be noticed in Table 3, lesser-consumed tropical fruits have shown significant AOXA.
The AOXA of jackfruit, as determined with the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS•) assay, is reported as IC50 = 570, 23 and 762 mg dw/100 mL extract in pulp, peel, and
seed, respectively. The results of DPPH• are reported as 16 µM Trolox equivalents (TE)/100 g fw,
1.25 mg dw/mL and >10 mg dw/mL in pulp, peel, and seed, respectively. In the same way, an
in vitro assay of α-glucosidase inhibition was developed and indicated that peel extract inhibited
about 11.8-fold, as compared to acarbose [22,69]. AOXA values have been reported to positively
correlate with the total phenolic compounds content in jackfruit when using the ABTS• (R = 0.94,
p≤ 0.001) and DPPH• (R = 0.88, p≤ 0.001) assays, higher values than the correlation with ascorbic
acid (R = 0.38 and R = 0.50, respectively) and anthocyanins (R = 0.36 and R = 0.19, respectively),
suggesting that phenolic compounds other than anthocyanins, such as phenolic acids, tannic acid
and proanthocyanidins, may be the most important contributors to the AOXA of this fruit [69].
Therefore, the results reveal the potential of jackfruit peel as a source of natural antioxidants and
hypoglycemic agents.

In vitro assays have shown that extracts from jackfruit pulp have ABTS• radical
scavenging capacity, with an inhibition of 11.7%. Jackfruit extracts have also shown a
greater capacity to inhibit nitric oxide (NO•) (75.3% inhibition) and superoxide anion (O•−)
(46% inhibition) than other fruits that are commonly known as good inhibitors of NO•

and O2
•−, such as blueberries (44.2 and 10%), black raspberry (13.1 and 8.7%), grapes

(66.9 and 43%) and red raspberry (37 and 43%). The capacity of jackfruit pulp extracts to
stabilize DPPH•, ABTS•, NO• and O2

•− has shown positive correlation with total phenolic
content (R = 0.967, 0.621, 0.380 and 0.532), flavonoids (R = 0.30, 0.995, 0.685 and 0.802) and
proanthocyanidins (R = 0.902, 0.755, 0.201 and 0.371). This suggests that the stabilization of
the DPPH• radical is mainly due to the presence of total phenolic compounds, including
proanthocyanidins and the stabilization of the ABTS• radical is due to the presence of the
flavonoids and proanthocyanidins, while the inhibition of NO. and O2

•− is due to the
presence of flavonoids [79].

AOXA of mamey has been reported as 393.81 and 113.06 µmol TE/100 g fw for ABTS• and
DPPH•, respectively, and these values are mainly attributed to the soluble phenolic compounds.
Furthermore, AOXA by the DPPH• method shows that catechin-3-O-gallate and gallocatechin,
both present in mamey, had an IC50 = 19.0 and 20.7 µM, respectively [48,63].

AOXA of açaí pulp has been reported as 5795 and 93,682 µM Trolox/100 g dw according to
the ABTS• and DPPH• assays, respectively. Fruit ripening has been shown to directly influence
AOXA of açaí, where AOXA of unripe (green), intermediate maturity (reddish-brown) and ripe
(dark purple) has been reported as 17.0, 4.04 and 2.78 µM TE/100 g dw, respectively [35].

DPPH• radical scavenging capacity of passion fruit shows that seed extracts had the
lowest IC50 value (49.71 µg/mL), indicating a stronger AOXA than in the peel and pulp,
which had values of 347.6 and 869.05 µg/mL, respectively. According to the ferric reducing
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antioxidant power (FRAP) assay, AOXA varied between 27.50 and 119.32 µM of FeSO4/g,
with seed extracts showing the highest values [11].

Polyphenolic compounds have been intensely studied for their anti-inflammatory
potential during the past century, since during severe inflammation, cells produce several
pro-inflammatory reactive oxygen species (ROS), such as singlet oxygen and NO, while
also activating cyclooxygenases (COX) that produce additional molecules [80–82]. The
anti-inflammatory activities of lesser-consumed tropical fruits and their by-products are
discussed in the following section.

Table 3. Total phenolic compounds present in the pulp, seed, and peel of mamey, açaí, passion fruit,
lychee and jackfruit, and their antioxidant activity.

Sample Extraction
Solvent

Solid:
Liquid Ratio Method

Total Phenolic
Compounds

(mg GAE/100 g dw)
Antioxidant Activity Reference

Jackfruit (peel,
pulp, and seed) 90% methanol 1:30 6 h stir at 100 rpm

PL: 4804 ± 457;
PP:1034 ± 16; Flake:

1157 ± 6
SD: 971 ± 6

IC50 mg dw/mL
DPPH:

PL: 1.25 ± 0.14;
PP > 10;
SD > 10
ABTS

PL: 0.23 ± 0.02;
PP: 5.70 ± 0.37;
SD: 7.62 ± 0.13

[22]

Jackfruit pulp 60% methanol
0.1% HCl 5:10 (w/v) Water bath for 2 h at 85 ◦C 29.0 ± 6.3 fw ABTS 0.63 ± 0.0;

DPPH 0.16 ± 0.03 µM TE/g fw [69]

Passion fruit
seed Ethanol 1:4 (w/v) Homogenized by

exhaustive extraction 346.69 DPPH: IC50 = 1.18 ± 0.03 g/100 mL
ABTS: IC50 = 3.84 ± 0.08 g/100 mL [36]

Passion fruit
seed Ethanol:water 1/10 (w/v) Thermostatic bath under

constant agitation 3.11
DPPH IC50 = 26.96 ± 0.34 µg/mL

FRAP: 3.6 ± 0.29 µg AAE/g
ORAC: 6.2 ± 0.53 µmol TE/g

[23]

Lychee
seed

Methanol:
water (50:50 v/v) NR 3 consecutive refluxes at 80 ◦C 11.45 wm

34.72 NR [40]

Lychee
seed

Ethanol:water
(50:50 v/v) 1:30 (w/v)

Heating to 50 ◦C, in a
water bath with

intermittent mixing at
200 rpm for 50 min

12.90 wm TEAC: 21.40 ± 1.98 µmol Trolox/g [26]

Açaí seed extract Ethanol 1:2 (w/v)

Boiled in 400 mL of water.
400 mL of ethanol was

added. Stirred 2 h a day
for 10 days

26,500 NR [83]

Açaí seed Ethanol/water 57/43 (v/v)
1:10 (w/v)

10 g mixed with 100 mL of
ethanol/water (57/43,

v/v), sonicated for 15 min
and centrifuged at 5000× g

49,099 ± 8 NR [54]

Passion fruit peel Ethanol 1:4 (w/v) Homogenized by
exhaustive extraction 1061.87 DPPH: IC50 = 1.69 ± 0.03 g/100 mL

ABTS: IC50 = 2.22 ± 0.01 g/100 mL [36]

Passion fruit peel
Water/ethanol/formic

acid (94/5/1;
v/v/v)

1:4 (w/v)

Extraction with
pressurized hot water.
2.5 g sample, 99 ◦C (at

50 bar), 7 min extraction

2496 DPPH: 718.91 ± 40.55 µg/mL
TEAC: 0.08 ± 0.01 mmol Trolox/g [84]

Lychee peel Methanol:water
(50:50 v/v) NR 3 consecutive refluxes at 80 ◦C 22.04 fw

71.71 NR [40]

Lychee peel Ethanol:water
(50:50 v/v) 1:30 (w/v)

Heating to 50 ◦C, in a
water bath with

intermittent mixing at
200 rpm for 50 min.

25.10 TEAC: 43.80 ± 2.02 µmol Trolox/g [26]

Passion fruit pulp Ethanol 1:4 (w/v) Homogenized by
exhaustive extraction 1297.31 DPPH: IC50 = 0.20 ± 0.03 g/100 mL

ABTS: IC50 = 0.82 ± 0.03 g/100 mL [36]

Lychee pulp Methanol: water
(50:50 v/v) NR 3 consecutive refluxes at 80 ◦C 21.20 fw NR [40]

Lychee pulp Ethanol:water
(50:50 v/v) 1:30 (w/v)

Heating to 50 ◦C with
intermittent mixing at

200 rpm for 50 min
20.30 TEAC: 13.20 ± 1.52 µmol Trolox/g [26]
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Table 3. Cont.

Sample Extraction
Solvent

Solid:
Liquid Ratio Method

Total Phenolic
Compounds

(mg GAE/100 g dw)
Antioxidant Activity Reference

Açaí pulp CO2 5 g pulp

50 ◦C/350 bar,
60 ◦C/420 bar, and

70 ◦C/490 bar. Solvent
mass flow rate of

8.85 ×10−5 kg/s and
0.005 kg of dry matter

1542.82 TEAC: 5795 µM Trolox/100 g dw
DPPH: 93,682 µM Trolox/100 g dw [85]

Açaí pulp Methanol 1:2 w/v

Sonicated with methanol
for 20 min/16 ◦C,

centrifuged at
2800× g/10 min. Pellet

re-extracted with
methanol/water (80:20,
v/v) until discoloration.

4786 ± 1880 ABTS: 24.7 ± 10.6 µmol TE/100 g dw
DPPH: 21,049± 3071 µmol TE/100 g dw [10]

Açaí pulp Not mentioned 50 g pulp High pressure
600 MPa/5 min/25ºC 235.70 FRAP: 31.3 µmol TE/g

ORAC: 42.7 µmol TE/g [68]

PL: peel; PP: pulp; SD: seed; dw: dry weight; fw: wet weight; rpm: revolutions per minute; h: hours; AAE: ascorbic
acid equivalents; TE: Trolox equivalents; NR: not reported. Units are shown unmodified from the original sources.

5.2. Anti-Inflammatory Activity

Different mechanisms of action might be related to the anti-inflammatory effects of phe-
nolic compounds. Among them, up/downregulation of transcription factors (e.g., NF-κB),
inhibition of pro-inflammatory mediators (e.g., interleukin 6, IL-6), of activated immune
cells (e.g., macrophages) and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2
(COX-2), are considered in the present work and can be seen in Table 4 [80,81]. Figure 2
shows how several antioxidants, all found in lesser-consumed tropical fruits, can mitigate
or even stop several pathways that lead to inflammation. The possible mechanisms of this
action are not yet clear; however, they can inhibit the cascade of pro-inflammatory signals,
such as caspases, COX-2, iNOS, IL-6, TNF-α, among others [86–88]. Figure 3 summarizes
the main bioactive compounds in lesser-consumed tropical fruits, which are known to have
significant anti-inflammatory activity.

5.2.1. Changes Exerted by Altering Gene Expression

Moracin C is a phenolic compound found in jackfruit, which can significantly inhibit
the release of ROS and lipopolysaccharide (LPS)-induced nitric oxide in RAW 264.7 cells,
at doses of 25 and 50 µM without apparent cytotoxicity after treatment for 48 or 72 h.
Regulation of the expression of iNOS, COX-2 and pro-inflammatory cytokines (IL-1β, IL-6
and TNF-α) was observed in response to these treatments. The anti-inflammatory action of
moracin C was associated with the activation of some MAPK, including p38, ERK, and JNK,
and NF-κB pathways [87]. Anti-inflammatory activity of phenolic compounds artocarpesin,
norartocarpetine and oxyresveratrol isolated from jackfruit was reported. Artocarpesin
suppressed LPS-induced nitric oxide and prostaglandin E2 (PGE 2) by downregulating the
expression of iNOS and COX-2 [86].

Açaí pulp extract has anti-inflammatory properties that strongly inhibit COX-1 and
COX-2 in vitro. It has also been shown to protect umbilical vein endothelial cells (HUVEC)
against glucose-mediated inflammation by reducing the expression of IL-6 and IL-8 [89,90].
Velutin is a flavone in açaí pulp that inhibits NF-κB activation induced by oxidized LDL
(oxLDL) in RAW-Blue cells. Its inhibitory effect was better than luteolin, another flavone
with high anti-inflammatory activity [91]. The chemical structures of both compounds are
similar, differing only in two substituents, where velutin bears two methoxyl groups at
7- and 3′-positions, whereas luteolin has two hydroxyl groups. Substitution of methoxyl
groups appears to be a significant factor that regulates some bioactivities of the molecules,
as determined by the evidence described. Velutin has also been shown to reduce the
production of TNF-α and IL-6 in peripheral murine macrophages andactivate NF-kB [89,90].
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Figure 2. Mechanism of action of some phenolic compounds found in lesser-consumed tropical
fruits (lychee, mamey, passion fruit, açaí and jackfruit) and their ability to regulate the inflammatory
process. Phenolic compounds can inhibit pro-inflammatory mediators such as IL-6, iNOS, IL-1β,
TNF-α, COX-1, COX-2 by inhibiting their activity or gene expression. In addition, some phenolic
compounds can up/downregulate transcriptional factors, such as nuclear factor-κB (NF-κB) or Nrf-2,
in inflammatory and antioxidant pathways. PEL: pelargonidine; CAT: catechin; ECAT: epicatechin;
CA: caffeic acid; MOR: moracin; MAL: malvidin; VEL: velutin; RUT: rutin; QUE: quercetin; Cha:
chlorogenic acid; NAR: naringenin; FA: ferulic acid.

A flavanol-rich lychee fruit extract (FRLFE) has been reported to contain a mixture
of oligomerized phenolic compounds rich in monomers, dimers, and trimers of flavanol.
Supplementation with FRLFE has been shown to suppress inflammation and tissue damage,
both caused by high-intensity physical training of young long-distance runners for two
months. Treatment with FRLFE reduced the serum concentration of IL-6 and significantly
increased the transforming growth factor-β level between pre- and post-training [92].
Additionally, its effects on the expression of inflammatory genes were observed in rat
hepatocytes treated with IL-1b and decreased mRNA and protein expression of iNOS,
leading to an inhibition of nitric oxide and IL-1β. FRLFE also inhibited phosphorylation of
the NF-κB inhibitor (IκB-a) and reduced the mRNA expression of NF-κB and TNF-α [93].
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Figure 3. Main bioactive compounds present in lesser-consumed tropical fruits (lychee, mamey,
passion fruit, açaí and jackfruit) known to exert significant anti-inflammatory effects.

A lychee seed extract (LSE) rich in rutin, scopoletin, cianidanol, procyanidin D, phlo-
rizin, 3,5-Dihydroxy-benzoic acid and 3,4-Dihydroxy-benzaldehyde demonstrated to de-
crease mRNA expression of NF-κB and apoptosis regulator Bax in eighteen diabetic male
Sprague Dawley rats with induced hepatic injury indicating that the daily administration
of 30 mg/kg of LSE for 6 weeks could avoid hepatic damage and diminish inflammation
through these pathways [94].

Flavonoids and ferulic acid found in passion fruit flour have been shown to improve
obesity-related inflammation, according to a decrease of TNF-α and IL-1β and inactivation
of JNK. Results were found in male Sprague Dawley rats fed with a high-fat diet, with 50%
of the cellulose replaced by Passiflora edulis peel flour. This suggests that these compounds
protect from obesity-related inflammation; thus, passion fruit flour containing 60.9% of total
fiber (19.94 soluble fiber and 40.15% insoluble fiber), 137 mg/100 g dw of total carotenoids,
116 mg catechin equivalents (CE)/100 g dw of total flavonoids and 14 mg/100 g dw of
ferulic acid could mitigate this condition in obese subjects [88].

5.2.2. Changes Exerted by Targeting Different Metabolites

Other compounds from jackfruit significantly inhibited the release of β-glucuronidase and
histamine from P-methoxy-N-methylphenylethylamine (dihydroisocycloartomunin), inhibited
lysozyme release (artocarpanone), and the formation of superoxide anion (cycloheterohyll, artonins B
and artocarpanone) in rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP), as well as the
inhibition of nitric oxide production and iNOS expression in RAW 264.7 cells (artocarpanone) [95].
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Table 4. Bioactive compounds from mamey, açaí, passion fruit, lychee, jackfruit, and their anti-
inflammatory activity.

Source Compound Classification Activity Reference

Açaí Velutin Flavone
Inhibit SEAP secretion

Inhibited the expression of
TNF-α and IL-6

[91,96]

Açaí pulp
Anthocyanins

cyanidin-3-rutinoside and
cyanidin-3-glucoside

Anthocyanins ↓ IL-6 and IFN-γ [47]

Açaí seed extract Catechin, epicatechin, and
polymeric procyanidins Polyphenols ↓ NF-κB and IL-6 [25]

Lychee Catechin-type monomers and
oligomers of proanthocyanidins

Flavanols and
proanthocyanidins

Suppression of NF-κB activation
and ↓ IL-6 and TNF-α [97]

Lychee seed extract

21 compounds, including
3,5-dihydroxybenzoic acid,

3,4-dihydroxybenzaldehyde,
procyanidin D, cianidanol,

cinnamtannin B1, procyanidin A1,
scopoletin, rutin, phlorizin and

epicatechin–epicatechin– catechin

Polyphenols ↓mRNA levels of NF-κB [94]

Passion fruit peel flour Vicenin, isoorientin, orientin,
vitexin and isovitexin

C-glycosyl
flavonoids ↓ IL-1β, Il-6 and IL-17 [20]

Purple passion fruit peel Quercetin, luteolin, cyanidin
3-O-glucoside Flavonoid ↓ NO levels [98]

Yellow passion fruit
peel flour Ferulic acid Hydroxycinnamic acid

↓ Lipid peroxidation
↑ GPx and GR in liver
↓ TNF-α and IL-1β
Inactivation of JNK

[88]

Jackfruit Artocarpesin Flavone

Suppressed LPS-induced
production of NO and

PGE2, by downregulating
inducible iNOS and COX-2

protein expressions

[86]

Jackfruit Moracin C Arylbenzofurane

Inhibited LPS-activated
ROS and NO release, ↓

mRNA and protein
expression of iNOS, COX-2,

IL-1β, IL-6 and TNF-α

[87]

SEAP: Secreted embryonic alkaline phosphatase; TNF-α: tumor necrosis factor-α; IL-1β: interleukin-1β;
IL-6: interleukin-6; IFN-γ: interferon-gamma; PGE2: prostaglandin E2. GPx: glutathione peroxidase activity;
GR: glutathione reductase; iNOS: inducible NO synthase; 12-HHT: 12(S)-hydroxy(5Z,8E,10E)-heptadecatrienoic
acid; TXB2: thromboxane B2; 8- iso-PGF2α: 8-iso-prostaglandin F2α; 8-OHdG: 8-hydroxy-2′deoxyguanosine;
MDA: malonaldehyde; JNKMAPK: c-Jun N-terminal kinase; COX-2: cyclooxygenase-2; IP-10: interferon gamma-
induced protein-10; MCP-1: monocyte chemotactic protein-1; ICAM-1: intercellular adhesion molecule-1; VCAM-1:
vascular cell adhesion molecule-1; MRP1: multidrug resistance protein 1.

Passion fruit peel flour treatment (8 mg/mL in the drinking water) has shown an anti-
inflammatory effect on the intestine of female C57BL/6J mice by attenuating colitis-induced
damage. Biochemical and molecular analyses revealed the inhibition of the expression of
pro-inflammatory cytokines and an improved intestinal protective barrier. In addition to these
effects, increases in the formation of short-chain fatty acids were observed, which are known
to play an important role in the maintenance of colonic homeostasis; any imbalance in the
microbiota homeostasis can up-regulate the immune response leading to mucosal damage
and intestinal inflammation, thus supporting a prebiotic effect of passion fruit peel flour [20].

Different treatments can reduce or inhibit several inflammation cascades based on the
bioactive compounds found in the lesser-consumed tropical fruits and their by-products.
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Nevertheless, further research is still needed to identify, isolate, and quantify their phyto-
chemical content and determine their efficacy on human health.

6. Conclusions

The present review brings attention to the phytochemical content of lesser-consumed
tropical fruits such as passion fruit, lychee, mamey, açaí and jackfruit, as well as their
by-products. Their phytochemical composition is associated with some biological activities,
such as antioxidant and anti-inflammatory activities. Particular compounds such as velutin,
moracin, malvidin, pelargonidin, naringerin, ferulic acid, chlorogenic acid, caffeic acid,
catechin, epicatechin, quercetin and rutin found in these fruits are promising candidates
for developing novel functional foods and/or nutraceuticals. However, their safety must
be validated, while additional in vivo trials are required as a precedent to their pharmaco-
logical capitalization in contemporary medicine. Detailed studies on their pharmacokinetic
behavior are also lacking, and these are required to associate their consumption with
specific biological activities conclusively and indisputably be at the heart of upcoming
research. Additional data generated on the lesser-consumed tropical fruits will serve to
increase their production and consumption in diverse markets. At the same time, research
into their by-products will allow their incorporation into the circular bioeconomy.
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