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ABSTRACT

The recent availability of protein–protein interaction
networks for several species makes it possible to
study protein complexes in an evolutionary context.
In this article, we present a novel network-based
framework for reconstructing the evolutionary his-
tory of protein complexes. Our analysis is based
on generalizing evolutionary measures for single
proteins to the level of whole subnetworks, compre-
hensively considering a broad set of computation-
ally derived complexes and accounting for both
sequence and interaction changes. Specifically, we
compute sets of orthologous complexes across
species, and use these to derive evolutionary rate
and age measures for protein complexes.
We observe significant correlations between the
evolutionary properties of a complex and those
of its member proteins, suggesting that protein
complexes form early in evolution and evolve as
coherent units. Additionally, our approach enables
us to directly quantify the extent to which gene
duplication has played a role in the evolution of
complexes. We find that about one quarter of the
sets of orthologous complexes have originated
from evolutionary cores of homodimers that under-
went duplication and divergence, testifying to the
important role of gene duplication in protein com-
plex evolution.

INTRODUCTION

Recent technological advances, such as yeast two-hybrid
screens (1) and co-immunoprecipitation (coIP) assays (2),
enable the systematic characterization of protein–protein
interaction (PPI) networks across multiple species. Large-
scale PPI networks are currently available for human and
most model species (3–5).

To date, evolutionary analysis of protein network
data has been mostly limited to comparison of single inter-
actions (6), or whole networks (7). In the context of the
latter, methods were developed to identify protein

complexes that are conserved across species (8,9). Other
approaches for studying the evolution of protein pathways
or complexes have been mostly based on sequence simi-
larity only (10). Functionally linked proteins were shown
to have a tendency to evolve together (11–13); conversely,
proteins with similar phylogenetic profiles were shown to
have higher chances of participating in the same biochem-
ical pathways (14). Another study (15) showed that phy-
logenetic profiles of proteins in the same functional
module tend to be significantly coherent, with variations
in the level of coherence between different types of
modules.
The evolution of modularity in PPI networks was stud-

ied by Pereira-Leal and coworkers (16,17), who proposed
that the duplication of self-interacting proteins plays a key
role in the formation of a modular network structure.
Furthermore, they suggested that duplication of whole
complexes is also a contributing factor for modularity,
observing that a significant fraction of the complexes in
Saccharomyces cerevisiae bare strong similarity to each
other. An additional recent work (10) studied evolutionary
cohesive modules in PPI networks, i.e. modules whose
components have a uniform pattern of loss and gain
throughout evolution. It was shown that younger cohesive
modules play different roles than older ones and are more
likely to be horizontally transferred. In addition, the cohe-
siveness of a module was shown to correlate with its size
and inter-connectivity, and inversely correlate with the
rate of duplication among the member proteins.
In this study, we present a novel computational frame-

work for reconstructing the evolutionary history of pro-
tein complexes from a network perspective. Our method is
based on generalizing established evolutionary measures
for single proteins (18,19) to the level of protein subnet-
works. Specifically, we define statistical measures for the
level of homology between pairs of complexes, and use
these measures to search for sets of orthologous complexes
across species. The settings of our analysis differ from pre-
vious studies in three key points: (i) In contrast to previous
studies (15–17) that restricted their analysis to known
complexes and metabolic pathways, we consider a com-
prehensive set of computationally derived putative protein
complexes in all of the studied species. (ii) We identify
conserved protein complexes by taking into account
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both sequence and interaction patterns rather than testing
conservation based on sequence only [as in (10)] or inter-
action only [as in (15)]. (iii) We consider all patterns of
conservation rather than restricting the analysis to com-
plexes that are conserved in all species [as in (8)].
We use the sets of orthologous complexes to infer evo-

lutionary rate and age estimates for the member com-
plexes. These estimates are validated in several ways and
employed to investigate mechanistic aspects of protein
complex evolution. We find a high level of agreement
between the evolutionary rates of proteins and those of
the complexes they form, supporting the view that protein
complexes tend to undergo evolution as coherent units.
Secondly, we study the role of duplication of self-interact-
ing proteins in the evolution of protein complexes,
showing that about one quarter of the sets of orthologous
complexes are likely to have originated from conserved
cores of homodimers that underwent duplication and
divergence.

MATERIALS AND METHODS

PPI network construction

Our analysis includes seven species: Homo sapiens,
Drosophila melanogaster, Plasmodium falciparum,
Caenorhabditis elegans, budding yeast S. cerevisiae,
Escherichia coli and Helicobacter pylori. For each species
we obtained up-to-date PPIs and protein sequence data,
gathered from recently published papers (20–29) and from
public databases (3,30–36). High-throughput mass spec-
trometry data (22,27,28) was translated into binary PPIs
using the spoke model (37). To deal with false positive
errors (falsely reported interactions), we adapted a
method by Bader et al. (38) and assigned confidence
values to the interactions based on their supporting exper-
imental evidence (Supplementary Data).

Protein cluster detection

We identify highly connected clusters within the PPI
networks using two algorithms: (i) NetworkBLAST
(8)—which performs a greedy search for dense subnet-
works; and (ii) Markov clustering (MCL) (39)—which
uses simulated random walks within the network to
detect distinct clusters. The MCL method was recently
shown to outperform other clustering techniques (40).
Protein clusters were obtained for each species separately

by merging the outputs of the two algorithms, while main-
taining an upper bound of 80% on the permitted overlap
between clusters. The merging procedure as well as
benchmarks of the two algorithms using the MIPS data-
base are detailed in the Supplementary Data. The num-
bers of obtained clusters are depicted in Supplementary
Figure 1a and range from 162 (P. falciparum) to 3419
(yeast).
To validate the collection of identified clusters, we

measured the coherence of their member proteins with
respect to their functional annotation and essentiality
status. A total of 6854 (70%) of the clusters (across
all species) exhibited significant functional coherence,
and 1511 (34%) out of the 4366 clusters inferred for

S. cerevisiae and E. coli (for which we had gene essentiality
information) were significantly enriched with essential
proteins (Supplementary Figure 2 and Supplementary
Data).

As an additional validation, we evaluated the corre-
spondence of the S. cerevisiae clusters to curated com-
plexes from MIPS (41). This was done by computing
sensitivity and specificity indices as in (42). Restricting
the analysis to yeast clusters that intersect some MIPS
complex, we found that 62% of those significantly
match a known complex (sensitivity), covering 97% of
the MIPS complexes (specificity; see Supplementary
Data).

Constructing sets of orthologous clusters

The sets of orthologous cluster (SOC) construction con-
sists of two steps: (i) identifying pairs of homologous clus-
ters; and (ii) using the homologous pairs for identifying
SOCs.

The homology relations are determined as follows:
given two species a and b we define a protein similarity
graph G=(Va,Vb,E) where Va (Vb) is the protein set
of a (b). We connect pairs of sequence similar proteins
by an edge, using a BLAST E-value cutoff of �10�6

(thus ensuring a significance level of approximately 0.01
after correcting for multiple hypothesis testing). Given
two clusters ca, cb from species a and b, respectively, we
measure their level of homology using two complementary
statistical scores: (i) Edge-based score—the density of
sequence similarity edges, connecting protein pairs from
the two clusters:

E Scoreðc�; c�Þ ¼ HGðjV�j � jV�j; jEj; jc�j � jc�j;NEðc�; c�ÞÞ

where NE(A,B) is number of sequence similarity edges
connecting pairs of proteins in sets A and B, and

HG ðN;B; n; bÞ ¼
Xminfn;Bg

m¼b

B
m

� �
N�B
n�m

� �

N
n

� �

is the hypergeometric score (43). (ii) Node-based score—
the total number of proteins which have a potential
ortholog on the opposite set:

N Scoreðc�; c�Þ ¼ HGðjV�j þ jV�j;NVðc�;V�Þ

þNVðc�;V�Þ; jc�j þ jc�j;NVðc�; c�Þ þNVðc�; c�ÞÞ

where NV(A,B) is number of proteins in set B that are
sequence similar to a protein from A.

We filter the computed relations by placing a bound of
5% on the false discovery rate (FDR) of the two scores
(44) (i.e. in expectation, 5% of the discovered relations are
false positives). Further requiring that for every related
pair at least 25% of the proteins in one of the clusters
have a sequence similar protein in the other cluster,
yields a preliminary set of pairs of homologous clusters.
For each cluster, we then report only its best match
(taking the mean over the two scores) in each species
and construct a cluster homology graph. The nodes in
this graph correspond to protein clusters (across different
species); and the edges connect clusters to their best
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matches (note that this relation might be one sided).
Notably, the sequence similarity criterion employed in
the protein similarity graph coincides with that of
Sharan et al. (8) and Kelly et al. (45). We chose not to
use stricter definitions such as reciprocal best BLAST
matches, or members of the same Inparanoid (46) cluster,
since as previously noted by Sharan et al. (8), this may
result in missing many functional orthologs that exhibit a
relatively weak sequence similarity signal.

The construction of the SOCs starts by enumerating all
7-node cliques (complete subgraph) in the cluster homol-
ogy graph and then merging cliques that have six nodes in
common until no more merging is possible. We then
remove all the merged cliques from the graph and repeat
the procedure using cliques of decreasing sizes. At itera-
tion 1� i� 6, the algorithm enumerates all the cliques of
size 8 �i and merges cliques with 7� i nodes in common.
In the sixth and last iteration, we consider cliques com-
prised of pairs of clusters. To obtain a better support for
the implied orthology relations within the SOCs resulting
from these small seeds, we require the best-match relations
between the two clusters in the clique to be mutual. We
note that a SOC might contain a few clusters from the
same species. These may be paralogous clusters or over-
lapping clusters.

Handling false negatives in the interaction data

False negative (undetected) interactions may lead to
underestimation of conservation levels and result in dis-
carding true orthology relations between clusters.
To estimate the false negative rate in the data, we mea-
sured the fraction of potential cluster-orthology misses
(Supplementary Data). Intuitively, we define a potential
miss as a case where a cluster seems to be conserved when
using only sequence data, and not conserved when using
both sequence and PPI data. The estimated false negative
rate for the entire data set was 40%.

To tackle this problem, we used a filtering criterion
which aims at removing clusters for which orthologs
may be obscured by lack of PPI data (Supplementary
Data). The estimated false negative rate after the filtering
was reduced to 36% (Supplementary Figure 3). The filter-
ing reduced the size of the set of clusters that are members
of a SOC by 25%. Notably, the set of species-specific
clusters was reduced by 37.2% (Figure 2D). This pro-
nounced difference indicates that many of the species-
specific clusters may have been inferred as such due to
lack of PPI data, and that our filtering procedure has
managed to pin down many of those cases.

We also computed the false negative rate based on man-
ually curated protein complexes from the MIPS database
(Supplementary Data). The estimated rates (38.4% and
32.3% with and without filtering, respectively) are in line
with the estimations above. Notably, the false negative
rates computed for the prokaryotes (E. coli and
H. pylori), along with that of P. falciparum, are substan-
tially higher than those of the rest of the species in this
study. In addition to the lack of experimental data in the
latter two networks, this observed gap is likely to stem
from actual differences in the networks themselves

(namely, that sequence similarities are less likely to imply
conservation of interactions) as evident from Figure 2E.
While expected for the prokaryotes, it was also shown
that wiring in the PPI network of P. falciparum is substan-
tially different from that of other eukaryotes (47).

Propensity for gene loss and protein age estimation

The propensity for gene loss (PGL) (19) measure quanti-
fies the conservation of a protein in evolution and is based
on the presence/absence of its orthologs across a set of
species (more details on the computational process are
provided in the next section). To compute the PGL
values, we obtained clusters of orthologous genes in 17
eukaryotic species from NCBI’s HomoloGene database
(48). The eukaryotic species include nine animals, five
fungi, two plants and one pathogen. We considered the
PGL values of all proteins whose ancestor dates back to
the bilateria or fungi ancestors (or earlier) under an opti-
mal parsimonious reconstruction. The corresponding phy-
logenetic tree was taken from NCBI and the divergence
time estimates were taken from (49,50) (Supplementary
Figure 5).
In addition, we classify the proteins into age groups

according to the lowest common ancestor of their phyletic
pattern in the phylogenetic tree. We treat the evolutionary
age as a real value by representing every group by its
estimated divergence time (Supplementary Figure 5).
Species-specific proteins are assigned with a minimal age
value of zero.

Propensity for cluster loss and cluster age estimation

A phylogenetic tree relating the investigated species was
taken from NCBI (48). Divergence time estimates were
taken from (49–52). In addition, we used an estimated
divergence time of 2000 My between H. pylori and
E. coli (Supplementary Figure 4).
The PCL measure is defined in an analogous manner to

the protein-level PGL. Given a phylogenetic tree and a
pattern of presence and absence of a protein cluster
across the leaves of the tree, the pattern of presence and
absence across all the inner (ancestral) nodes in the tree is
determined using an optimal parsimonious reconstruction.
This reconstruction seeks to minimize the number of
losses along the branches of the phylogenetic tree, while
being constrained by the Dollo parsimony principle, under
which cluster loss is treated as irreversible [a cluster can be
lost independently in several evolutionary lineages but
cannot be regained (53)]. The PCL is then defined as the
ratio between the total length of branches in the phyloge-
netic tree along which the cluster was lost and the total
length of branches along which it could have been lost.
For the computation of PCL, we considered only clusters
that can be traced back to the eukaryotic ancestor or to
the root of the phylogenetic tree under an optimal parsi-
monious reconstruction.
For age estimation, the clusters are classified into five

distinct age groups: Bilateria, Fungi/Metazoa, Eukarya,
Eukarya/Bacteria and species-specific. The assignment
of a cluster to an age group is done according to the
most recent ancestor, common to all the species in its
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phyletic pattern. Similarly to single proteins, we treat the
evolutionary age of a cluster as a real-valued variable by
representing every age group by its estimated divergence
time (Supplementary Figure 4).

Gene duplication and cluster evolution

In the following, we consider two proteins of the same
species as putatively paralogous if their BLAST E-value
is lower than 10�6. For a given SOC, let S be its set of
proteins, and let O denote the set of proteins from the
participating species whose evolutionary age is not smaller
than that of the SOC (as inferred by its phyletic pattern).
We consider O\S as the putative evolutionary core of the
SOC. To evaluate the role played by duplication in the
formation of a given SOC, we measure the enrichment
of its core with duplicated, self-interacting proteins.
To this end, we define P as the set of proteins that
satisfy the following conditions: (i) the protein is self-
interacting or has a self-interacting paralog; and (ii)
it coresides in a cluster with one of its paralogs.
We then compute a hypergeometric score quantifying
the enrichment of the core with protein from P:
HGðjOj; jO \ Pj; jO \ Sj; jO \ P \ SjÞ. The obtained
P-values were corrected for multiple hypothesis testing
using the procedure of Benjamini and Hochberg (44)
and placing an FDR cutoff of 5%, where the number of
hypotheses equals the number of SOCs (647).

RESULTS

A framework for evolutionary analysis of protein complexes

We amassed PPI data from public databases and recent
publications to construct a comprehensive up-to-date
collection of PPI networks for seven species: H. sapiens,
D. melanogaster, C. elegans, S. cerevisiae, P. falciparum,
E. coli and H. pylori (Methods section, Supplementary
Data.)
As experimental data on protein complexes are not

available for most of the analyzed species (with the excep-
tion of S. cerevisiae, and to a lesser extent H. sapiens and
E. coli), we applied computational approaches to infer
protein complexes within each of the networks. To this
end, we used two previously published algorithms for pro-
tein complex detection (8,39). We merged their results into
a single collection of putative protein complexes, which we
term clusters, for each network. Overall, we identified
9886 clusters within the seven networks (Supplementary
Figure 1a). We validated the identified clusters by evalu-
ating the coherency of their member proteins with respect
to functional annotation and essentiality status (see
Methods section). We used the identified protein clusters
together with cross-species protein similarity information
to derive SOCs, which are key to the evolutionary analysis
presented in the sequel.

Sets of orthologous clusters. We define a SOCs as a col-
lection of clusters from two or more species that are likely
to have evolved from a common ancestral protein com-
plex. To identify these sets, we extended the notion of a
cluster of orthologous groups [COG, see (18)] from the

single gene level to the level of protein subnetworks: the
SOC inference algorithm starts by identifying pairs of
clusters from different species that are potentially ortho-
logous. The algorithm then proceeds to find sets of clusters
(cliques), each from a different species, in which all mem-
bers are potentially orthologous. Finally, the SOCs are
formed using an iterative clustering procedure, which
merges pairs of cliques that differ only by a single node.
The SOC construction pipeline is depicted in Figure 1 and
described in the Methods section.

Altogether, we obtained 647 SOCs spanning two to
seven species each, with a median of three clusters per
SOC (Figure 2; see Supplementary Table 4 for the com-
plete list of inferred SOCs). The SOCs allow inferring
phyletic patterns for clusters (or whole SOCs), i.e. patterns
of presence/absence of proteins clusters across the seven
studied species. Overall, 52 out of the 120 possible phyletic
patterns were observed, with the number of occurrences of
each pattern varying from more than 50 (spanning differ-
ent subsets of the investigated eukaryotes, excluding
P. falciparum) to a single occurrence (typically involving
both eukaryotes and prokaryotes). The SOCs cover 2823
(28%) of the clusters with relative ratios of coverage vary-
ing from 10% (H. pylori) to 37% (P. falciparum).
Expectedly, the percentage of clusters participating in
the SOCs was substantially lower for the two investigated
prokaryotes due to their large evolutionary distance from
the rest of the species.

To validate the computed SOCs, we first evaluated their
functional coherence using the functional annotations of
the participating clusters (Supplementary Data). 257 (39%
versus a random expectation of 5%) of all SOCs and 219
(60%) of the SOCs of size three and more were found to
be functionally coherent. In addition, we constructed a
phylogenetic tree relating the analyzed species according
to their co-membership in SOCs (Supplementary Data).
The reconstructed tree (Figure 2E, right) highly matched
the known tree of life (54) with the only exception being
the lack of a separate prokaryotic clade. Notably, when
using the conservation of individual PPIs rather than SOC
co-membership to construct the phylogenetic tree, we
obtained a less accurate tree with yeast and human
placed together in a separate clade (Figure 2E, left). It is
reasonable to assume that this deviation reflects the dom-
inance of the yeast network in the available PPI data.
Importantly, this effect vanishes when using cluster
orthology as the basis for the tree reconstruction. As a
further validation for the SOC construction, we traced
the phyletic patterns of manually curated protein com-
plexes from the MIPS database (41). We estimated the
accuracy of these patterns by comparing the inferred pre-
sence/absence indicators to prior biological knowledge
(Supplementary Data). The inferred patterns attained
an accuracy level of 80%. Examples for SOCs constructed
for MIPS complexes are given in Figure 3A and the
Supplementary Data.

A notable problem in the analysis of large-scale PPI
data in general and of protein clusters in particular, is
the prevalence of false negatives. To tackle this problem,
we restricted the analysis to clusters for which we had
confidence in their inferred phyletic patterns, and filtered
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clusters for which orthologs in more than one species
could not be detected due to possible lack of PPI data
(see Methods section). The results presented in the follow-
ing sections were obtained with the filtered collection of
clusters.

Evolutionary measures for protein clusters. We developed
two novel measures for characterizing the evolution of
clusters: propensity for loss in evolution and evolutionary
age. Both measures rely on the phyletic patterns induced
by membership of a cluster in SOCs and on the phyloge-
netic tree relating the investigated species (Supplementary
Figure 4).

The PCL is a cluster-level analog of the PGL measure
introduced by Krylov et al. (19). The PGL of a gene is an
estimate for the rate at which it was lost in evolution.
Given a phylogenetic tree over a set of species and a phy-
letic pattern for the gene across these species, the PGL of
the gene is the ratio between the overall lengths of
branches along which the gene was lost and the total
length of branches along which it was either lost or pre-
served. Analogously, we computed the PCL value of a
cluster by reconstructing its phyletic pattern across the
ancestral species in the phylogenetic tree that relates the
seven investigated species, and measuring the relative
length of branches along which the cluster was lost (see
Methods section).

The evolutionary age estimate is based on a classifica-
tion of the clusters into several distinct age groups reflect-
ing their estimated emergence time relative to the lineage
split events in the phylogeny of the investigated species.

The age groups, in ascending order (from less to more
ancient), include: Bilateria, Fungi/Metazoa, Eukarya and
Eukarya/Bacteria. The age group of a cluster is deter-
mined as its latest possible emergence time under an opti-
mal parsimonious reconstruction (see Methods section), in
a manner similar to (10). We defined an additional age
group, the species-specific group, as the set of clusters
that have no putative orthologs in other species. We
assign the clusters in this group with a minimal age
value of zero. The distribution of species-specific clusters
among the species shows a similar trend as before with
higher rates of species-specific clusters found for the two
prokaryotes, and covers a total of 15.8% of the clusters
(Figure 2D). To validate the evolutionary measures, we
investigate their correlation with various functional attri-
butes. Our findings, provided in the Supplementary Data,
are consistent with those previously reported for single
proteins (18,19).

Mechanistic principles of protein complex evolution

The inferred phyletic patterns and evolutionary measures
allow us to directly probe various mechanistic aspects of
the evolution of protein complexes. In the following, we
concentrate on two fundamental questions: do proteins
tend to evolve independently of one another or do
proteins within the same complex evolve in a coherent
manner? And, how central is the role of gene duplication
in the evolution of protein complexes?

Cluster evolution versus single protein evolution. The
evolution of PPI networks was previously shown to

A Protein-protein interaction networks
from seven species

Protein Clusters
Pairwise

protein homology

MCL + Network BLASTBLASTP

Statistical criteria for cluster homology

Clustering

B Sets of Orthologous Clusters (SOCs)

Cluster homology
graph

C  Cluster level analysis - 
inferring phyletic 
patterns

:
w

CL
w

w
P =

+

D  Protein level analysis - 
- Cluster evolution vs. single protein evolution 
- Mapping evolutionary cores of SOCs

Age := LCA

Figure 1. Overview of the SOC inference pipeline and subsequent analysis. (A) PPI networks of seven species are subject to cluster detection. (B) The
obtained clusters are organized into orthologous groups based on sequence similarities of their member proteins. The subsequent analyses are done
both on the cluster-level (frame C) and on the single protein-level (frame D). (C) The phyletic pattern of a given cluster is obtained according to the
species present in the SOC it belongs to. Based on these patterns, we developed two novel measures for characterizing the evolution of clusters:
PCL—an estimate for the rate at which the cluster was lost in evolution, and evolutionary age—the estimated emergence time of the cluster relative to
the lineage split events in the phylogeny of the investigated species. The emergence time is estimated as the latest common ancestor (LCA) in the
phylogenetic tree. (D) We study the correlation between the evolutionary properties of a cluster and those of its member proteins by comparing their
evolutionary ages and loss rates. We also map the evolutionary cores of the SOCs to evaluate the role of gene duplication in their formation.
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have modular characteristics in the sense that proteins in
a complex are likely to be lost or gained concomitantly
(12–13). To obtain further insights into the evolution
of complexes, we looked at the mode of organization of
proteins into clusters throughout their evolution. We
considered the following two trends: (i) the proteins in a
cluster were originally unrelated and became a functional
unit through evolution; and (ii) the organization into the
same cluster characterizes proteins in a cluster ever since
their emergence.
To test which of these scenarios is more prevalent,

we computed the median PGL and evolutionary
age values of the proteins in each cluster (see Methods
section) and compared them with the respective
PCL and cluster age values. We concentrated on the
eukaryotic clusters, as PGL information for prokaryotic
genes was not readily available. The results, summarized
in Table 1, show significant correlations between the evo-
lutionary attributes of a cluster and those of its member
proteins. This supports the plausibility of the second
scenario.

An example for a match between the conservation of
complexes and proteins is the yeast coat protein complex
I (COPI), which mediates intra-Golgi and Golgi-to-ER
trafficking. The core proteins of the coat complex machi-
neries are known to be highly conserved in eukaryotes
(55). On the other hand, they are not expected to be pres-
ent in prokaryotes, as they lack endomembranes (56).
Consistent with this expectation, the SOC containing the
COPI cluster in yeast is comprised solely of eukaryotic
clusters, and includes all the investigated eukaryotes
except P. falciparum (Figure 3A). Proteins comprising
this SOC include both GTPases (ARF1 in yeast and
human, F13D12.7, F52A8.2 and C26C6.2 in C. elegans,
and CG15010 in D. melanogaster), and coat proteins
(SEC21/27, COP1 in yeast and COPA, COPB1/2,
COPG2 in human). Notably, interactions among coat
proteins (and other proteins related to the COPI complex)
are missing from the P. falciparum network; as a result,
the corresponding cluster is missing from the set of
P. falciparum clusters and, consequently, from the SOC
containing the yeast COPI cluster.
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Figure 2. Statistics on SOCs. (A) Number of species in the obtained SOCs. (B) Distribution of SOC sizes (number of clusters in SOC). (C) Phyletic
patterns of SOCs. Each row represents an observed phyletic pattern, where white indicates presence and black indicates absence. The first seven
columns to the left correspond to the different species. The eighth column depicts the frequency of the corresponding pattern, coded according to the
color-bar on the right-most column. (D) Fractions of clusters participating in SOCs. Four bars are shown for each species (from left to right):
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the participating species. The larger tree (on the right) was reconstructed based on co-membership in SOCs. The tree on the left is based on
conservation of single interactions. Percentages indicate the reproducibility of each branch in a bootstrap analysis (if different from 100%). Species
names are abbreviated as follows: H. sapiens (H.s), D. melanogaster (D.m), C. elegans (C.e), S. cerevisiae (S.c), P. falciparum (P.f), E. coli (E.c)
and H. pylori (H.p).
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A second example is the mating-type cluster in yeast
shown in Figure 3B. This cluster contains the genes
HMLALPHA1, MATALPHA2 and HMRA1, HMRA2
which are either expressed from the MAT locus by hap-
loids or serve as silent cassettes for the exchange of mating
types (57). In addition, it contains the Ste12 transcription

factor and its interacting protein Mcm1. Being involved in
a process which is highly specific such as mating, we would
not expect this cluster to be evolutionary conserved. And
indeed, the SOC construction identifies it as yeast-specific.
On the other hand, when analyzing individual components
of the cluster, we find that Mcm1 is highly conserved

A1

B

C1 C2

A2

Figure 3. Case studies of clusters and SOCs. (A) The manually curated COPI in yeast. A cluster-level view of the corresponding SOC is given in
(a.1). In this view, each node represent a whole cluster and edges represent putative orthology relations between clusters. The nodes are color coded
according to their respective species (as in Figure 2). The yeast COPI complex is highlighted by an orange frame and its immediate neighborhood is
highlighted by a purple line. A protein-level view of the highlighted subgraph in (a.1) is given in (a.2). In the protein-level view, the nodes represent
single proteins, and edges represent either homologies (between species, red edges) or PPI (within species, blue edges). (B) A yeast-specific mating-
type determination cluster. (C) A chromatin modification SOC, whose evolutionary core is enriched with duplicated, self-interacting proteins. A
cluster-level view of the SOC is shown in (c.1). A protein-level view of the highlighted subgraph in (c.1) is given in (c.2). The proteins composing the
putative core of the SOC are highlighted by a red frame. Evidently, the homology relations between the participating clusters are based on two
conserved sets of duplicated proteins that substantially cover the putative core. The upper set is comprised of a set of paralogs from human
(TBL1XR1, TBL1X, RBBP4) and single representatives from yeast and worm (TUP1 and K07A1.12, respectively). Similarly, the lower set is
comprised of a set of paralogs from human (HDAC1/2/3/9) and single representatives from yeast and worm (RPD3 and C53A5.3, respectively).
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throughout the evolutionary scale. In addition to control-
ling mating functions, this protein also affects other pro-
cesses in the cell such as cell-cycle progression, cell
wall synthesis and DNA repair (58–60). Thus, despite
the observed correlation, the evolutionary history of a
complex does not necessarily reflect the evolutionary his-
tory of all of its components. This is probably due to the
fact that individual proteins may find novel roles within
the cell, not necessarily in the context of a complex.

The role of gene duplication in protein complex
evolution. Gene duplication and subsequent divergence is
one of the fundamental forces underlying the expansion of
eukaryotic proteomes (61). It was recently hypothesized
that it is key to the development of modularity in PPI
networks as well (16). Specifically, it was suggested that
a substantial portion of the complexes in the yeast PPI
network have originated from evolutionary cores of
homodimers. According to this hypothesis, those ancient
homodimers served as ‘seeds’ which subsequently evolved
to whole complexes through events of duplication, diver-
sification and augmentation by additional proteins. To
support this conjecture, Pereira-Leal et al. (16) derived a
series of corollaries and showed that they hold in yeast. In
particular, they showed that dimers of paralogous proteins
are likely to have evolved from the duplication of homo-
dimers, and that protein complexes tend to contain pairs
of paralogs (see Supplementary Data for a validation of
these corollaries on our data).
Here, we used the constructed SOCs to provide a more

explicit validation for the role of duplication of self-
interacting proteins in evolution. We hypothesized that a
set of complexes that originated from an ancestor homo-
dimer seed would contain a conserved core of paralogous,
self-interacting proteins. To measure the effect of duplica-
tion of self-interacting proteins on the evolution of the
clusters in our data set, we estimated how many of the
SOCs conform with this expectation. For each SOC, we
isolated its putative evolutionary core by considering only
proteins whose estimated age is at least as high as that
induced by the SOC (see Methods section). If the clusters
in the SOC have evolved from duplications of a homodi-
mer seed, we would expect the core to be enriched with
paralogous self-interacting proteins. Hence, we computed

for each SOC a statistical score that compares this level of
over representation to random sets of proteins of at least
the same evolutionary age as those contained in the SOC
(see Methods section). After correcting for multiple
hypothesis testing using the FDR procedure of
Benjamini and Hochberg (44) and using a cutoff of 5%,
we found that the cores of 142 (22%) of the SOCs were
enriched with paralogous self-interacting proteins, clearly
testifying to the important role of duplication in the evo-
lution of protein complexes.

Figure 3C presents one such SOC. This SOC is anno-
tated as chromatin modification and contains orthologous
histone deacetylase units fromH. sapiens, S. cerevisiae and
C. elegans (panel 1). The putative core of the SOC, high-
lighted in panel 2, is dominated by two conserved sets of
duplicated proteins. The first set comprises of a group
of paralogs from human (TBL1XR1, TBL1X, RBBP4
associated with histone deacetylation and chromatin
assembly) and a single representative from yeast and
worm (histone-binding proteins TUP1 and K07A1.12,
respectively), where the yeast representative is known
to be self-interacting (62). The second set contains one
representative from yeast and one from worm (the
RPD3 and C53A5.3 histone deacetylase proteins), and
four paralogous human proteins (HDAC1/2/3/9 belong-
ing to the histone deacetylase family) in which two of the
proteins (HDAC1/3) are self-interacting.

DISCUSSION

We presented a framework for evolutionary analysis of
protein complexes. By generalizing concepts from the
level of single proteins, we constructed orthologous sets
containing clusters from seven different species. These sets
allow us to infer patterns of presence and absence across
the evolutionary tree, and consequently to estimate the
propensity for loss in evolution and evolutionary age.
We verified the orthologous sets in several ways including
reconstructing the participating species’ phylogeny and
manually investigating a small set of hand-curated
complexes.

We used the inferred SOCs to investigate mechanistic
aspects of protein complex evolution. First, we probed the
relationship between the evolutionary characteristics of a
cluster as a whole and that of its constituents, observing a
significant correlation between the two. Second, we have
shown the importance of gene duplication as a mechanism
for the evolution of protein complexes.

The resulting new evolutionary measures can be
employed to study other aspects of protein complex evo-
lution beyond the mechanistic aspects studied here. A fun-
damental question in this regard is how different
functional attributes impact the evolution of a complex.
In the Supplementary Data we show that the evolutionary
rate of a complex significantly correlates with its level of
connectivity in the network, the specificity of its function
and its essentiality. These findings are consistent with
those previously reported for single proteins (18,19) and
agree with our previous findings on the coherent evolution
of the protein members of a complex.

Table 1. Correlations between cluster-level evolutionary measures and

protein-level evolutionary measures

Evolutionary measure Median PGL Median protein age

Homo sapiens
Age �0.270 0.364
PCL ns �0.243

Saccharomyces cerevisiae
Age �0.339 0.438
PCL 0.201 �0.306

All
Age �0.337 0.311
PCL 0.124 �0.240

Shown are Pearson correlation coefficients. Non significant correlations
are marked as ‘ns’.
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It is pleasing to see that current PPI networks are
already rich enough to enable the careful study of intricate
processes like protein complex evolution, after carefully
controlling for the yet considerable rates of false positive
and false negative interactions. But not less important,
the integrated computational approach laid out here is
likely to lead to many further new insights concerning
protein complex evolution as molecular interaction
databases continue to expand in their size, accuracy and
species coverage.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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