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Tumor progression depends on the collaborative interactions between tumor cells and the
surrounding stroma. First-line therapies direct against cancer cells may not reach a
satisfactory outcome, such as gastric cancer (GC), with high risk of recurrence and
metastasis. Therefore, novel treatments and drugs target the effects of stroma
components are to be promising alternatives. Mesenchymal stem cells (MSC) represent
the decisive components of tumor stroma that are found to strongly affect GC
development and progression. MSC from bone marrow or adjacent normal tissues
express homing profiles in timely response to GC-related inflammation signals and
anchor into tumor bulks. Then the newly recruited “naïve” MSC would achieve
phenotype and functional alternations and adopt the greater tumor-supporting potential
under the reprogramming of GC cells. Conversely, both new-comers and tumor-resident
MSC are able to modulate the tumor biology via aberrant activation of oncogenic signals,
metabolic reprogramming and epithelial-to-mesenchymal transition. And they also
engage in remodeling the stroma better suited for tumor progression through
immunosuppression, pro-angiogenesis, as well as extracellular matrix reshaping. On
the account of tumor tropism, MSC could be engineered to assist earlier diagnosis of GC
and deliver tumor-killing agents precisely to the tumor microenvironment. Meanwhile,
intercepting and abrogating vicious signals derived from MSC are of certain significance
for the combat of GC. In this review, we mainly summarize current advances concerning
the reciprocal metabolic interactions between MSC and GC and their underlying
therapeutic implications in the future.

Keywords: gastric cancer, mesenchymal stem cells, tumor tropism, reprogramming, tumor stroma, drug delivery,
targeted therapy
INTRODUCTION

Gastric cancer (GC) is one of the most refractory malignancies with high morbidity and mortality.
Updated statistics indicates that GC is the fifth frequently diagnosed cancer with over 1,000,000 new
cases and the third leading cause of cancer-associated morbidity, an estimated 783,000 deaths
worldwide (1). Helicobacter pylori (Hp) eradication, gastroscopy, and endoscopic treatment have
reduced the risk of developing GC, as well as provided better long-term health-related quality of life
for patients with early GC (2, 3). Regrettably, a larger population of people is already in the
advanced stage at the first diagnosis for rarely present symptoms. Although a combination of
surgical resection with adjuvant chemotherapy is the preferential option for advanced GC, the
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survival outcome stays disappointing, dropping a median overall
survival of 10-12 months (4, 5). Hence, searching for new
strategies, such as immunotherapy, targeted therapy, and
making clinical transformation remain urgently needed.

Of note, the occurrence and development of tumor cannot be
isolated from the tumor microenvironment (TME). The
surrounding microenvironment “soil” is to facilitate the
survival and thriving of tumor cell “seed” via substantial
reciprocal crosstalk between cell-cell or cell-non-cell
components (6). TME is generally a complex network and
largely composed of the stroma of tumor, covering
mesenchymal stem cells (MSC), cancer-associated fibroblasts
(CAF), endothelial cells (EC), pericytes, immune cells,
vasculature together with the extracellular matrix (ECM)
surrounding the cancerous tissue (7–9). Contrast to stroma
under normal physiological conditions, which encompasses
structural and supportive framework to maintain the stability
of tissues and suppresses cancer proliferation, the tumor stroma
is in an active state and has been documented to be firmly
correlated with the aggressiveness and unfavorable clinical
outcomes of a spread of malignancies including GC (10–12). A
cohort study with 583 gastric adenocarcinomas demonstrated
that stroma-rich patients tend to acquire a worse 5-year
prognosis than stroma-poor ones, no matter in intestinal or
diffuse histological phenotype (13). Other studies suggest tumor-
stroma ratio a reliable prognostic indicator to optimize risk
stratification in GC for the ability to quantify the effect of
tumor-stroma interactions on tumor biology (14, 15). Such
evidence sheds light on the important role of stroma for tumor
development, which would arise novel anti-cancer strategies
focusing not restrictive on cancer cells.

Among the stromal cells, MSC, a population of non-
hematopoietic cells with self-renewal capacity, multi-
differential potential, and immune-modulatory property, have
received recent attention as a key contributor in directing tumor
behavior and TME remodeling. MSC are spindle-shaped cells
and capable of forming colonies when originally isolated from
the hematopoietic microenvironment of bone marrow (BM),
also named colony-forming unit-fibroblast (CFU-F) (16). Then
the International Society for Cellular Therapy (ISCT) enacted the
minimal criteria for better isolation of these cells: firstly, be
plastic-adherent; secondly, highly express (>95%) surface
molecules of CD73, CD90, CD105 and lack expression of
(<2%) CD45, CD34, CD14, CD11b, CD79a, CD19 and HLA-
DR; thirdly, hold the ability to differentiate into osteoblasts,
adipocytes, and chondroblasts ex vivo (17). Over time, other
surface antigens, like CD271, STRO-1, CD106 and CD146 come
to be accepted and recognized for MSC identification (18, 19).
MSC used to arouse excitement for regenerative medicine owing
to they can quickly engraft to inflammatory cytokines or
chemoattractant gradients produced by injured tissue and
organs to exhibit their tissue healing functions, alone or in
combination with other methods (20, 21). With the hypothesis
“tumor equates wound that never heals” arises, the function of
MSC in tumors has been realized to parallel the role of MSC in
wound healing that actively promotes MSC from bone marrow
Frontiers in Oncology | www.frontiersin.org 2
or adjacent tissues to mobilize into the TME (22, 23). In a mouse
model of hepatocellular carcinoma (HCC), MSC possess distinct
homing profiles and contribute to a significant rapid depletion
from circulation in cancerous condition (24). The result is
consistent with findings in the patients with GC showing that
an intensified peripheral trafficking of MSC in comparison to
healthy individuals; and the egressed MSC are commonly
aggregated in tumor bulks over adjacent normal tissues (25,
26). That throws the great interest to explore the possible roles of
MSC in tumor progression and aggressiveness which previously
may be neglected in GC-stroma interactions. In the following, we
mainly cover recent advances in the interactions between MSC
and GC, the role of MSC in rewiring the nearing cancer stroma,
and potential underlying mechanisms. Furthermore, fresh
boundaries regarding the potential application of MSC in GC
are also within our discussion to inspire more preventive and
therapeutic strategies.
THE RECRUITMENT AND
REPROGRAMMING COURSE OF
NAÏVE MSC INTO GC-MSC

The Tropism and Remodeling of
Naïve MSC
GC as well as its progression niche is a reservoir of cytokines,
chemokines, growth factors that specifically drive the tropism
and motility of BM-derived cells including MSC. Under the co-
culture system, the migratory ability of BM-MSC could be raised
up to two- to threefold because of the high expression of CXC
receptor 2 (CXCR2) in response to CXC ligand 1 (CXCL1), a
chemokine stimulating factor released from cancer cells (26).
Except for this, chemotactic signals derived from GC such as C-C
chemokine ligand 19 (CCL19) and CXCL12 would also augment
the migration potential of MSC to cancer in a dose-dependent
manner, while the concrete mechanisms still to be further
investigated (27). On the other hand, it is important to note
that Hp infection would accelerate the trafficking of MSC into
the stomach at the early stage of carcinogenesis. Hp-mediated
chronic inflammation of gastric epithelial cells would
significantly increase the secretion of tumor necrosis factor-
alpha (TNF-a), an appreciable molecule in stimulating MSC
migration in Nuclear Factor-kappa B (NF-kB)-dependent
manner (28). Subsequently to being recruited, the naïve MSC
[mainly refers to BM-MSC or MSC isolated from adjacent non-
cancerous tissue (GCN-MSC)] were relentless to be educated by
GC cells to become specialized ones equipped with the tumor-
supporting capacity (29). Moreover, the immunomodulatory
function of MSC could also be modified via the activation of
the NF-kB signaling pathway, to strengthen their activation
ability to immune cells (30). Intriguingly, a recent finding
suggested that BM-MSC incorporated into metastatic lymph
node microenvironment could be reprogrammed by cancer
cells. Yes-associated protein (YAP) activation elicited
by exosomal Wnt5a from lymph node-derived GC cells,
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was verified pivotal for their reprogramming into cancer-
associated MSC (31).
Characterization of GC-MSC
Evidence incline to depict that GC-MSC and naïve MSC share
equivalent spindle-shaped morphology, similar surface antigens
and stem cell-related gene expression. GC-MSC are positive for
CD13, CD29, CD44, CD73, CD90 and CD105, but negative for
CD14, CD31, CD34, CD38, CD45, CD71, CD133 and HLA-DR,
among which the expression of CD105 was strongly associated
with the poor prognosis of GC patients (12, 32–34). Another
study denoted that the higher co-expression of CD29 and CD90
are more commonly seen in GC-MSC than GCN-MSC, and was
correlated with more advanced pathological stage, worse disease-
free survival and overall survival (35). In comparison with naïve
MSC, GC-MSC seem to be on a less quiescent stage,
ultrastructurally, phenotypically and functionally. GC-MSC
typically feature greater number of cell organelles, such as
mitochondria and endocytoplasmic reticulum, and higher
expression of proliferation-related genes, all of which are
coincide with their greater proliferative potential (32). Besides,
GC-MSC display a stronger intensity of reactive stroma cell
markers including fibroblast activation protein (FAP) and a-
smooth muscle actin (a-SMA) (36). In virtue of the
reprogramming by cancer cells, GC-MSC exhibit a higher
secretion of inflammatory cytokines than naïve MSC, e.g.,
interleukin-6 (IL-6), IL-8, transforming growth factor b1
(TGF-b1), ect, which in turn display superior efficiency in
facilitating cancer cell growth, invasion, migration and
tumorigenesis in vitro and in vivo (36, 37).
Frontiers in Oncology | www.frontiersin.org 3
MSC IMPACT ON GC CELLS

Aberrantly Activate Oncogenic
Cell Signaling
MSC are capable of reprogramming GC cells to orchestrate the
proliferation, invasion, migration and chemoresistance, via
stimulation of oncogenic signaling pathways associated with
aberrantly growth or transforming (Figure 1). The enhanced
secretion of IL-8 from GC-MSC has been linked to cancer
progression by inducing the activation of protein kinase B
(AKT) and extracellular signal-regulated protein kinase (ERK)
1/2 signaling pathway (37). Moreover, GC-MSC could robustly
express hepatocyte growth factor (HGF) as ligand of c‐MET to
trigger phosphorylation of its downstream signaling cascade in
cancer cells, and aberrant HGF/c-MET axis has been well-
established to be critical for GC progression (38). Recently,
researches highlighted the crucial mediator of CXCR6 and
signal transducer and activator of transcription 3 (STAT3)
pathway, which suggest a prominent production of CXCL16 in
MSC via the activation of Wnt5a/Ror2 signaling axis, in turn,
activates its corresponding receptor CXCR6 to increase the
expression of Ror1 via the activation of STAT3, eventually
resulting in the promotion of proliferation and migration of
GC cells (39, 40). In addition to these, emerging studies have
uncovered the oncogenic potential of platelet-derived growth
factor (PDGF)-DD/PDGFR-b axis (41) and YAP/b-catenin
signaling (42) in the MSC-induced cancer initiation and
progression, and blocking or interference of these signals has
designated a certain positive significance for the treatment of GC.

Exosomes prove a kind of small lipid bilayer membrane vesicles
delivering intercellular communication bioactive molecules, like
FIGURE 1 | The reprogramming of GC by MSC. MSC could reprogram the biological activities of gastric cancer cells, mainly through aberrantly activate oncogenic
signals, metabolic reprogramming and epithelial-to-mesenchymal transition, contributing to cancer cells proliferation, invasion, migration and resistance
to chemotherapy.
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miRNAs, long non-coding RNAs (lncRNAs), and proteins to
reshape the biological behavior of adjacent cells or remote targets
of the body (43, 44). As research conducted by Ji et al. (45), the
exosomes from MSC can trigger the calcium-dependent protein
kinases (CaM-Ks) and its downstream RAF/MEK/ERK signaling
cascade, elevating the expression ofmulti-drug resistant proteins in
cancer cells to counteract 5-fluorouracil (5-FU) induced cell
apoptosis, however, the exact molecules in exosomes that mediate
this effect have yet been identified. Ubiquitin-protein ligase E3
component n-recognin 2 (UBR2) is a kind of protein that accounts
for ubiquitination and degradation, was found to highly aggregate
in exosomes of especially p53 deficient BM-MSC, could be
internalized into GC cells and induce the activation of Wnt/b-
catenin pathway to promote cell proliferation, migration and
stemness maintenance (46). In addition, evidence has clarified
that miRNAs are deregulated in exosomes of GC-MSC, to be
transferred to transcriptionally modulate cancer aggressiveness, of
which miR-221 deregulation has been linked with various
tumorigenic pathways (47, 48).

Dysregulate Metabolic Plasticity
Metabolic reprogramming has been proposed as a new hallmark for
cancer progression. Emerging discoveries highlight that MSC could
dysregulate cellmetabolismtoconferGCcells stemness andtolerance
to drug stress (Figure 1). He et al. (35) proposed that TGF-b1
secretion byMSC co-opt TGF-b receptors inGC cells could raise the
expression level of lncRNA MACC1-AS1, which have sponge
interaction with miR-145-5p to boost the expression of CPT1, the
fatty acid oxidation (FAO) speed-limiting enzyme, subsequently
decreasing reactive oxygen species (ROS) production and cell
apoptosis under 5-FU and oxaliplatin. Mechanistically, MACC1-
AS1also is found toaugment the expressionofMACC1, anoncogene
and a poor prognosis marker in GC, to elevate glutathione and
nicotinamide adenine dinucleotide phosphate (NADPH) levels and
sustain a lower ROS load under metabolic stress (49). In another
study, MSC-induced lncRNA histocompatibility leukocyte antigen
complex P5 (HCP5) inGC cells was demonstrated to serve as amiR-
3619-5p sponge to facilitate FAO via the transactivation of CPT1,
thereby alleviating the cell cycle arrest effect of cancer cells caused by
chemotherapeutics (50). Besides, the antagonist of CPT-1 could
remarkably reverse the MSC-induced tumor growth under
FOLFOX regiment treatment in vivo (35), indicating that
deregulated FAO could be a key regulator of MSC-mediated
chemoresistance in GC and a potential target for anti-
resistance interventions.

Elicit Epithelial-to-Mesenchymal
Transition (EMT)
Phenotypic transition occurs in GC cells when close physical
contact with MSC as well (Figure 1), they adopt mesenchymal
phenotype including longitude ridging, ruffled membranes and
finger-like extensions, concomitantly with increased level of a-
SMA, N-cadherin, vimentin and Snail and repressed expression of
cellular adhesionmolecules especiallyE-cadherin (51–53).EMT is a
dynamic process and the mesenchymal traits endow the malignant
cells migratory and invasive capacities, and the susceptibility to
Frontiers in Oncology | www.frontiersin.org 4
cancer intravasation and metastasis. The paracrine signals of MSC
also induce EMT to promote transendothelial migration,
mechanistically, dependent on high expression of snail, twist, b-
catenin and matrix metalloproteinase-16 (MMP-16) (52).
Moreover, the activation of PI3K/AKT signaling pathway was
shown to be linked with the process (51). Intriguingly, researchers
found cell fusion maybe one of the underlying mechanisms in the
MSC-primed EMT. Hybrids acquire the mesenchymal and
stemness proteins, enhanced proliferation and migration
potential during a physical fusion event with MSC (54). Notably,
hybrids generated by MSC and immortalized non-tumorigenic
human gastric epithelial cells also undergo EMT and are
vulnerable to be malignant transformation, which makes a
difference in cancer initiation (55).
MSC REMODELING THE GC STROMA

Immunosuppression Potential of MSC
Not only function directly back upon tumor cells to boost the
growth and progression, but MSC are also involved in the
continuous updating and transformation of stroma components,
for the aim of enhancing their tumor-supporting roles and
accommodating the rapid metabolic process of tumors (Figure
2). The immunomodulatory property of MSCs has been well
exploited to prevent and treat severe graft-verse-host diseases
(56). With the reprogramming of GC, MSC incorporation
engraftment the TME could modulate the differentiation,
polarization or anergy of immune cells thus offering local
immune-suppressive milieu. GC-MSC, mainly by extracellular
cytokines secretion, such as IL-15 contained in the conditioned
medium (CM) could predispose peripheral blood mononuclear
cells (PBMC) to skew their differentiation into regulatory T (Treg)
population (57). The balance ofTreg andTh17 subsets defines a key
regulator for immune homeostasis for they exert the opposite
immune-modulatory functions (58). Consistently, a study
conducted by Wang et al. (59) revealed that by the joint
activation of GC-MSC, the enhanced differentiation of Treg
subsets and the suppressed Th17 cells proliferation can reverse
the tumor-inhibitory effect of PBMC to significantly improve GC
growth potential and facilitate liver metastases formation in vivo.
Li and colleagues (60) have shown that GC-MSC also perform an
intricate crosstalk with macrophages to drive the conversion of
macrophages toward alternatively activated, immunosuppressive
M2 phenotype, which exhibit a higher potential in promoting GC
invasion andmetastasis than that ofGC-MSC. Importantly, theM2
phenotype has been manifested to play extensive roles in immune
tolerance, neo-angiogenesis, pre-metastatic niche formation for
GC advancement (61). Mirroring macrophages, the IL-6 enriched
in the GC-MSC-CM can stimulate the phosphorylation of STAT3
and ERK1/2 in neutrophils, promoting their recruitment and
activation into a pro-tumor phenotype that would finely
cooperate with GC-MSC to synergistically prompt cancer
migration and angiogenesis (34). Intriguingly, GC-MSC could
induce the anergy and silence of immune potency through the
secretion of IL-8 to upregulate the expression level of PD-LI in GC
May 2021 | Volume 11 | Article 617677
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cells that drive the exhaustion of CD8 T cells, resulting in immune
resistance and contributing to GC progression (62). Emerging
research spots that the immunophenotype of GC-MSC are also
influencedby theCD4Tcells via the p-STAT3 signalingpathway to
boost cancergrowth rate-promoting role ofGC-MSCs, highlighting
that TME is a huge complicated signaling network in which tumor
cells, immunecells,MSCandother components are in amulti-angle
communication to facilitate cancer progression (63).

Vascularization and ECM Remodeling
Neovascularization provides favorable conditions for tumor
invasion and metastasis and is therefore considered a marker of
poor prognosis. Under the pretreatment of GC-CM in vitro, MSC
Frontiers in Oncology | www.frontiersin.org 5
would elevate the expression of vascular endothelial growth factor
(VEGF), macrophage inflammatory protein-2 (MIP-2), TGF-b1,
IL-6, and IL-8, among them VEGF being highly angiogenic works
prominently in vascular development (37). Consistent with the
prior finding, Feng et al. (64) proposed that VEGF production, in
collaboration with NF-kB signaling in GC-MSC, could induce
angiogenesis through driving the human umbilical vein
endothelial cells (HUVEC) tube formation, suggesting the active
involvement of GC-MSC in tumor neovascularization, while the
inherent regulation mechanisms in VEGF/NF-kB signaling
remains unquestioned. MSC are observed to trans-differentiation
into ECwith the induction of basic fibroblast growth factor (bFGF)
or VEGF, and RNA chip result indicates the intrinsic epigenetic
FIGURE 2 | Schematic diagram for the role of MSC in the remodeling of GC stroma. MSC could be recruited into cancer stroma and are involved in the continuous
updating and transformation of stroma components. Via secretion of various cytokines, e.g., IL-6, IL-8, IL-15, MSC modulate the Treg differentiation, macrophage
polarization, neutrophil recruitment and activation, exhaustion of CD8 T cells, thus offering local immune-suppressive milieu. MSC could also secret VEGF and MMPs
to induce neovascularization and ECM degrading, or directly differentiate into CAF to exhibit synergistic effect in remodeling cancer cells and stroma.
May 2021 | Volume 11 | Article 617677
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modifications of MSC affect their differentiation into multiple cell
lineages including EC that reshape the surrounding pathological
GC stroma, hence MSC probably directly give rise to EC to
contribute to GC vascular network (65–67). Additionally,
experimental evidence shows that MSC are able to give rise to
CAFwith the activation ofTGF-b derived fromGC-exosomes (68).
CAF are well-demonstrated stromal cells and are often coordinated
and overlapping withGC-MSC in reprogramming tumor itself and
the stroma vicinity to contribute to cancer invasion andmigration,
acquired chemoresistance and EMT (69–71). Hp infection in GC
cells would therefore enhance the expression of hepatoma-derived
growth factor (HDGF)which also accelerates the transition ofMSC
into CAF and amplify their synergistic effects (72). Former studies
stressed the role of CAF in ECM remodeling that control the
aggressiveness and metastasis of cancer cells (73, 74). However,
newly data indicate that secretion ofMMP-2,MMP-7,MMP-9 and
MMP-14, matrix metalloproteinases needed for ECM degradation
are also increased in MSC to destruct external barriers to facilitate
GC invasion and migration (75).
THE PROSPECTS OF MSC IN
TARGETED THERAPY

MSC Act as Drug Delivery Vehicles
With their inherent advantages, like tumor andmetastases tropism,
easy isolation, low immunogenicity, MSC are ideal vehicles for
tumor-directed therapy to raise efficacy (Table 1). Recently, a novel
polymer AHP-OA-FA has been employed to infuse withMSC that
enhance the tropism into GC with increased drug concentration
and aggregation in local tumor lesions than pure MSC, and the
polymer exerts no impact on the surface marker, proliferative
capacity and motility of MSC, thus could be serving as more
potent carriers for targeted therapy (84). Prerequisites for
Frontiers in Oncology | www.frontiersin.org 6
application of MSC are that the therapeutic agents they
transported can be released after reaching the tumor site and
exhibit strong toxicity only to tumor tissues. Cai and coworkers
(76) established immuneapoptotin-armored MSC which
continually secrete immuneapoptotin e23sFv-Fdt-tBid and
exhibit significantly killing effect to GC cells expressing HER2 in
vitro study. Importantly, after being intravenously administered in
HER2 reconstituted syngeneic mouse models, these primed MSC
exhibit persistent localization at tumor areas, display markedly
stronger immunoapoptotin staining and better anti-tumor effect in
comparison with direct delivery of the purified immunoapoptotin
or delivery by Jurkat cells, indicating thatMSCmobility can be well
extended for the specific killing of HER-2 overexpressed GC.
Besides, MSC expressing a transgene encoding NK4, the
antagonist of HGF receptors, were observed to migrate and
accumulate in tumor tissue, and effectively inhibit GC growth via
suppressing tumor angiogenesis as well as triggering tumor cell
apoptosis (77). Inmuch the sameway, umbilical cord blood (UCB)-
MSC being infected with lentivirus vectors carrying LIGHT (TNF
receptor superfamily) genes are also reported to induce severer
apoptosis ofGCcells (78). These trails illustrate thatMSCas vectors
possess a large scope of complexity, including apoptosis-inducing
genes, oncolytic viruses, cytotoxic agents and anti-angiogenic
agents. To our interest, a recent study demonstrated that MSC
could also be modified to carry hemoglobin genes and supply
oxygen to GC cells to reverse the hypoxic microenvironment and
reduce the resistance to cisplatin and 5-FU (79). However, there are
still lacking in evidence to ensure that the engineered MSC do not
cause tumor progression or recurrence after long periods of
infiltrating in cancer stroma. The first prospective, uncontrolled,
single-arm phase I/II study on MSC-based therapy using
autologous genet ical ly modified MSCs in advanced
gastrointestinal adenocarcinoma (TREAT-ME1) has been
finished and suggested that MSC_apceth_101 cells (a total dose of
TABLE 1 | Summary of applications of MSC in targeted therapy of GC.

Mechanism of action Source of MSC Anti-tumor compound Effects References

MSC as anti-tumor drug vectors BM-MSC Immunoapoptotin e23sFv-Fdt-tBid Tumor growth↓ (76)
BM-MSC NK4: antagonist of hepatocyte growth factor receptors (Met) Tumor necrosis↑;

microvessel formation↓
(77)

UCB-MSC LIGHT(TNFSF14):TNF receptor Tumor apoptosis↑ (78)
BM-MSC Hemoglobin genes (HBA2 and HBB) Chemotherapeutic effect↑ (79)

Target the MSC recruitment BM-MSC AMD3100: inhibitor of CXCL12/CXCR4 signaling axis Tumor growth↓;
gastric dysplasia↓

(80)

BM-MSC SB225002: CXCR2 inhibitor Tumor necrosis↑;
growth↓;
lymph node metastasis↓

(26)

Target the MSC-GC interactions GC-MSC Resveratrol EMT↓; metastasis↓ (81)
BM-MSC Anti-IL-6 antibody

Anti-IL-8 antibody
Anti-CCL-5 antibody
17b- estradiol

Tumor invasiveness↓ (82–84)

BM-MSC Etomoxir (ETX): inhibitor of FAO Cancer stemness↓;
chemo-resistance↓

(35)

GC-MSC YAP shRNA Tumor migration↓; invasion↓;
pro-angiogenic ability↓

(41)

GC-MSC PDGF-DD siRNA or su16f Tumor proliferation↓;migration↓ (42)
GC-MSC Curcumin Tumor angiogenesis↓ (64)
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3.0×106 cells/kg) expressing herpes simplex virus tyrosine kinase
(HSV-TK) combined with ganciclovir was safe and could be well
tolerated (85, 86). While it is a small study with 10 patients and no
GC cases included, thus future multicenter investigations with
larger samples are warranted to realize the safe and effective
transformation of MSC-based therapy into GC settings.

Target the Recruitment Course of MSC
and the Downstream Vicious Signals
In most circumstances, the active recruitment of MSC commonly
occurs ahead of GC initiation, especially in Hp-related
carcinogenesis. Hp induced inflammation milieu is abundant in
functional molecules such as TNF-a, TGF-b, CXCL12 and
interferon g that conducive to MSC recruitment for their tissue
healing functions (28,87–89).Corresponding to thispoint,Ruanetal.
(27) labeled MSC with amino-modified FMNP that keep stable
fluorescent signal and magnetic properties with 14 days to display
out the early gastric cancer (EGC) area, not only being with the
potential of imaging EGC, these MSC also could inhibit tumor
growth markedly under alternating magnetic field irradiation. MSC
aggregating at inflamed stomach further prompts gastric
carcinogenesis mainly through EMT once they fail to repair (55,
90). Hence earlier Hp eradication or intercepting MSC recruitment
would make a difference to suspend carcinogenesis and progression
(Table 1). Prior study has manifested that the AMD3100, an
inhibitor of the CXCL12/CXCR4 signaling axis, could block
the transformation of MSC into a-SMA+ myofibroblasts and the
recruitment of MSC, inhibiting tumor growth and the development
of gastric dysplasia (80). Similarly, the administration of antagonists
of the CXCL1/CXCR2 axis was found to block theMSC recruitment
in the GC mice model, decreasing the size of tumors as well as the
number of lymph node metastases (26). On the other hand, directly
disrupt inter-communication betweenMSC and GC also offer novel
insights forGC treatment (Table 1). Such as resveratrol, which could
suppress and revert the pro-metastatic effect of GC-MSC via
counteracting GC-MSC-mediated Wnt/b-catenin signaling of GC
cells (81). Curcumin is a bioactive compound and found to abrogate
the NF-kB signaling and VEGF production to attenuate the GC-
MSC-triggered tumor angiogenesis (64). In addition to these, several
researchers have successfully adopted specific neutralizing antibodies
of IL-8, IL-6, and CCL-5 to inhibit MSC-mediated GC invasive
motility, and 17b- estradiol also impair the functions of IL-8, IL-6,
and CCL-5 under the same context via ceasing the activation of their
downstream Src/Cas/Paxillin signaling pathway, thus hormonal
therapy might be anticipated based on MSC activity (82, 83, 91).
CONCLUSIONS

MSC,with theirmulti-lineage differentiation and immune privilege
nature, have shared great popularity in regenerative medicine and
allogeneic transplantation.As the stromalprogenitorcells, their role
in tumor progression and TME is being put under the spotlight of
tumor researches. Most studies have confirmed the tumor-
contributing role of MSC, while the anti-tumor effect of MSC
gradually unveils in several cancer types such as melanoma;
glioma; HCC (92–94). Also, there are opposite results clarifying
Frontiers in Oncology | www.frontiersin.org 7
that MSC from human adipose tissue and the umbilical cord could
inhibitGCprogressionand induce apoptosis of cancer cells (95, 96).
One convincing explanation of the discrepancy attaches
importance on the process of reprogramming of tumor cells that
convert naïve MSC, which often exert a divergent effect on tumor
progression, into pro-tumorigenic educated tumor-associated
MSC. However, other factors, like the differences among tumor
models, the heterogeneity ofMSC, the timing and dose of theMSC
injected are also accepted to influence the process of MSC-
cancer interactions and lead to inconsistent results [reviewed
in (97, 98)].

This review stresses the reciprocal crosstalk of malignant cells
andMSC in the progression ofGC,which canpartly account for the
complexity and heterogeneity of tumor-stroma connections. GC
and the secret mediators in the niche would induce MSC
recruitment and educate them into cancer-associated MSC with
stronger tumor-promoting potential. In response, through cell
physical contact or secretomes, MSC could aberrantly motivate
oncogenic signals, deregulatemetabolic plasticity and elicit EMT in
GC cells to promote proliferation, invasion, migration and
chemoresistance. Indirectly, reprogrammed MSC can deliver
their signals horizontally to non-tumor cells in the TME to boost
their pro-tumor functions with the repression of local immune
response, stimulation of tumor angiogenesis and ECM remodeling.
Given thatMSChomingoccurs early in theprecancerous stage, they
canbeused for the detectionofEGC.And theyare also ideal carriers
to deliver anti-cancer agents to tumor lesions with their low
immunogenicity and well-accommodation, an increased
concentration and lethality of drugs in target tissues would be
expected. While further researches are warranted to identify
whether the tumor-promoting role of MSC would override the
inhibiting effect from drugs they delivered. In addition, the
reciprocal reprogramming of MSC and GC as well as their
domino effect spread to the TME prove beneficial for tumor
growth and progression, strategies intercepting these vicious
signaling connections represent a hopeful prospect in GC
treatment. Taken together, the reciprocal reprogramming of GC
andMSCtriggersmore active tumor-supporting signals that sustain
tumor progression and remodel the surrounding pathological
stroma. The tumor tropism nature of MSC and their extensive
roles in GC deserve more in-depth investigation as they earn
promising targets for cutting-edge cancer treatments.
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