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Abstract: The reversible and substoichiometric modification of RNA has recently emerged as an
additional layer of translational regulation in normal biological function and disease. Modifications
are often enzymatically deposited in and removed from short (~5 nt) consensus motif sequences to
carefully control the translational output of the cell. Although characterization of modification occu-
pancy at consensus motifs can be accomplished using RNA sequencing methods, these approaches
are generally time-consuming and do not directly detect post-transcriptional modifications. Here,
we present a nuclease protection assay coupled with matrix-assisted laser desorption ionization
mass spectrometry (MALDI-MS) to rapidly characterize modifications in consensus motifs, such as
GGACU, which frequently harbor N6-methyladenosine (m6A). While conventional nuclease pro-
tection methods rely on long (~30 nt) oligonucleotide probes that preclude the global assessment of
consensus motif modification stoichiometry, we investigated a series of ion-tagged oligonucleotide
(ITO) probes and found that a benzylimidazolium-functionalized ITO (ABzIM-ITO) conferred sig-
nificantly improved nuclease resistance for GGACU targets. After optimizing the conditions of
the nuclease protection assay, we applied the ITO and MALDI-MS-based method for determining
the stoichiometry of GG(m6A)CU and GGACU in RNA mixtures. Overall, the ITO-based nuclease
protection and MALDI-MS method constitutes a rapid and promising approach for determining
modification stoichiometries of consensus motifs.

Keywords: RNA modifications; matrix-assisted laser desorption ionization mass spectrometry
(MALDI-MS); m6A consensus motif; ion-tagged oligonucleotides (ITOs); RNA modification sto-
ichiometry; nuclease protection

1. Introduction

Newly discovered roles for post-transcriptional modifications in regulating protein
translation [1,2] and RNA metabolism [3,4] have rendered these unusual chemical alter-
ations to the primary structure of RNA increasingly important targets for quantitative
analysis. Across virtually all types of coding and non-coding RNAs, approximately 170
unique RNA modifications have been discovered to date that range in complexity from
methylation and isomerization to isopentenylation and conjugation with cellular metabo-
lites [5]. Modifications can be deposited, removed, and recognized by “writer”, “eraser”,
and “reader” proteins [3,6], respectively, contributing to dynamic fluctuations in the cellu-
lar RNA modification landscape. This landscape, or “epitranscriptome,” is responsive to
external stimuli and is involved in regulating translation during heat shock [7], oxidative
stress [8], methylation stress [9], and experience-dependent plasticity in the central nervous
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system [10–12]. Dramatic variations in RNA modification identity and abundance have also
been characterized in small clusters of cells and even single cells [13–16], further driving the
demand for methods that are capable of rapidly characterizing and quantifying modified
RNAs.

RNA modifications are often deposited by enzymatic writers at predictable sequence
motifs [17–19]. For example, a METTL3–METTL14 complex methylates adenosine in
GGACU consensus motifs to form N6-methyladenosine (m6A) [20,21]. In addition to be-
ing one of the most abundant RNA modifications comprising ~0.5% of total adenosines
in human cell lines [22], m6A can also be enzymatically removed from these consensus
sites to mediate gene expression [23–25]. In normal function, dynamic methylation in
GGACU motifs influences developmental programs, learning and memory [10,11], and
axon regeneration following injury [26]. Dysregulation of m6A and its writer and eraser
enzymes has been linked to tumorigenicity of cancer cells [27], neurodegenerative dis-
ease [28], and addiction/reward learning [29]. Characterization of modification occupancy
across these functionally important motifs is therefore highly valuable and is typically ac-
complished using immunoprecipitation or chemical derivatization coupled with RNA-seq
approaches [22,30–34]. However, these methods typically require time-consuming sample
preparation steps, have limited quantitative capabilities, and do not directly detect RNA
modifications, which may lead to false positive and/or false negative signals.

Direct detection and quantification of RNA modifications is often accomplished using
mass spectrometry (MS) techniques [35–39]. Typical MS-based strategies involve digestion
of full-length RNA molecules into smaller fragments using sequence-selective enzymes
such as RNase T1, followed by detection, identification, and quantification of the resulting
fragments by liquid chromatography-tandem mass spectrometry (LC-MS/MS). While there
are many advantages to LC-MS/MS, a disadvantage of LC-MS/MS methods is that each
sample requires analysis times that may limit sample throughput. Matrix-assisted laser
desorption ionization-mass spectrometry (MALDI-MS) is a high-throughput alternative
that involves the rapid ablation of samples with a laser to generate ions for MS detection.
The MALDI-MS system can directly detect an RNA modification that results in a change
in mass-to-charge ratio (m/z) [40–43]. Another advantage of MALDI-MS is that it is a
soft ionization technique that permits the analysis of intact nucleic acids up to ~2000 nt
in length [44]. MALDI-MS has also been applied for the characterization of RNase T1
digests to map RNA modifications [40,45,46]. For targeted analysis of RNA modifications
in specific regions of an RNA molecule, MALDI-MS oligonucleotide hybridization probes
can be combined with single-strand-specific nucleases to remove untargeted segments of
RNA prior to analysis [47]. These nuclease protection assays are particularly attractive
when complex samples containing a large variety of RNAs are analyzed, since only the
target RNA sequence is protected from degradation. However, nuclease protection methods
are typically only implemented with hybridization probes ~20–50 nt in length to maximize
base-pairing interactions between the probe and the target sequence. As a result, short RNA
sequences like GGACU consensus motifs cannot be readily analyzed for their modification
status using conventional oligonucleotide probes.

In order to improve hybridization with target nucleic acids, chemical functionalization
of oligonucleotide probes can provide enhanced melting temperatures and selectivity for
complementary sequences [48]. Recently, thiol-ene click reactions were used to synthesize
ion-tagged oligonucleotides (ITOs) with alkyl and benzylimidazolium substituents tethered
to the 3′ terminus of a thiolated DNA probe [49,50]. By applying ITO probes for hybridiza-
tion with DNA targets, the selectivity for complementary sequences relative to mismatches
can be improved. Because ITOs have previously been investigated for high-efficiency
capture of nucleic acids for DNA diagnostic applications [51–53], these probes may also
prove useful for hybridization with and characterization of modified RNAs.

In this study, we report a MALDI-MS-based nuclease protection assay that utilizes
ITO hybridization probes to protect GGACU and GG(m6A)CU targets, thus facilitating
the analysis of modification stoichiometry at these sites. A series of alkylimidazolium and
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benzylimidazolium ITOs were investigated to enhance the stability of short target RNA se-
quences during digestion with single-strand-specific mung bean nuclease (MBN), revealing
that a benzylimidazolium-functionalized ITO (ABzIM-ITO) maximized the liberation of the
GGACU motif from full-length RNA. After optimizing the ITO-based nuclease protection
assay, we investigated the effect of sequence context on the detection of GGACU motifs.
Unlike conventional DNA probes, we found that the ABzIM-ITO showed no preference for
terminal or internal placement of the GGACU motif sequences across RNAs, suggesting
that the ITO hybridization probe is suitable for the unbiased evaluation of RNA modi-
fication occupancy at these sites. As a proof of concept, the ITO and MALDI-MS-based
approach was applied for determining modification stoichiometry in heterogeneous pools
of modified and unmodified RNAs. Overall, our results demonstrate that nuclease protec-
tion assays can be improved by using ITO hybridization probes and MALDI-MS to rapidly
characterize RNA modification stoichiometries within short RNA sequences.

2. Materials and Methods
2.1. Reagents and Materials

All oligonucleotides were purchased from Integrated DNA Technologies (Coralville,
IA, USA) or Dharmacon (Lafayette, CO, USA) and used without further purification
(Table S1). Mung bean nuclease and mung bean nuclease reaction buffer were purchased
from New England Biolabs (Ipswich, MA, USA). Tris(2-carboxyethyl)phosphine (TCEP) hy-
drochloride, triethylamine, acetic acid, urea, 3-hydroxypicolinic acid (3-HPA), acetonitrile,
and C18 ZipTip Pipette Tips with 0.6 µL bed volume were purchased from Millipore-Sigma
(St. Louis, MO, USA). A 40% acrylamide/bis-acrylamide (19:1) solution, ammonium per-
sulfate, tetramethylethylenediamine (TEMED), and Microseal B adhesive were purchased
from Bio-Rad (Hercules, CA, USA). Milli-Q water (Millipore, Burlington, MA, USA) was
used for the preparation of all solutions. All imidazolium salts used in this study were
received as gifts from J. L. Anderson (Iowa State University) and stored in a desiccator
until use.

2.2. Ion-Tagged Oligonucleotide Synthesis

The ITOs used in this study have been reported previously and were prepared by
thiol-ene click reactions using published procedures [49,50]. Briefly, a thiolated oligonu-
cleotide was reduced with 40 nmol TCEP for every 4 nmol of thiolated oligonucleotide
and incubated at room temperature (20–23 ◦C) for 45 min. After reduction, 1.4 µL of
the oligonucleotide solution was deposited in the center of a well in a 96-well plate. A
0.5 µL aliquot of 800 nM allylimidazolium salt solution prepared in acetonitrile (ACN)
was then added, and the solution mixed via pipet. The microwell was then sealed with
UV-transparent tape. The seal was punctured with a 21 G needle for venting, and the well
was subsequently purged with nitrogen gas delivered at a gentle flow to avoid turbulence
in the reaction liquid. After briefly purging the well (~3 s), the needles were removed, and
the well resealed with UV-transparent tape. The plate was then placed on a cooling fan in a
dark environment. A handheld UV lamp set to 365 nm was then placed on top of the plate
for 2 h at room temperature.

After the reaction, the mixture was diluted with 2 µL of nuclease-free water and
4 µL 7 M urea and subjected to denaturing polyacrylamide gel electrophoresis (PAGE).
Unreacted thiolated oligonucleotide was separated from the ITO product using a 15% poly-
acrylamide gel prepared with 7 M urea. The gel was run at 130 V in tris-borate–EDTA buffer
for ~45 min, and the bands were visualized by UV shadowing at 254 nm. The ITO band (i.e.,
the slower migrating band) was excised, transferred to a 1.5 mL tube, and crushed with
a pipet tip. The ITO was eluted from the gel with 40 µL of nuclease-free water overnight,
and the resulting ITO concentration determined by NanoDrop spectrophotometry.
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2.3. Nuclease Protection and Purification of Target RNA

In a 0.2 mL PCR tube, 1 µL of 10X mung bean nuclease reaction buffer and 10–50 pmol
of target RNA were combined with ITO probe (2:1 probe to target ratio) and water to a total
volume of 9.5 µL. The oligonucleotides were annealed using the following temperature
program: 65 ◦C for 3 min, hold at 4 ◦C. Next, 0.5 µL of mung bean nuclease (10,000 U mL−1)
was added, and the reaction was digested at 15 ◦C for 30 min.

Following digestion, the reaction mixture was diluted with 10 µL of 0.1 M triethy-
lammonium acetate at pH 7 (TEAA). C18 pipet tips were pre-conditioned with 3 × 10 µL
washes of 50/50 ACN/H2O followed by 3 × 10 µL washes of 0.1 M TEAA. The reaction
solution was then loaded by repeatedly drawing and dispensing the solution 10 times.
The C18 pipet tip was washed with 3 × 10 µL of 0.1 M TEAA. The oligonucleotides were
eluted in a clean microcentrifuge tube containing 5 µL of 50/50 ACN/H2O by drawing
and dispensing 20 times.

2.4. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry

A 0.5 µL aliquot of the sample was deposited on an MTP-384 polished steel tar-
get (Bruker), immediately followed by 1.0 µL of 0.5 M 3-HPA matrix prepared in 50/50
ACN/water. The sample was allowed to dry completely at room temperature.

MALDI-MS was performed using a Bruker ultrafleXtreme MALDI-TOF mass spec-
trometer operated in reflectron-positive mode over a 700–5000 m/z range with a Bruker
smartbeam-II laser set to “Ultra” (diameter of ~70 µm) and 83% power. The instrument was
calibrated using a peptide calibration standard mixture (Bruker). Each spectrum resulted
from 10,000 total laser shots generated across 10 manually selected positions, where each
position was sampled with 1000 shots at a frequency of 1000 Hz. The instrument specific
settings included pulsed extraction time of 120 ns, accelerating voltage of 25 kV, extraction
voltage of 22.65 kV, lens voltage of 6.8 kV, and reflector voltage of 26.4 kV.

2.5. Data Analysis

Mass spectra were processed using Bruker flexAnalysis 3.4, and peaks were manually
annotated and verified with Mongo Oligo Mass Calculator v2.06 (http://rna.rega.kuleuven.
be/masspec/mongo.htm, accessed 1 April 2022). For each sample, the stability ratio (SR)
was calculated using Equation (1):

SR = 1−
∑n

i=1 I f 1 + I f 2 + . . . + I f n

Itarget
(1)

where If1, If2, and Ifn are the peak intensities for the 1st, 2nd, and nth most intense degrada-
tion fragments with signal-to-noise (SN) ratios ≥10, and Itarget is the peak intensity for the
intact target sequence (GGACU or GG(m6A)CU) with SN ≥ 10 following digestion of the
sample with single-strand-specific MBN.

3. Results and Discussion
3.1. ITO-Facilitated Nuclease Protection Coupled with MALDI-MS for the Characterization of
RNA Consensus Motifs

Nuclease protection coupled with MALDI-MS is a high-throughput approach for
characterizing RNA modifications that relies on an oligonucleotide probe complementary
to the RNA sequence of interest and a single-strand-specific nuclease that cleaves the
unhybridized regions of RNA molecules. Nuclease protection assays have thus far only
been implemented with relatively long oligonucleotide probes (~20–50 nt) that cannot be
used to globally interrogate the modification status of small consensus motifs across the
transcriptome [54,55]. In order to improve the effectiveness of nuclease protection assays
for short RNA target sequences, we investigated ion-tagged oligonucleotide (ITO) probes
that have been previously shown to enhance the hybridization selectivity for target nucleic
acids [49,50]. We used thiol-ene click reactions to tether allylimidazolium salts bearing butyl

http://rna.rega.kuleuven.be/masspec/mongo.htm
http://rna.rega.kuleuven.be/masspec/mongo.htm
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(ABIM), octyl (AOIM), decyl (ADIM), and benzyl (ABzIM) groups to the 3′ terminus of
short thiolated oligonucleotides (5 nt) complementary to an m6A consensus motif (Figure S1
and Table S2). This series of ITOs was implemented in a nuclease protection workflow
using the single-strand-specific nuclease, MBN, coupled with MALDI-MS for the detection
of the m6A consensus motif (GGACU) installed within a 15 nt synthetic RNA standard
(Figure 1).
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Figure 1. Schematic showing the workflow for the ITO-based nuclease protection assay including
ITO probe–target annealing, MBN digestion, sample purification, and MALDI-MS detection of the
liberated target sequence (GGACU or GG(m6A)CU) and target degradation fragments.

Our first goal was to identify ITO probes that minimized the amount of degradation
fragments produced from the target GGACU sequence while maximizing the amount
of target sequence liberated from the RNA standard. ITO probes were annealed with
the RNA standard (2:1 probe–target ratio) and incubated for 30 min with MBN at 30 ◦C
according to the nuclease manufacturer’s instructions. After purifying the samples with
C18 pipet tips, the samples were spotted with 3-HPA and subjected to MALDI-MS detection.
The MALDI-MS platform permitted the rapid (~10–20 s per sample) and simultaneous
detection of the consensus motif as well as the degradation fragments resulting from
unsuccessful protection of the motif (Figure 2A–F). For each sample, the stability ratio (SR)
was calculated (Equation (1)) to assess the abundance of intact GGACU target relative to
its degradation fragments. Higher SRs indicate superior protection of the target sequence
from nuclease degradation. Although MALDI-MS ionization efficiencies may differ for
RNA fragments of different lengths (e.g., intact target versus degradation fragments), the
SR is an assessment of the relative intensities of these peaks, and thus, subtle differences
in ionization of these fragments would not impact trends in SRs. As expected, intense
degradation fragment peaks and low-intensity GGACU peaks were observed for samples
without hybridization probe, resulting in the lowest SRs of the samples tested. For the
ITOs, SRs generally increased with increasing chain length for the alkylimidazolium probes
(Table S3), possibly due to enhanced dispersion forces between the probe and the target
that improve strand association and/or to increasing steric bulk of the probe–target duplex
to facilitate nuclease protection. The ABzIM-ITO resulted in the highest SRs, perhaps due
to favorable π-π stacking interactions between the benzylimidazolium group and adjacent
nucleobases, which is similar to the enhanced stability of nucleic acid duplexes previously
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observed upon attachment of cyanine dye labels to the terminus of an oligonucleotide
probe [56]. Based on these results, we pursued further optimization of the method with the
ABzIM-ITO.
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treated with (A) no hybridization probe, (B) a conventional DNA probe, (C) ABzIM-ITO, (D) ABIM-
ITO, (E) AOIM-ITO, and (F) ADIM-ITO. Peaks in each mass spectrum were manually annotated to
indicate the probe, the liberated GGACU target, and any detectable target degradation fragments
derived from the unsuccessful protection of GGACU.

3.2. Optimization of ITO-Based Nuclease Protection Conditions

We then investigated the effect of different digestion temperatures to identify con-
ditions that both facilitated nuclease function and stabilized the ABzIM-ITO probe and
the target RNA duplex. We tested the nuclease protection assay using 15 ◦C and 10 ◦C
for the digestion step to compensate for the low melting temperature of the probe–target
duplex (~10 ◦C) [57]. SRs for these conditions as well as for the 30 ◦C digestion temperature
were calculated (Figure 3), revealing that digestion at 15 ◦C trended toward the highest
SR and thus the best nuclease protection. These results can be explained by the higher
temperature (30 ◦C) causing denaturation of the probe-target duplex, which renders the
target sequence vulnerable to MBN digestion. For the lower temperature digestion (10 ◦C),
we hypothesized that lower SRs would be obtained due to the low activity of the nuclease,
resulting in a lower abundance of the target GGACU sequence liberated from the RNA
standard. Despite 15 ◦C being a lower temperature than what is suggested as optimal
for MBN assays, it appears that a 15 ◦C digestion temperature is suitable for nuclease
protection assays for short RNA sequences, such as the m6A consensus motif studied here.
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Next, we compared SRs obtained when performing digestion with different amounts of
MBN in the sample mixture. We rationalized that since degradation fragments had already
been observed using 5 U of MBN, decreasing the amount of MBN to 2.5 U might improve
the SR. In contrast to our expectations, we found that the lesser amount of MBN resulted in
a lower signal intensity for the target peak, which in turn produced a substantially lower
SR (Figure 4). This result was likely due to the inefficient liberation of the GGACU target
from the 15-mer RNA as a consequence of fewer units of MBN in the reaction mixture. We
therefore selected 5 U of MBN as optimal for subsequent experiments.
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3.3. Comparison of 3′ and 5′ Ion Tag Structures and Sequence Context of Consensus Motifs on
Nuclease Protection

We then investigated the effect of installing the ion tag moiety on the 3′ or 5′ end
of the ITO probe. Since the ITO group was appended to the 3′ end of the ABzIM-ITO
probe in previous experiments, we anticipated that the enhanced target stability during
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nuclease digestion was due to π-π stacking interactions with the 5′ terminal guanosine of
the GGACU motif. To test this hypothesis, a 15-mer RNA standard possessing a 5′ terminal
GGACU motif was subjected to nuclease protection with either a 3′ or a 5′ functionalized
ABzIM-ITO probe (Figure 5A). Significantly higher SRs were once again observed for the
3′ ABzIM-ITO compared to an un-tagged probe and no-probe samples, whereas the 5′

ABzIM-ITO showed no significant effect on improving nuclease protection under the same
conditions (Figure 5B). These results aligned with our hypothesis that because a pyrimidine
terminated the GGACU motif on the 3′ end, π-π stacking interactions with the benzyl
group of the 5′ ABzIM-ITO were diminished compared to the situation in which a purine
base was present.
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Figure 5. (A) Schematic representation of RNA target and 3′ or 5′ ITO probes. (B) Comparison of
stability ratios obtained for ITOs with 3′ or 5′ functional groups when applied in a nuclease protection
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plot (25th to 75th percentile), the small square in each box represents the mean of the data. Individual
data points are represented by black diamonds. Error bars are 1.5 SD, unpaired t-test, * p < 0.05.

To further investigate this result, we compared SRs for a series of 3′ alkylimidazolium
ITO probes (ABIM, AOIM, ADIM) whose functional groups cannot engage in stacking
interactions. The SRs obtained from 3′ alkyl-functionalized ITOs were not significantly
different from protection by an un-tagged probe or the no-probe control (Figure 5B),
supporting the conclusion that the benzyl group of the ABzIM-ITO facilitates enhanced
protection due to favorable π-π stacking with adjacent purine nucleobases. We then
investigated the effect of placing alkylimidazolium ion tag moieties on the 5′ terminus
of the ITO. ITOs with long alkyl chains (C8 and C10) produced significantly higher SRs
compared to the un-tagged and/or no-probe control samples (Figure 5B). The 5′ ABIM-ITO
showed no significant increase in nuclease protection compared to either control sample.
These results may be due to steric bulk provided by the long alkyl groups of the AOIM-ITO
and ADIM-ITO probes that impeded the MBN degradation of the target.

Another motivation for studying the effect of the sequence context of the consensus
motif on the nuclease protection assay is that RNA modifications can be deposited both
internally and near the 5′ termini of RNA biopolymers [58–60]. To determine whether
the ABzIM-ITO showed bias toward protecting GGACU motif sequences depending on
sequence context, we compared the SRs obtained from ABzIM-ITO-mediated protection
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of 15-mer RNA standards designed with either 5′-terminal GGACU or internal GGACU
motifs. For the un-tagged probe, bias toward protection of the 5′ terminal GGACU motif
was observed, illustrated by significantly higher SRs for terminal GGACU compared to
the internal motif (Figure 6). In contrast, we found no difference in stability ratios when
using the ABzIM-ITO based on the sequence context of the consensus motif. These results
indicate that the ITO probe is suitable for unbiased global analysis of m6A occupancy at
these sites.
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Figure 6. Comparison of stability ratios for nuclease protection assays involving 15-mer RNA
standards with either a 5′ terminal or an internal GGACU motif. Assays were conducted without a
probe, with an un-tagged probe, or with the ABzIM-ITO. Within each box plot (25th to 75th percentile),
the small square represents the mean of the data. Individual data points are represented by black
diamonds. Error bars are 1.5 SD, unpaired t-test, ** p < 0.01, *** p < 0.001.

3.4. Evaluation of m6A Stoichiometry in the GGACU Consensus Motif Using ITO-Based Nuclease
Protection and MALDI-MS

We then aimed to apply the ITO and MALDI-MS method for the determination of
RNA modification stoichiometry at the consensus motifs. First, we designed 15-mer RNA
standards with either internal GGACU or GG(m6A)CU sequences and asked whether the
3′ ABzIM-ITO probe would confer nuclease resistance to the m6A-modified RNA. After
accounting for the changes in the m/z of the target and degradation peaks originating
from the modified RNA (Table S1), we found that SRs were significantly higher for the
methylated RNA compared to the unmodified RNA in all samples, suggesting that the
m6A modification is more resistant to MBN digestion (Figure 7). These results imply that
oligonucleotides containing m6A are less favorable substrates for MBN degradation, which
appears to counterbalance the generally destabilizing effects of m6A on base pairing [61].
We then investigated the precision of the method near the limit of quantification (LOQ,
SN = 10), which consisted of a mixture of 15-mer RNA standards bearing a 5′ modified
or unmodified consensus motif. Using 10 pmol of each modified and unmodified RNA,
the method resulted in signal-to-noise ratios of 13.7 and 16.5 and percent relative standard
deviations (RSDs) of 20.8 and 23.7% for the liberated GGACU and GG(m6A)CU targets,
respectively (Table S4). These RSDs agree with previously reported values for quantitative
analysis of 5-mer RNA standards by MALDI-MS [62]. The limit of detection (LOD) for
GG(m6A)CU was calculated from three times the noise of a blank analysis and was 1.8 pmol.
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*** = p < 0.001.

As a proof of concept, we applied the ITO and MALDI-MS-based nuclease protection
assay for the determination of modification stoichiometry using a sample mixture that
contained both modified and unmodified sequences. While keeping the total amount of
RNA in the sample constant, we tested different ratios of modified to unmodified RNAs
in the sample, including 1:4, 1:2, 1:1, 2:1, and 4:1, which span the range of stoichiometries
previously reported for m6A sites in mRNAs from cell lines determined using chemical
derivatization and RNA-seq [22]. We subjected each sample to the nuclease protection assay
using the 3′ ABzIM-ITO probe and calculated the ratio of signal intensities for the modified
and unmodified target sequences. The experimentally determined ratios of modified to un-
modified consensus motif present in the sample were in good agreement with the amounts
added to the sample and showed a linear relationship (R2 = 0.97) across the stoichiometries
tested (Figure 8). Overall, these results show that the ITO-based nuclease protection assay
coupled to MALDI-MS provides a promising alternative to RNA-seq platforms for the
rapid determination of global RNA modification stoichiometries at consensus motifs.
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prepared with different ratios of modified-to-unmodified RNA. Each sample consisted of controlled
amounts of 15-mer RNA standards with either a 5′ GGACU or a 5′ GG(m6A)CU motif. The total
amount of RNA was 100 pmol in all samples. The 3′ ABzIM-ITO was used for nuclease protection
prior to MALDI-MS. Replicates for different stoichiometries were as follows: 1:4 (n = 2), 1:2 (n = 2),
1:1 (n = 4), 2:1 (n = 4), and 4:1 (n = 2).

4. Conclusions

In this study, we report a nuclease protection assay that leverages ITO hybridization
probes and MALDI-MS to characterize RNA modification stoichiometries in a short con-
sensus motif that endogenously harbors m6A (GGACU). While typical approaches for de-
termining modification stoichiometries at these sites rely on RNA sequencing methods that
include time-consuming library preparation steps and indirect detection by immunopre-
cipitation or chemical derivatization, the coupling of nuclease protection and MALDI-MS
affords rapid analysis and direct detection of any RNA modification that alters the m/z of
the resulting RNA sequence. This feature MS detection is important for the discovery of
unknown RNA modifications or known modifications in unexpected sites. To improve nu-
clease protection assays for the analysis of short target sequences, we investigated a series of
hybridization probes including alkylimidazolium- and benzylimidazolium-functionalized
ITOs. We found that the ABzIM-ITO maximized the liberation of target GGACU motifs for
detection by MALDI-MS, likely due to enhanced π-π stacking interactions with the target
RNA sequence. Unlike conventional un-tagged hybridization probes, the ABzIM-ITO did
not show any bias toward protection of internal or terminally positioned motif sequences,
which is an important feature for the unbiased evaluation of modification stoichiometry
across multiple sites in RNA molecules. When applied for the determination of modifica-
tion stoichiometries in consensus motifs, the results from the ITO and MALDI-MS-based
approach strongly agreed (R2 = 0.97) with the ratios of modified and unmodified RNAs
added to the sample. In addition, since dozens of samples can be subjected to nuclease
protection and purification within ~45 min, the detection methods for the resulting digest
must have sufficient sample throughput to keep pace. While LC-MS of RNA oligonu-
cleotides require ~30–60 min per RNA digest, the MALDI-MS analysis times reported
herein are rapid and only require ~10–20 s per digest, thus providing a high-throughput
alternative for characterizing modified and unmodified RNA fragments generated from
nuclease protection.

This study establishes a foundation for subsequent investigations into global RNA
modification stoichiometry in complex samples that contain numerous targeted and un-
targeted RNA sequences. One of the advantages of the nuclease protection assay is that it
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dramatically reduces the complexity of RNA sequences within a sample via single-strand-
specific digestion, potentially allowing for the rapid analysis of modification stoichiometries
even in total RNA samples. In our experiments, we found that the LOQ for this approach
was 10 pmol of RNA molecules that each contained one motif sequence. We expect that
further improvements in the LOQ of the method will allow the characterization of RNA
modification events in successively smaller samples, such as subregions of the mammalian
central nervous system. For example, with ~106 neurons in the mouse hippocampus,
~105–106 mRNAs per cell, and an estimated ~3–5 m6A modification sites per transcript [24],
a two-fold improvement in LOQ for the nuclease protection and MALDI-MS method
would permit the characterization of modification stoichiometry within this functionally
important brain region. One way to improve the detection limits of the assay includes
the design of new hybridization probes that further stabilize short consensus motifs. The
results we report herein indicate that π-π stacking interactions are useful for enhancing
resistance toward single-strand-specific nucleases, providing a starting point for the design
of hybridization probes that capitalize on these intermolecular forces. Additionally, the
design of ITOs with longer complementary sequences (~20 nt) may also permit measure-
ments of modification stoichiometry at single m6A sites in specific mRNA transcripts.
The application of longer ITO hybridization probes would be particularly interesting for
transcripts containing multiple m6A consensus motifs. While such an approach would be
limited by transcript abundance, it is conceivable that high-abundance mRNAs would be
assessable.

A limitation of our method is that it appears to have the best performance when a
purine nucleobase is present at the 5′ terminus of the consensus motif. However, it is
conceivable that consensus motifs bearing purine nucleobases at their 3′ ends could be
sufficiently protected by a 5′-functionalized ITO probe, allowing adaptation of the ITO-
based method for a variety of consensus motifs such as UGUAR (R denotes purine) for
pseudouridine (Ψ) [17] or GUUCRA for N1-methyladenosine (m1A) [19]. Implementing
the ITO-based nuclease protection assay for different RNA modifications will require con-
sideration of the differences in hybridization efficiencies that may exist between modified
RNAs and their unmodified counterparts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13061008/s1, Figure S1: Photograph of a denaturing gel after
the electrophoretic separation of a series of ITO probes from their unreacted thiolated oligonucleotide
counterparts. The top band in each lane is the ITO while the bottom band in unreacted thiolated
oligonucleotide. ABzIM, ABIM, AOIM, and ADIM ITOs were generated from allylbenzylimidazolium,
allylbutylimidazolium, allyloctylimidazolium, and allyldecylimidazolium salts, respectively, Table S1.
The RNA standard sequences used in this study with the target sequence underlined. Theoretical and
observed m/z values for the liberated target sequence are shown, as well as RNA fragments derived
from nuclease digestion/unsuccessful protection of the GGACU motif. Table S2: Chemical structures
and abbreviations of the un-tagged probe and ITOs used in this study as well as corresponding
theoretical and observed m/z values. Table S3: Stability ratios for nuclease protection assays using
different alkylimidazolium or benzylimidazolium ITO probes compared to a standard DNA oligo
probe and no probe samples Table S4: Figures of merit for the nuclease protection method using 3′

ABzIM-ITO and MALDI-MS detection for characterization of modified or unmodified consensus
motifs in a 15-mer RNA standard.
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