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Introduction/Purpose: Systemic lupus erythematosus (SLE) is a chronic auto-immune
disease with a broad spectrum of clinical presentations, including heterogeneous
neuropsychiatric (NP) syndromes. Structural brain abnormalities are commonly found
in SLE and NPSLE, but their role in diagnosis is limited, and their usefulness in
distinguishing between NPSLE patients and patients in which the NP symptoms are
not primarily attributed to SLE (non-NPSLE) is non-existent. Self-supervised contrastive
learning algorithms proved to be useful in classification tasks in rare diseases with
limited number of datasets. Our aim was to apply self-supervised contrastive learning
on T1-weighted images acquired from a well-defined cohort of SLE patients, aiming to
distinguish between NPSLE and non-NPSLE patients.

Subjects and Methods: We used 3T MRI T1-weighted images of 163 patients. The
training set comprised 68 non-NPSLE and 34 NPSLE patients. We applied random
geometric transformations between iterations to augment our data sets. The ML pipeline
consisted of convolutional base encoder and linear projector. To test the classification
task, the projector was removed and one linear layer was measured. Validation of the
method consisted of 6 repeated random sub-samplings, each using a random selection
of a small group of patients of both subtypes.

Results: In the 6 trials, between 79% and 83% of the patients were correctly classified
as NPSLE or non-NPSLE. For a qualitative evaluation of spatial distribution of the
common features found in both groups, Gradient-weighted Class Activation Maps
(Grad-CAM) were examined. Thresholded Grad-CAM maps show areas of common
features identified for the NPSLE cohort, while no such communality was found for the
non-NPSLE group.

Discussion/Conclusion: The self-supervised contrastive learning model was effective
in capturing common brain MRI features from a limited but well-defined cohort
of SLE patients with NP symptoms. The interpretation of the Grad-CAM results
is not straightforward, but indicates involvement of the lateral and third ventricles,
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periventricular white matter and basal cisterns. We believe that the common features
found in the NPSLE population in this study indicate a combination of tissue loss,
local atrophy and to some extent that of periventricular white matter lesions, which are
commonly found in NPSLE patients and appear hypointense on T1-weighted images.

Keywords: Systemic Lupus Erythematosus, magnetic resonance imaging, cohort studies, unsupervised machine
learning, neuroimaging

INTRODUCTION

Systemic lupus erythematosus (SLE) is a female-predominant
auto-immune disease with a broad spectrum of clinical
presentations and multi-organ involvement. SLE is characterized
by the production and deposition of several autoantibodies,
of which more than 20 are associated with damage to the
nervous system and 11 are brain-specific (Hanly et al., 2019). The
involvement of the central nervous system (CNS) in SLE leads
to a series of non-specific neuropsychiatric (NP) manifestations
in 12–95% of SLE patients (Ainiala et al., 2001). These NP
symptoms widely range in terms of severity and prognostic
implications (Schwartz et al., 2019). NP events in SLE can
be directly associated with the disease (NPSLE) or can be
explained by another etiology (non-NPSLE). NP symptoms are
associated with an increased mortality and reduced quality
of life within the SLE population (Ramage et al., 2011). The
diagnosis of NPSLE is also difficult due to the heterogeneous
nature of NP syndromes. According to the American College of
Rheumatology (ACR), 19 different syndromes are described in
relation to NPSLE patients, and stem from involvement of the
CNS: aseptic meningitis, cerebrovascular disease, demyelinating
syndrome, headache (including migraine and benign intracranial
hypertension), movement disorder (chorea), myelopathy, seizure
disorders, acute confusional state, anxiety disorder, cognitive
dysfunction, mood disorder and psychosis (Hanly, 2014). The
large variation in the attribution of the NP symptoms across
studies and institutions highlights the difficulty in unequivocally
diagnose NPSLE. In clinical practice, it is important to correctly
classify NP events, since the therapeutic approach is defined
based on this classification. A study performed in our center
reported that about 15% of NP events attributed to SLE
(NPSLE) during the first patient evaluation were reclassified after
reassessment as non-NPSLE (Magro-Checa et al., 2017). This
discrepancy highlights the pressing need for biomarkers that
will contribute to more reliably distinguish between NPSLE and
non-NPSLE early in the diagnostic process.

Another contributor to the heterogeneity of NPSLE is
the multitude of pathomechanisms that underlie brain tissue
damage. Two different underlying mechanisms are thought
to play a role in the pathophysiology of NPSLE. One is the
inflammatory mechanism, where the blood-brain barrier (BBB)
or the blood-cerebrospinal fluid (BCSF) barrier is compromised
due to presence of pro-inflammatory factors (Gelb et al., 2018).
Subsequently, auto-antibodies can enter the brain and trigger
an inflammatory process that results in focal or diffuse tissue
damage. The second proposed mechanism is the thrombotic or
ischemic mechanism, where vascular injury and occlusion are

present (Magro-Checa et al., 2016). These two pathomechanisms
act independently of one another and can be both present
in the same patient. Due to the lack of a diagnostic gold
standard, the best strategy so far for diagnosing NPSLE remains a
multidisciplinary expert consensus after standardized evaluation
of complaints and a complete battery of tests, including brain
magnetic resonance imaging (MRI) (Magro-Checa et al., 2017).
Despite conventional brain MRI being the method of choice
for clinical evaluation of SLE patients experiencing NP events,
morphological changes and brain lesions observed in these
patients do not clearly correlate with the clinical symptoms and
disease outcome, underscoring the clinical-radiological paradox
encountered with many NPSLE patients, defined by the presence
of lesions in the absence of symptoms of NPSLE or vice versa
(Magro-Checa et al., 2018).

Currently, MRI features can only contribute in a limited
way in the diagnostic process, mostly in the way of exclusion.
Several studies have shown that patients with SLE have more
white matter hyperintensities (WMH) and more atrophy and
infarcts compared to controls (Ainiala et al., 2005; Appenzeller
et al., 2006, 2007; Kozora and Filley, 2011; Luyendijk et al.,
2011). These findings per se, albeit indicative of robust
presence of structural abnormalities in NPSLE, are not useful
for the diagnostic process, and basic metrics such as global
atrophy and lesion count and lesion load do not lead to
a specific diagnosis. It is therefore imperative to further
explore neuroimaging biomarkers in the hope of finding
markers that can help clinicians differentiate between NPSLE
and non-NPSLE patients, and further down the line, also
help in the stratification of NPSLE patients based on their
clinical phenotype.

Deep learning has been shown to be useful in diagnostic
tasks related to clinical neuroimaging data both in diseases with
overt brain damage such as stroke, as well as in diseases in
which brain alterations are not directly detectable via standard
radiological observation (Zhang L. et al., 2020). Deep learning
models can extract significant features that are relevant to clinical
diagnosis and can distinguish between patient populations even
when the brain alterations are not visibly overt (Islam and Zhang,
2018). Classification tasks, however, require a large number of
data sets, as well as trained clinicians to generate labels to
aid the categorization process. Dementia (Basaia et al., 2019;
Jo et al., 2019; Oh et al., 2019; Stamate et al., 2020) and
psychiatric disorders (Lin et al., 2018; Durstewitz et al., 2019)
have been natural targets for using deep neural networks, as
imaging data for these diseases are widely available. NPSLE,
on the other hand, is a sub-category of SLE, which in itself
is categorized as an orphan/rare disease (prevalence of 1–5 in
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10,000, source1) and thus the amount of data available is limited.
This makes a supervised ML approach impractical for studying
brain abnormalities in NPSLE in a single-center study.

Recently, self-supervised learning approaches, which train the
model on unlabeled data by providing self-generated labels from
the data themselves, have become popular in image classification.
In non-medical applications, self-supervised learning approaches
were applied in the prediction of the rotation angles of objects
(Gidaris et al., 2018), colorization of gray-scale images (Zhang
et al., 2016) and solving randomly generated Jigsaw puzzles
(Noroozi and Favaro, 2016). Instance-level identity preservation
with contrastive learning has proven effective in learning rich
representations for classification (He et al., 2019; Tian et al.,
2019; Chen et al., 2020). In this context, self-supervised learning
approaches are more suitable for dealing with limited data
sets, such as the one presented in this work. Self-supervised
learning in biomedical imaging has been implemented in several
instances, among which screening of 2-dimensional chest x-ray
images (Zhang J. et al., 2020), in the evaluation of cardiac
time-series data (Kiyasseh et al., 2020), in tissue segmentation
of brain lesions (Gonçalves et al., 2014), in segmentation of
renal dynamic contrast-enhanced MRI (Huang et al., 2019),
in robust and accelerated reconstruction of quantitative and
B0-inhomogeneity-corrected R2

∗ maps from multi-gradient
recalled echo MRI data (Torop et al., 2020) and in quality
enhancement of compressed sensing MRI of the vessel wall
(Eun Di Jang et al., 2020).

In this study, we hypothesized that a self-supervised learning
approach would be effective for the classification tasks in
our limited patient population, in particular in the distinction
between two important diagnostically different SLE patient
groups: NPSLE and non-NPSLE patients. To test this hypothesis,
we applied a self-supervised method to 3D structural MRI data
with the aim of distinguishing and classifying such data for
NPSLE and non-NPSLE patients. To provide a benchmark for
the ML algorithm presented here, we performed two secondary
analyses on the same data set: a standard tissue volumetric
analysis of the two patient populations, and a classification of the
data sets based on one-class support vector machine (SVM).

MATERIALS AND METHODS

Patient Population
Leiden University Medical Center (LUMC) is the national referral
center for SLE patients with NP complaints in the Netherlands.
SLE Patients are referred to the outpatient clinic if they present
with NP manifestations. In this retrospective study we initially
included 216 patients with SLE recorded between May 2007
and April 2015. Of these, 28 patients were excluded because of
undefined diagnosis, 3 patients were excluded because of motion
artifacts in the MRI scan, 20 patients were excluded because of
brain infarcts over 1.5 cm and 2 patients were excluded due to
the presence of other diseases (one for a brain tumor and one for
a large arachnoid cyst). This resulted in a total of 163 patients

1www.orpha.net

included in this study. The medical ethics committee of Leiden-
The Hague-Delft approved of the study and all included patients
signed an informed consent form.

All patients were admitted to the clinic for a full one-
day visit and underwent an identical standardized assessment
that included a brain MRI scan (Zirkzee et al., 2012) and
a combination of multidisciplinary medical assessments and
extensive complementary tests, necessary for deciding whether
the NP-events are attributed to SLE (Magro-Checa et al., 2016).
Attribution of NP symptoms to SLE was established during a
multidisciplinary consensus meeting. This diagnostic process is
described in detail previously (Zirkzee et al., 2012). NP events
were classified according to the 1999 ACR nomenclature for
NPSLE (ACR AD HOC Committee on Neuropsychiatric Lupus
Nomenclature, 1999).

During an intake interview, information about gender, age,
and SLE disease duration was provided by the patients and
verified by their medical records. During the evaluation, SLE
activity and damage indexes were scored for each patient: the
SLE disease activity was defined using the Systemic Lupus
Erythematosus Disease Activity Index 2000 (SLEDAI-2K)
(Gladman et al., 2002); SLE irreversible damage was determined
through the Systemic Lupus International Collaborating
Clinics/American College of Rheumatology damage index (SDI)
(Gladman et al., 2000).

Magnetic Resonance Imaging Protocol
All patients were scanned, according to a standardized scanning
protocol, on a Philips Achieva 3T MRI scanner (Philips
Healthcare, Best, Netherlands) with a body transmit RF coils
and an 8-Channel head receive coil array. The sequence used
for this project was a 3D T1-weighted gradient echo scan (voxel
size = 1.17× 1.17× 1.2mm3; TR/TE = 9.8/4.6 ms).

Magnetic Resonance Imaging
Preprocessing
All the T1-weighted images were registered to a standard brain
template, the Montreal Neurological Institute standard template
(MNI152), using FNIRT (FMRIB’s non-linear image registration
tool) (Woolrich et al., 2009; Jenkinson et al., 2012), using affine
registration with 12 degrees of freedom.

Machine Learning Pipeline Architecture
We followed the self-supervised framework introduced by Chen
et al. (2020), where an encoder network fθ was used to project
the image into a feature space, followed by two-layer multi-
perceptron (MLP) pπ projector that projected the features into
latent vector z. In our work we modified this approach to
address the fact that 3D MRI data required more classification
parameters than 2D natural images. Therefore, we designed the
encoder network fθ using three convolutional layers with batch
normalization and a max pooling layer. To test the representation
feature, we changed the projector layer into a linear layer which
had the same output size as the number of classes, which in our
case equals 2 – NPSLE and non-NPSLE. Subsequently, we fine-
tuned the linear layer with a training set. Finally, we tested the
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FIGURE 1 | Architecture of ML pipeline: encoder, projector, and linear module. In the training phase, an encoder and projector were used to project the images into
representation space with a latent vector z. In the fine tuning and test phase, the projector was changed with a linear module and predict the class.

accuracy of the trained encoder and linear layer. Figure 1 shows
the architecture described above.

Preprocessing
In 2D natural images, Chen et al. (2020) used stochastic
data augmentation t, randomly selected from the family of
augmentations T, including random cropping, random color
distortion, and random flip. In our 3D MRI data, we used
stochastic data augmentation by performing random selection
from the set of augmentations we applied to our data. These
included: random cropping, random flipping along the z axis and
random in-plane rotation. The random crop was applied up to
15 voxels along the three axes. For the random flip, only left-right
flips were applied based on the foot-head axis (coronal plane). For
rotation, random rotation of angles up to 45 degrees was applied
in the left-right, anterior-posterior and foot-head directions. To
test the robustness of our method with respect to different data
augmentation strategies, we tried three different augmentation
settings: one only with crop, one with crop, flip and rotation. The
geometric transformations are depicted in Figure 2.

Contrastive Loss
The contrastive loss function Lcon is defined as follows,

Lcon, θ,π

(
x,
{
xpos

}
,
{
xneg

})

: = − log

∑
{zpos} exp(

sim(z, {zpos})
τ

)∑
{zpos} (

sim(z, {zpos})
τ

)exp +
∑
{zneg } exp(

sim(z, {zneg})
τ

)

where z,
{
zpos

}
, and

{
zneg

}
are corresponding 128-dimensional

representation vectors (z) of x obtained by the encoder and
projector z = pπ(fθ (x)). The expression sim (u, v) = uTv

||u||||v||
denotes cosine similarity between two vectors and τ is a
temperature parameter (Chen et al., 2020).

We trained the encoder and projector with the contrastive loss
function, NT-xent which maximizes the similarity between each
transformed sample.

Patient Selection for Validation of the ML Pipeline
To determine the accuracy of our study, six trials were performed.
In each trial, the training set consisted of 68 non-NPSLE and 34
NPSLE patients randomly chosen from within the total patient
population (163 subjects). In order to have an equal number of
NPSLE and non-NPSLE patients for the training procedure, we
used the images of NPSLE twice in every epoch. Therefore, a total
of 136 images were used to train the model. In each trial, the
test set consisted of 9 non-NPSLE patients and 9 NPSLE patients
randomly chosen within the total patient’s population (163
subjects) excluding the training set. The overall demographic
and clinical characteristics of the patient population included in
this study is shown in Table 1A. The demographic and clinical
characteristics of the patients selected in each trial are shown in
Tables 1B,C. Detailed age data for the training and test sets in all
six trials are given in the Supplementary Tables 1A,B.

Training Details
We used three convolutional layers as the base encoder
network and 2-layer multi-layer perceptron with 128 embedding
dimensions as the projection head. All models were trained
by minimizing the final contrastive loss with a temperature of
τ = 0.5. For the rest, we followed similar optimization steps as in
SimCLR (Chen et al., 2020). We trained with 1000 epochs under
the stochastic gradient descent (SGD) base Layer-wise Adaptive
Rate Scaling (LARS) optimizer (You et al., 2017), a cosine
annealing learning rate and a gradual warmup scheduler (Chen
et al., 2020). We used a weight decay of 1e-6 and momentum
of 0.9. We used linear warm-up for the first 10 epochs until a
learning rate of 1.0 was achieved and decay with cosine decay
schedule. We used a batch size of 16. Furthermore, we used
global batch normalization, which shared the parameters over
the multiple GPUs. We trained the encoder with contrastive
loss. Then, we fine-tuned the encoder along a linear layer to
optimize the cross-entropy loss with learning rate 0.001 during
35 epochs. Figure 3 shows the loss curves across the 1,000
training epochs for the three data augmentation strategies. Such
intermediate observations are useful for the evaluation of the
training process, which in this case appears to be well-behaved
for all three strategies.
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FIGURE 2 | 3D data transformations used for data augmentation. Three types of geometrical transformations were applied to the 3D MRI data augment the data
set: cropping of the image, left-right flips, and in-plane rotations.

Gradient Class Activation Mapping
There are several methods for interpreting predictions in deep
learning (Selvaraju et al., 2016; Doshi-Velez and Kim, 2017; Fong
and Vedaldi, 2017; Kim et al., 2017; Shrikumar et al., 2017;
Covert et al., 2020). We chose to use gradient class activation
mapping (grad-CAM) (Selvaraju et al., 2016). Grad-CAM uses
gradient information flowing into the last convolutional layer
of the model to assign importance values to each parameter
for the prediction of the model. We extended the grad-CAM
to deal with 3D convolutional neural networks. Since we are
interested in a classification for a specific disease, and images
are all aligned to the same space (MNI 152), it was possible
to average the grad-CAM maps of test samples to obtain a
qualitative measure of the brain regions where significant features
were found after averaging across subjects in each trial. For
this purpose, for each trial, the grad-cam maps of the samples
which were correctly classified in the same class were averaged.
Thresholded averaged grad-CAM maps were then overlaid on the
MNI template for display.

Secondary Analyses
We included two secondary analyses to serve as benchmarks to
the ML analysis: a volumetric analysis of tissue volumes obtained
from segmentation of the T1-weighted images, and a one-class
supporting vector machine (SVM) analysis.

Volumetric Analysis
3D T1-weighted images were segmented using the CAT12
toolbox from the statistical parametric mapping software to
determine total grey matter (GM), white matter (WM), and
cerebral-spinal fluid (CSF) volumes (Inglese et al., 2021). Total
intracranial volume was calculated as the sum of gray matter,
white matter, and cerebral-spinal fluid volumes. Tissue fractions
were obtained by normalizing each tissue volume to the
total intracranial volume. Two analyses were performed: (a) a
comparison of tissue fractions between the 9 NPSLE and the 9
non-NPSLE subjects included in each trial in the ML analysis,
for a total of 6 such comparisons; and (b) comparison of tissue
fractions across the entire population of NPSLE (n = 43) and
non-NPSLE (n = 120) included in this study.

TABLE 1A | Patient population characteristics for the entire study.

NP-SLE patients
(n = 43)

non-NPSLE
patients (n = 120)

Female, n (%) 37 (86%) 110 (92%)

Age, years 40 ± 13 42 ± 13

NPSLE phenotypes

Inflammatory 30 (70%) –

Ischemic 13 (30%) –

Hypertension 16 (37%) 35 (30%)

Current smoking 12 (28%) 34 (28%)

BMI 25 ± 6 25 ± 4

Diabetes 3 (7%) 6 (5%)

Duration of SLE,
years

6 ± 8 8 ± 8

SLEDAI-2K 8 ± 5 4 ± 4

SDI 1.5 ± 1.2 0.9 ± 1.1

Sex, age and SLE clinical variables are described for the population included
in the study. SLEDAI = Systemic Lupus Erythematosus Disease Activity Index
2000. SDI = Systemic Lupus International Collaborating Clinics/American College
of Rheumatology Damage Index.

One-Class Support Vector Machine
Analysis
For the one-class SVM analysis we used the pipeline provided
by the scikit-learn 0.24.2 toolkit2. Given the significantly larger
size of the non-NPSLE group, we chose it to be class on which
the boundaries are defined, and the NPSLE group are tested as
belonging to the class or outliers. In a consistent manner with
the ML analysis, 68 T1-weighted images of non-NPSLE were
initially chosen for the classifier to define the class boundaries.
Subsequently, randomly chosen 9 NPSLE and 9 non-NPSLE
data sets were tested against the classifier. This process was
repeated 10 times.

Statistics
For evaluation of the performance of the algorithm at each trial,
we used classification accuracy, precision and recall as quantitative
measures. An image is considered correctly classified when the

2https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.
html
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model classifies it into the correct class: NPSLE or non-NPSLE.
Accuracy was defined as the ratio between the total number of
correctly classified samples and the total number of test sets.
The coefficient of variation for the three augmentation strategies
was also calculated by taking the ratio of the mean accuracy and
the standard deviation. Precision was defined as the fraction of
correctly predicted NPSLE samples out of the total test samples
(NPSLE + non-NPSLE). The recall, defined as the fraction of
relevant items selected from the interest class, was calculated as
the fraction of correctly predicted NPSLE samples out of the total
number of NPSLE samples.

To assess differences in mean accuracy, precision and recall
among the three different geometric transformation approaches
we used here, repeated-measures analysis of variance (ANOVA)
was performed. For the volumetric analysis, the normality
of the volume fraction distributions was checked with the
Shapiro-Wilk test and value histograms were visually inspected.
Differences between NPSLE and non-NPSLE patients across the
total population and for the test sets in each trial were assessed
with independent sample t-tests and p values were calculated.
All tests were performed using the Statistical Package for the
Social Sciences (SPSS) version 25 (IBM corporation, Armonk,
NY, United States).

RESULTS

Classification Performance
No statistically significant differences were found between NPSLE
and non-NPSLE in any of the population characteristics provided
in Tables 1B,C (training sets) and (test sets). Table 2A shows
the individual and mean accuracy of the classification results
for the six trials, defined as the percent of correctly classified
NPSLE/non-NPSLE patients out of the total tests within a
trial. Results are given for three different strategies for data
augmentation that included one (random crop), two (random
crop + flip) and three (crop + flip + rotate) transformations.
The accuracy (SD) of the six trials in each augmentation strategy
was 83.35% (14.05%), 83.33% (16.10%), and 79.63% (11.47%). No
significant differences were found when comparing the accuracy
of the classification across the three data augmentation options.
The coefficient of variation for the three augmentation strategies
ranged between 0.14 and 0.19.

Table 2B shows the individual and mean precision and recall
for the test sets in each of the 6 classification trials. Precision is
defined as percent of correctly predicted NPSLE cases out of the
total number of tests within a trial, and recall is defined as the
fraction of correctly predicted NPSLE samples out of the total
number of NPSLE test samples within a trial. The same three sets
of geometric transformation for data augmentation were used
also here. The precision (SD) across trials was 50.6% (8%), 49.3%
(6%), and 48.6% (7%) for trials using only crop, crop + flip,
and crop + flip + rotation transformation, respectively. Recall
(SD) values were 85.2% (19%), 83.3% (23%), and 79.7% (19%) for
trials using only crop, crop + flip, and crop + flip + rotation
transformation, respectively. No significant differences were
found in accuracy (p = 0.531), precision (p = 0.845) and recall

(p = 0.686) among trials using the three different geometric
transformations.

An alternative and useful way to assess classifier performance
is the receiver operating characteristic (ROC) curve, displaying
the true positive rate (recall, or sensitivity) vs. the false positive
rate, expressed as complementary to the specificity. We provide
the ROC curves for the test sets in all six trials and the three
data augmentation strategies within each trial in Supplementary
Figure S1 of the Supplementary Material.

Common Features in NPSLE –
Grad-CAM Results
Figure 4 shows the thresholded averaged grad-CAM maps for the
six trials. Threshold was set at three different levels: 0.75, 0.85,
and 0.95. Each of the three panels shows the results following
data augmentation with crop only (4A), crop + flip (4B) and
crop + flip + rotate (4C). Common features that show up on
the grad-CAM maps were found only in the NPSLE cohort. The
areas generated by the grad-CAM maps with threshold set at
0.75 are too generic to report on specific brain regions, while
the higher thresholds of 0.85 and 0.95 reveal more parcellated
maps indicating local involvement. Brain regions showing on
the grad-CAM maps with threshold above 0.85 include the
lateral ventricles and periventricular white matter, as well as third
ventricle and basal cisterns (Figure 5). There were no specific
regions that contributed to the model’s prediction of non-NPSLE.

Secondary Analyses
Volumetric Analysis
Table 3 shows the results of the different comparisons of tissue
fractions between NPSLE and non-NPSLE: the six comparisons
within the test sets and the comparison across the entire
population of NPSLE and non-NPSLE subjects. When data are
not corrected for multiple comparisons, three comparisons show
significant differences between NPSLE and non-NPSLE: GM and
CSF in trial 4, and WM in trial 6. These differences become
non-statistically significant when the p values are corrected for
multiple comparisons (6 trials × 3 tissue types = 18 tests) with
Bonferroni correction. No statistically significant difference in
any tissue fraction was found between the total population of
NPSLE patients and that of non-NPSLE patients.

One-Class Support Vector Machine Analysis
Our attempt to apply one-class SVM to distinguish between T1-
weighted images of NSPLE and non-NPSLE was unsuccessful: all
non-NPSLE as well as all NPSLE data sets in all 10 trials were
classified as within-class, i.e., belonging to the non-NPSLE group.

DISCUSSION

In this study, we designed a self-supervised machine-learning
pipeline for classification of T1-weighted MRI images aimed at
distinguishing between images of NPSLE patients and those of
non-NPSLE patients. The accuracy of the classification algorithm,
based on six repeated trials, was significantly above random
choice, and practically independent of the augmentation strategy.
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TABLE 1B | Patient population characteristics for the six training sets.

Trial 1 (n = 102) Trial 2 (n = 102) Trial 3 (n = 102) Trial 4 (n = 102) Trial 5 (n = 102) Trial 6 (n = 102)

Sex (female, %) 90% 91% 91% 93% 90% 89%

Age (mean ± SD) 44 ± 13 41 ± 12 41 ± 12 41 ± 12 41 ± 14 43 ± 13

SLE duration (mean ± SD) 7 ± 8 7 ± 8 7 ± 7 8 ± 8 7 ± 8 7 ± 8

SLEDAI-2K (mean ± SD) 2 ± 2 2 ± 2 2 ± 2 2 ± 2 2 ± 2 2 ± 2

SDI (mean ± SD) 1 ± 1.2 0.8 ± 1 0.8 ± 1 0.8 ± 1 0.9 ± 1.1 0.9 ± 1.1

Sex, age and SLE clinical variables are described for the population included in each training set of each trial. SLEDAI = Systemic Lupus Erythematosus Disease Activity
Index 2000. SDI = Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index.

TABLE 1C | Patient population characteristics for the six test sets.

Trial 1 (n = 18) Trial 2 (n = 18) Trial 3 (n = 18) Trial 4 (n = 18) Trial 5 (n = 18) Trial 6 (n = 18)

Sex (female, %) 100% 89% 94% 89% 100% 100%

Age (mean ± SD) 34 ± 9 46 ± 16 41 ± 10 47 ± 15 38 ± 11 37 ± 13

SLE duration (mean ± SD) 6 ± 7 5 ± 6 9 ± 10 3 ± 5 8 ± 8 7 ± 8

SLEDAI-2K (mean ± SD) 2 ± 1 1 ± 1 2 ± 2 2 ± 2 3 ± 2 3 ± 1

SDI (mean ± SD) 0.83 ± 0.9 1.6 ± 1.5 1 ± 1.2 0.8 ± 1.3 0.7 ± 1.1 0.6 ± 0.8

Sex, age and SLE clinical variables are described for the population included in each trial. SLEDAI = Systemic Lupus Erythematosus Disease Activity Index 2000.
SDI = Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index.

FIGURE 3 | Training loss function for the duration of the training process (1,000 epochs). The three traces represent the loss functions obtained with the three data
augmentation strategies: orange: crop only; gray: crop and flip; yellow: crop, flip and rotation.

TABLE 2A | Classification accuracy for the test sets per trial, for all three data augmentation strategies.

Random data
augmentation Set

T Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Mean (S.D.)

crop {T1} ∈ T 61.11% (6,5) 77.78% (8,6) 77.78% (5,9) 100.0% (9,9) 88.89% (7,9) 94.44% (9,8) 83.35% (14.05%)

crop, flip {T1, T2} ∈ T 61.11% (7,4) 66.67% (6,6) 94.44% (8,9) 83.33% (7,8) 94.44% (8,9) 100.00% (9,9) 83.33% (16.10%)

crop, flip and rotation {T1, T2, T3} ∈ T 66.67% (6,6) 72.22% (8,5) 77.78% (6,8) 100.0% (9,9) 77.78% (8,6) 83.33% (7,8) 79.63% (11.47%)

Data are shown as percentage. Numbers in parentheses stand for the number of correctly classified non-NPSLE and NPSLE subjects, respectively.
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TABLE 2B | Classification precision and recall for the test sets per trial, for all three data augmentation strategies.

(precision/recall)

Random data
augmentation Set

T Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Mean (S.D.)

crop {T1} ∈ T 45.5%/55.6% 42.9%/66.7% 64.3%/100% 50.0%/100% 56.3%/100% 44.4%/88.9% 50.6% (8%)/85.2% (19%)

crop, flip {T1, T2} ∈ T 36.4%/44.4% 50.0%/66.7% 52.9%/100% 53.3%/88.9% 52.9%/100% 50.0%/100% 49.3% (6%)/83.3% (23%)

crop, flip, and rotation {T1, T2, T3} ∈ T 50.0%/66.7% 38.5%/55.6% 57.1%/88.9% 50.0%/100% 42.9%/66.7% 52.9%/100% 48.6% (7%)/79.7% (19%)

Data are shown as percentage, and each pair of numbers represents the precision and recall values, respectively.

The mean classification accuracy into the two classes, NPSLE
and non-NPSLE, across the three augmentation strategies ranged
between 79 and 83%. Within-augmentation variability across
trials was well contained: the coefficient of variation for the three
augmentation strategies ranged between 0.14 and 0.19, indicating
a good repeatability of the accuracy of the classification,
despite the significant heterogeneity of clinical measures, disease
phenotypes and the symptoms in the NPSLE population.

The overall precision of our model, representing the fraction
of correctly predicted NPSLE out of the total number of
NPSLE predictions, was lower, at about 51.8%. This indicates
a relatively high rate of false negatives (non-NPSLE subjects
identified as NPSLE). This may indicate that the structural
brain changes characteristic of NPSLE and were picked up by
the classification algorithm can also be found in non-NPSLE
patients. MRI abnormalities, such as lesions, local atrophy and
other diffuse abnormalities have been found in non-NPSLE
and as well as in SLE patients without NP when compared
with healthy controls (Ainiala et al., 2005; Appenzeller et al.,
2006, 2007; Kozora and Filley, 2011; Luyendijk et al., 2011).
It is thus not surprising that some of the features picked up
in the training of the algorithm were erroneously attributed
to non-NPSLE patients. It remains to be seen whether with
increased population size (via, for example, a multicenter effort),
or additional MRI modalities that reflect better other aspects of
structural changes in the disease (for example, FLAIR T2 images
that report on white matter hyperintensities) will contribute to
the precision of the classification and limit the false-positives.
Conversely, the recall, defined as the fraction of total relevant
results (correctly predicted NPSLE patients) out of the NPSLE
group, averaged at about 83% indicating a relatively low rate of
false negatives, i.e., NPSLE patients that were not classified as
such. This corroborates the meaningfulness of the features found
by the ML algorithm and provides support to their link to brain
changes in NPSLE population.

We studied the relationship between brain alterations in
NPSLE and the common features identified by the classification
algorithm with grad-CAM, a commonly used visualization tool
that provides a coarse localization map highlighting important
regions in the image for the classification task. As of recent, Grad-
CAM maps have been applied to medical imaging modalities,
including a successful application aimed at grading gliomas based
on MR images (Pereira et al., 2018; Stoyanov et al., 2018).
While grad-CAM maps do not provide quantitative statistical
information in the way that statistical parametric maps do,

they do indicate communality in the features that led to the
classification. In particular, periventricular white matter, lateral
ventricles, third ventricle and basal cistern seemed to be features
that discriminate NPSLE patients from non-NPSLE. In vivo
Structural MRI Studies (Muscal and Brey, 2010) and post-
mortem histological analyses of brains of NPSLE patients (Brooks
et al., 2010) showed significant amount of small focal lesions and
white matter hyperintensities concentrating on periventricular
white matter, as well as ventricular dilation. Higher occurrence
of periventricular and deep WMH lesions was reported also
in SLE patients compared to controls but without stratification
for NPSLE versus non-NPSLE patients (Hachulla et al., 1998).
Overall, despite their common presence in SLE patients with
brain involvement, the etiology of periventricular WMH in
NSPLE is not well understood, nor is it fully investigated in
other diseases with prevalence of periventricular WMH. In
older adults, periventricular WMH appear to be associated
with impaired cognitive function, in particular with working
memory, and are linked to disruption of long distance white
matter connections. Some characterization of periventricular
WMH in older adults was provided by diffusion tensor imaging
and pathological observations and revealed that periventricular
WMH are mostly characterized by gliosis and myelin loss
(Griffanti et al., 2018). Further investigation on the role of
periventricular WMH in NPSLE patients is necessary to confirm
their role and their importance in the disease process. Similarly,
additional confirmation for the link between the grad-CAM
concentration in the ventricular area in the NPSLE population
and either ventricular dilation or periventricular WMH needs to
be obtained. It is important to note that common features of brain
tissue alterations in NPSLE are not only relegated to volume and
location but also to the shape of lesions, and in particular that of
white matter hyperintensities. The potential relevance of WMH
shape in the radiological diagnostic process has been already
demonstrated in diabetes (De Bresser et al., 2018), cerebral small
vessel disease (Kant et al., 2019) and stroke (Ghaznawi et al.,
2021). Evidence for ventricular and periventricular structural
differences between NPSLE phenotypes, including between
NPSLE and non-NPSLE, have been already given, including in
our own studies (Inglese et al., 2021), and it is possible that the
features detected by the ML algorithm in the NPSLE population
is a combined effect of volume and shape characteristics. Finally,
there is no consistent reporting on direct involvement of the
basal cisterns per se in SLE or NPSLE, barred few case reports
(Kawamata et al., 1991; Tsushima and Kubo, 1999). A plausible
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FIGURE 4 | (A) Grad-CAM results of NPSLE patients in the six trials
augmented with “crop” (A), “crop and flip” (B), and “crop, flip and rotation”
(C). Each row displays thresholded mean grad-CAM maps obtained from the
NPSLE test set of one of the trials (1 through 6) overlaid on a T1-weighted
dataset. Each column displays a different Grad-CAM threshold: 0.75 (left),
0.85 (middle), and 0.95 (right). Within each column, data are shown in three
different orientations: coronal (left), sagittal (middle), and axial (right).

explanation for the involvement of the basal cisterns is the effect
of atrophy, leading to increase in CSF volume in the basal cisterns
as well as in the lateral ventricles.

There are several limitations and challenges associated with
our study, and we hope to address some of them in our future
efforts. Characterization of the overlapping features between

the false negatives and “true” NPSLE subjects will certainly
require special attention in future studies, with significantly
larger populations of SLE and non-NPSLE patients, and with
an inclusion of control groups of SLE patients without NP,
as well as of healthy controls. One of the most significant
limitations of this study is that we could not use the method
implemented here to reliably address the link between NP
manifestations and structural brain changes in the NPSLE
population. This is a question of great importance, and providing
means to investigate it will increase the understanding of
the pathological mechanisms behind NPSLE as well as aid in
diagnosis. The choice of focusing solely on the classification
of NPSLE vs. non-NPSLE patients was partly driven by its
diagnostic importance, but also made based on the number
of patients available for the training and trial sets. Since the
ACR1999 criteria apply only to NPSLE, stratification based
on NP manifestations or based on NPSLE disease phenotype
would have resulted in groups that are too small for a reliable
application of the pipeline we developed in this work. For
example, stratification of the NPSLE patients to ischemic and
inflammatory phenotypes would have resulted in two groups
of 30 and 13 patients, respectively, from which training
and trial samples have to be in turn chosen. This is an
unrealistic scenario for this particularly study. It is hoped that
multicenter studies that carefully address harmonization in the
diagnostic and in the imaging process will be able to efficiently
address this issue.

Despite the fact that there were common regions highlighted
by Grad-CAM in the NPSLE group, it is premature to
claim at this point that these regions are indeed clinically
significant, and a broader investigation is required. In the
current investigation we used only one MRI modality, namely
T1-weighted images, a modality that is highly sensitive to
volumetric structural changes, but less sensitive and less specific
to lesions, infarcts, microbleeds and hemorrhages, which all result
in local hypointensities. Thus, it is imperative to continue the
investigation with a more multimodal approach, with additional
modalities that will add more sensitivity and specificity to a
variety of structural changes commonly found in SLE and
NPSLE. From the algorithm perspective, self-supervised machine
learning is identity preserving, and it is therefore possible to
add a variety of MRI modalities to the process in the hope
of significantly improving the classification performance. For
example, information on microbleeds is significantly enhanced
with the use of T2

∗-weighted images, and white matter
hyperintensities are conspicuous on T2-FLAIR images.

In deep learning classification tasks, access to a large amount
of data sets is essential. The number of samples (overall number
of patient data sets) that were included in our study (163)
was limited compared to typical numbers of samples used in
classification tasks, typically in the tens of thousands of cases
(Zhang J. et al., 2020) NPSLE is a rare and highly heterogeneous
disease with respect to the variety and severity of symptoms, and
most pertinently with respect to the types and spatial distribution
of brain abnormalities found in NPSLE and the underlying
pathomechanisms responsible for the damage to brain tissue.
and it is therefore not a natural target for supervised machine
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FIGURE 5 | Brain areas that correspond with regions highlighted in the grad-CAM maps with threshold above 0.85. Arrows indicate the lateral ventricles (A), the
third ventricle (B), and the basal cisterns (C). Periventricular white matter is highlighted in (D).

learning based classification. Our results do not categorically
exclude the usefulness of supervised deep learning approaches to
classification tasks of the kind we performed here, but do provide

TABLE 3 | Comparisons of GM, WM, and CSF tissue fractions between NPSLE
and non-NPSLE across test sets in all six trials and in the entire study population.

NPSLE Non-NPSLE p-value

Test sets

Trial 1 n = 9 n = 9

GM 0.43 ± 0.02 0.42 ± 0.03 0.139

WM 0.35 ± 0.01 0.35 ± 0.03 0.804

CSF 0.22 ± 0.03 0.24 ± 0.05 0.256

Trial 2 n = 9 n = 9

GM 0.40 ± 0.03 0.39 ± 0.03 0.441

WM 0.34 ± 0.02 0.34 ± 0.03 0.777

CSF 0.26 ± 0.03 0.27 ± 0.04 0.592

Trial 3 n = 9 n = 9

GM 0.40 ± 0.02 0.39 ± 0.02 0.417

WM 0.34 ± 0.02 0.34 ± 0.02 0.914

CSF 0.26 ± 0.04 0.27 ± 0.03 0.508

Trial 4 n = 9 n = 9

GM 0.38 ± 0.04 0.40 ± 0.03 0.366

WM 0.33 ± 0.02 0.35 ± 0.02 0.116

CSF 0.29 ± 0.05 0.26 ± 0.03 0.140

Trial 5 n = 9 n = 9

GM 0.37 ± 0.03 0.41 ± 0.02 0.023*

WM 0.33 ± 0.01 0.34 ± 0.02 0.050

CSF 0.30 ± 0.04 0.25 ± 0.04 0.019*

Trial 6 n = 9 n = 9

GM 0.41 ± 0.03 0.40 ± 0.02 0.537

WM 0.33 ± 0.01 0.37 ± 0.03 0.006*

CSF 0.26 ± 0.04 0.24 ± 0.04 0.244

Total populations n = 43 n = 120

GM 0.40 ± 0.03 0.40 ± 0.03 0.478

WM 0.34 ± 0.02 0.34 ± 0.03 0.126

CSF 0.26 ± 0.04 0.25 ± 0.05 0.252

Tissue volumes were normalized to total intracranial volume resulting in (unitless)
tissue fractions. These are expressed as mean ± SD. Differences between NPSLE
and non-NPSLE were calculated with unpaired t-tests and expressed as p values,
*p < 0.05. values in bold represent statistically significant differences between the
two cohorts.

an impetus for exploring a variety of approaches with the goal
of finding the one that suits the most the type and amount data
in need of classification. The goal of this study was to establish
a retrospective link between (known) diagnosis and structural
brain differences between two classes of samples: NPSLE and
non-NPSLE patients. Within the limits of a single-center study
we benefitted from the maximum number of patients available
in the Netherlands, as well as from the most comprehensive
diagnostic process for NPSLE (being a national referral center for
the disease). When attempting to use a 2 class-wise supervised
learning approach, the model diverged, possibly due to the
limited number of data sets and the inconspicuousness of the
visual features. Based on the fact that self-supervised learning is
known to perform well even with a small data sets (Masood et al.,
2015; Bai et al., 2019), we opted for self-supervised learning, in
the hope that following the classification, common features for
two independent classes will emerge, coinciding with the NPSLE
and non-NPSLE patient groups. Eventually, the algorithm was
only able to find common features within one class of patients
(NPSLE), and no common features were found in the non-NPSLE
group in our trials. We cannot claim as a certainty that there are
no common features to the non-NPSLE group, but the positive
result we obtained for the classification of the NPSLE group
supports the notion that in our classification task it was more
effective to allow the algorithm to learn the visual representation
in a self-supervised manner using similarity across images, rather
than providing a-priori class labels.

To conclude: we set the stage for classification of brain
imaging data of NPSLE and non-NPSLE patients using deep
neural networks, achieving relatively high average accuracy
across repeated trials. We showed that self-supervised learning
is capable of capturing common image features in one class of
subjects (NPSLE). This task could not be accomplished with
supervised learning, demonstrating that self-supervised machine
learning can capture relatively inconspicuous visual information
by cross-entropy loss in the MRI images, and may prove
advantageous when only a limited number of data sets is available.
The method shown here is modular and can accommodate
additional imaging modalities to be included in the classification,
and can be easily applied to other studies of rare diseases that
suffer from similar limitations.
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