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The primary function of the respiratory system of gas exchange renders it vulnerable

to environmental pathogens that circulate in the air. Physical and cellular barriers of

the respiratory tract mucosal surface utilize a variety of strategies to obstruct microbe

entry. Physical barrier defenses including the surface fluid replete with antimicrobials,

neutralizing immunoglobulins, mucus, and the epithelial cell layer with rapidly beating cilia

form a near impenetrable wall that separates the external environment from the internal

soft tissue of the host. Resident leukocytes, primarily of the innate immune branch, also

maintain airway integrity by constant surveillance and the maintenance of homeostasis

through the release of cytokines and growth factors. Unfortunately, pathogens such as

influenza virus and Streptococcus pneumoniae require hosts for their replication and

dissemination, and prey on the respiratory tract as an ideal environment causing severe

damage to the host during their invasion. In this review, we outline the host-pathogen

interactions during influenza and post-influenza bacterial pneumonia with a focus on inter-

and intra-cellular crosstalk important in pulmonary immune responses.

Keywords: co-infection, lung mucosa, epithelial cells, barrier defense, respiratory tract

INTRODUCTION

The respiratory system is divided into the upper (nasal passages, pharynx, larynx) and lower
(trachea, bronchial tree, lungs) components with a cumulative mucosal surface area that exceeds
140 m2. The entire length of the system, roughly divided into the upper respiratory tract (URT)
and the lower respiratory tract (LRT), contains a physical barrier made up of liquid and cell
layers (Figure 1). The “one/united airway concept” was proposed to underscore the importance of
considering changes that occur in the upper and lower airways concomitantly when investigating
diseases that affect the respiratory tract like rhinitis and asthma (1). Approximately 223 branches
lined with epithelial cells make up the airways (2) within the soft lung tissue that handles∼10,000 L
of inhaled air each day, placing this epithelial surface in contact with various noxious and innocuous
material including environmentally disseminated viruses and bacteria.
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FIGURE 1 | The cellular composition of the upper and lower respiratory tracts that serves as the primary barrier. Epithelial cells (ECs) that span the entire length of the

respiratory tract (RT) are lined with basal cells that are attached to the basement membrane. Squamous ECs make up the beginning (nasal) and ends (alveoli) of the

RT, ciliated and non-ciliated columnar epithelia makeup the upper RT and the large bronchi, while cuboidal epithelia line the small bronchi and bronchioles. Surface

liquid that overlays the ECs consists of mucus secreted from mucus producing cells, airway liquids secreted from secretory cells, neutralizing immunoglobulins, and

antimicrobials. Resident leukocytes such as dendritic cells, γδ T cells, and innate lymphoid cells line the mucosa while alveolar macrophages are found in the lower

airways and alveoli. The bronchial smooth muscle cells underlying the RT from the basal end provide structural support and elasticity to the airways.

As the primary point of contact, the epithelia of the
respiratory system can be considered the regulatory point of
immune responses at the respiratory mucosa. Made up of
several types of epithelial cells, secretory cells, goblet cells and
neuroendocrine cells, the mucosal barrier is multifunctional
providing a physical barrier, secretory barrier, and immune
defense (2, 3). Uniformity of upper and lower respiratory barrier
components ensure multiple levels of filtration of air particles to
safeguard the single-layer-thick alveolar spaces (Figure 1). When
the secretory barrier consisting of mucus, antimicrobial proteins,
neutralization antibodies, etc. is breached and epithelial cells
come into contact with invading environmental pathogens, these
cells become activated and begin communicating with resident
leukocytes to participate in the inflammatory cascade and repair
mechanisms that follow the invasion. In this review, we will
discuss our current understanding of the barrier responses to two
major respiratory pathogens, influenza A virus and Streptococcus
pneumoniae in otherwise healthy hosts.

CROSSTALK WITHIN THE MUCOSAL
BARRIER DURING INFLUENZA A VIRUS
(IAV) INFECTION

Influenza is an infectious disease caused by influenza viruses
belonging to the Orthomyxoviridae family. Of the four genera

of influenza viruses, influenza A and influenza B are known to
cause influenza in humans, with the former having a greater
propensity to cause severe disease. Between 2010 and 2017,
influenza illness in the United States affected 9–34 million
persons and killed between 12,000–51,000 annually (4). As a
segmented negative sense RNA virus, IAV is predisposed to
genetic mutations and gene reassortment, the latter of which is
supported by IAV’s proclivity for zoonotic infections. Subtypes
of IAV are based on the characteristics of surface expressed
glycoproteins hemagglutinin (HA) and neuraminidase (NA)
which also regulate viral binding and release during its life cycle
within host cells. Although IAV has been shown to infect a variety
of cell types (5), epithelial cells of both the upper and lower
respiratory tracts are its primary target for replication (6, 7).

Mechanisms of Inter-epithelial Crosstalk
During IAV Infection
Virus transmission is fundamental to IAV pathogenesis, and
while its establishment in a new host is governed by HA
molecules, environmental factors also play an important role in
the distribution of mucosal secretions (large or small droplets
and droplet nuclei) that contain infectious virions, as does
human/animal behavior (8). Once IAV reaches the mucosa of the
new host, it utilizes numerous strategies to overcome the hostile
host environment for successful infection and pathogenesis.
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FIGURE 2 | Impact of influenza A virus (IAV) infection on the respiratory barrier. Early infection of epithelial cells that express the sialic acid receptors causes damage

to the physical barrier as junctional proteins become compromised during cell death. Increased cellular secretions and loss of cilia slow mucociliary clearance.

Resident cells respond to the infection with type I and type III interferon (IFN) production and response. Continuation of these processes lead to the loss of epithelial

cells thereby exposing the basement membrane. Morphological changes to the remaining epithelia further compromise the barrier response inducing leakiness in

junctional proteins, inflammation, and aberrant repair processes.

The airway epithelium consists of ciliated and non-ciliated cells
overlaid by two layers of mucus (Figure 2); a bottom layer of
less viscous periciliary liquid (PCL) which allows free ciliary
movement and a top layer of gel-like mucus layer to which
inhaled matter “sticks” (9). The mucus layer is also rich in
various highly polymeric mucins (10), antimicrobial peptides
(11), neutralizing antibodies (12), etc. that serve as a biochemical
barrier to inhibit pathogen penetration (13). Most inhaled
particles never gain access to the PCL as they bind to the gel
layer and get brushed upward through the mucociliary escalator.
Similarly, surfactant proteins that are abundant in lower airway
secretions, bind to IAV and enhance viral clearance (14, 15).
Virus attachment to the respiratory epithelia will be possible only
for those infectious virions that bypass the upper gel barrier and
gain access to the sol layer beneath. Viral HA protein facilitates its
entry into the cell by binding to sialic acid receptors present on
the apical side of epithelial cells. The linkage of sialic acid to the
galactose could be either α-2,3 (recognized by avian viruses) or α-
2,6 (recognized by human viruses) (16). Since sialic acid receptors
are present as a heterogenous mix on epithelial cells in different
species (17, 18), it is unclear how IAV selects its specificity and
also why binding to sialic acids is usually limited to the URT
epithelia (19) when these receptors are available throughout the
airway epithelial barrier (17, 19, 20).

The physical manifestation of a barrier is afforded by
three types of junctional proteins in the epithelia: tight
junctions (TJ), adherens junctions (AJ), and desmosomes
(Figure 2). Of these, the role of TJs is well-characterized
during influenza virus pathogenesis. Three main transmembrane
proteins [occludins, claudins, and junctional adhesion molecules
(JAM)] are responsible for tightly sealing membranes of adjacent

cells within the TJs. Peripheral membrane protein, zonula
occludin (ZO), binds to these transmembrane proteins of the
TJs to stabilize them in the cytoskeleton and mediate signaling
(21–23). IAV infection disrupts the epithelial barrier by causing
reduced expression of occludin, claudin-4, and JAM soon after
infection (24). The non-structural protein 1 (NS1) of IAV plays
a key role in virulence as the PDZ-binding motif (PBM) of NS1
binds to the PDZ domain present in TJ proteins (25) which then
destabilizes junctional integrity through the rearrangement of
ZO-1 and occludin (25).

During an active infection, the ability for host cells to
communicate with one another is essential in order to warn
surrounding cells of the threat and to initiate immune responses
(Figure 2). Various strategies are employed by airway epithelia
for this purpose including the release of interferons (IFNs)
and other cytokines, antimicrobial peptides, nitric oxide (26),
and the more recently described extracellular vesicles (27).
The main viral countermeasure to these epithelial responses is
the induction of epithelial cell death (28). Infection-induced
production of type I IFN is known to trigger the expression
of a variety of death-associated molecules in epithelia including
Fas, TRAIL receptor, and caspases (29), causing epithelial cell
death during the early phase of infection (30). The release
of pro-inflammatory cytokines such as IL-1β initiated through
inflammasome activation by IAV (31) can lead to pyroptosis (32).
Virus-mediated epithelial cell death occurs early after infection
with >50% death within 72 h (28), and since cell death increases
permeability of the epithelial layer (33), productive infection
of the respiratory epithelium is detrimental to barrier potency.
Additionally, infected epithelia that present viral antigen-loaded
MHC-I molecules are targeted by antigen-specific CD8+ T
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cells for destruction (34) which is a major mechanism of viral
clearance in the lungs (35). Interestingly however, some ciliated
and alveolar epithelial cells downregulate MHC-I and evade
CD8+ T cell-mediated death to survive the IAV infection,
showcasing a mechanism used by the immune system to reduce
host pathology during influenza (36).

Epithelial cells of the lower respiratory tract terminate in the
alveoli as squamous type I and type II pneumocytes (Figure 1).
Since these cells are the primary site for gas exchange, they are
bathed in a thin layer of fluid rich in surfactant proteins to reduce
the surface tension with the adjoining capillary network of the
lungs. One of the important functions of the alveolar epithelium
is to remove fluid from the alveolar lumen with the help of ion
channels such as amiloride-sensitive epithelial sodium channels
(ENaCs), present on the apical surface of the pneumocytes (37,
38) and Na,K-ATPase present at the basolateral membranes (38,
39). Alveolar epithelia are also susceptible to IAV infection which
leads to barrier destruction (40) thereby disrupting the intricate
balance of ion transport and fluid maintenance causing edema,
hypoxemia and pneumonia (38). In fact, IAV matrix protein 2
can inhibit ENaC to cause edema and respiratory insufficiency
during influenza (41). Further evidence suggests that there is a
cumulative downregulation of ENaC, CFTR, and Na,K-ATPase
on epithelial cells during early stages of IAV infection (42).
Interestingly, type I IFNs released by epithelia during the late
phase of IAV infection, causes the upregulation of TRAIL on
alveolar macrophages (AMs) which in turn causes epithelial cell
Na,K-ATPase downregulation and edema (43). Alterations to the
airway fluid dynamics affect all neighboring cells, infected or
not, thereby influencing their functions. Similarly, epithelial cell-
derived transforming growth factor (TGF)-β can be activated by
viral NA (44) and can reduce the activity of Na,K-ATPase (45).

Epithelial-Resident Leukocyte Crosstalk
During Early IAV Infection
The respiratory mucosal barrier contains sentinel cells comprised
of AMs, dendritic cells (DCs), γδ T-cells, and innate lymphoid
cells (ILCs) which support the antiviral immune response at
early and late phases of IAV infection as recently reviewed
by us (46). While functional responses in each of these cells
during influenza has been investigated, their interactions with
the epithelium during an ongoing infection is not fully explored.
Indirect communication between the epithelia and these resident
leukocytes by means of cytokines may be of greater significance
than direct interaction during IAV infection (Figure 2). Early
release of cytokines from the infected epithelial cells regulate
the tone of the immune response through activation of these
resident cells.

Epithelial cells become aware of virus invasionmainly through
three families of pattern recognition receptors; retinoic acid-
inducible gene-like receptor (RLRs) (47), nucleotide-binding
domain and leucine-rich-repeat-containing proteins (NLRs) (48)
and toll-like receptors (TLR) (49), which, when stimulated,
trigger the production of a variety of cytokines and chemokines
including IFNs (Figure 2). While all three types of IFNs (type I,
type II, and type III), are important in antiviral defense against

IAV, type I and III are produced by the epithelia (50). The type
I IFN receptor (IFNAR) is expressed on a variety of leukocytes
in addition to the airway epithelial cells (AECs) allowing them
to be responsive to IFNα and IFNβ (51, 52). Since the type
III IFN receptor (IFNLR) is predominantly expressed on AECs,
they are the most responsive to this cytokine (53). However, the
discovery of the IFNLR on neutrophils and DCs suggests a more
broad function for this cytokine during respiratory pathogen to
protect the barrier response (54). Type II IFN is largely secreted
by natural killer (NK) cells (55) and recruited CD8+ T cells
(56) in response to IAV infection, and IFNγ signals the local
macrophage populations that express the receptor IFNGR to
promote phagocytosis, reactive bursts, and the production of
proinflammatory cytokines (57).

Immediately following IAV infection, AMs contribute to the
first wave of type I and type III IFNs, which are essential for the
protection of the LRT from viral progression and dissemination
(58, 59) and the virus needs to overcome this wave of IFNs
if it is to establish a successful infection (60). Additional pro-
inflammatory cytokines produced by AMs in response to IAV
including TNFα, IFNγ, IL-1α, IL-1β, and IL-18 also contribute
to enhanced viral clearance through the activation of antiviral
defense mechanisms in surrounding immune and epithelial
cells (61–64). However, a sudden and excessive production of
cytokines (as are sometimes triggered by highly virulent strains
of IAV), can cause alveolar hemorrhage, pulmonary edema,
bronchopneumonia, and acute respiratory distress syndrome
through damage to the mucosal epithelia (65–68).

The importance of AMs to all stages of respiratory immunity
during influenza was highlighted by Ghoneim et al. wherein
a virus-induced depletion of AMs in the lungs left the host
vulnerable to invading opportunistic bacteria (69). Mice deficient
in AMs are more susceptible to severe influenza due to increased
infection of type I pneumocytes and diffuse alveolar damage (70).
One critical growth factor for the differentiation, proliferation
and activation of AMs is GM-CSF (71–73) which is largely
produced by type II alveolar epithelial cells during influenza
(74, 75) and mice deficient in GM-CSF (Csf2−/−), or its
receptor (Csf2rb−/−) have increased morbidity and mortality
during influenza similar to animals that are devoid of AMs (76)
(Figure 2). Macrophages maintain environmental homeostasis
through the removal of apoptotic cells and debris. As such, AMs
are also important during the tissue repair phase that follows
an active infection by IAV through the efferocytosis of dying
epithelia and neutrophils (77). Epithelial cell proliferation and
repair after influenza is promoted by AM products such as
hepatocyte growth factor (78), TGF-α (79), and TGF-β (80).

Epithelial cell TLRs can guide the adaptive immune responses
to IAV through molding the activation of DCs (81). Serving as a
bridge between innate and adaptive immunity, DCs intersperse
the epithelial barrier to sample inhaled air through dendrites.
The majority of reports investigating the function of DCs
during influenza have focused on their interaction with immune
effectors that are recruited during the late phase of the immune
response. Therefore, very little is known about the interaction
of DCs with mucosal resident cells. Plasmacytoid DCs (pDCs)
are known to produce high amounts of type I IFN during
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IAV infection through the TLR7/MyD88 pathway (82, 83).
Human primary bronchial epithelial cells enhanced type I IFN
production and the upregulation of IFN response genes in
pDCs when co-cultured (84) showcasing crosstalk between the
structural cells and local immune cells through cytokines. Similar
crosstalk occurs between pDCs and AMs wherein pDCs control
the number and cytokine profile of the AMs (85).

The airway epithelial barrier also contains a small percentage
of γδ T cells that are considered to function in barrier defense.
In murine models of IAV infection, γδ T cells increased during
the late phase of disease (86), and produced immunoregulatory
cytokines IL-2, IL-4, and IFN-γ (87). However, depletion of γδ

T cells did not have any impact on viral clearance or IFN-γ
production in a neonatal model of IAV infection in mice (88).
Highly pathogenic H5N1 IAV can directly activate γδ T cells
inducing the upregulation of CD69 expression and enhancing
IFN-γ secretion (89). Similarly, γδ T cells produce IL-17A in
response to IAV that triggers the release of IL-33 by AECs which
in turn mediates ILC2s and Treg cells (88). These data indicate
that γδ T cells are critical in maintenance of lung homeostasis
and tissue repair during the viral clearance phase.

Additional protection and regulation to the mucosal barrier is
provided by ILCs that are characterized by the absence of both T-
and B-cell receptors. Like T-cells, ILCs have also been categorized
according to cytokine production profile (90), of which ILC2 is
the most investigated subset in the context of influenza. ILC2
is classically known to produce IL-5 and IL-13 in response to
epithelial cytokines IL-25, IL-33, and TSLP (91). Infection of wild
type as well as Rag1−/− mice with IAV led to ILC accumulation
in the lung (92) although there is no direct evidence that
IAV-mediated ILC accumulation is dependent on AEC-derived
cytokines. Furthermore, it has been reported that IAV infection
induced AMs to produce IL-33 which promotes IL-13-dependent
airway hyperreactivity (93). Its role in tissue homeostasis is
implied in studies wherein ILC depletion was shown to impact
lung function, epithelial integrity and tissue remodeling (92). The
high amounts of type I and type II IFNs produced during the
early phase of IAV infection have been shown to inhibit ILC2
function and proliferation (94). Conversely, IFN-γ deficiency
leads to host protection through increased production of IL-5
and amphiregulin by ILC2 (94). Both NKT-cells and AMs have
also been shown to produce IL-33 in response to IAV signaling
ILCs to produce IL-5 (95), and increased levels of IL-5 during
the viral clearance phase may help recruit eosinophils to the
airway mucosal barrier (95) which can enhance cellular immune
responses (96) and perhaps necessary for tissue repair (97).

OPPORTUNISTIC STREPTOCOCCUS

PNEUMONIAE INFECTIONS

In some instances, virus-induced inflammation and dysregulated
communication with the lung framework can leave the host
vulnerable to secondary bacterial infections. This is exemplified
by the increased susceptibility of an individual with IAV infection
to the acquisition of Streptococcus pneumoniae (pneumococcus)
(98, 99), resulting in a convergence that provokes far greater
morbidity and mortality than infection with either pathogen

alone (100, 101). The host remains susceptible to S. pneumoniae
infection even after the virus itself has been cleared (102),
suggesting that a compromised immune milieu and structural
barrier contribute to increased bacterial pathogenesis. Although
IAV can enhance S. pneumoniae pathogenesis directly, for
instance by exposing cryptic binding sites through epithelial
damage (103) or by liberating sialic acid and sialylated mucin
that can be catabolized by S. pneumoniae (104), influenza
virus can also modify interactions between the epithelium and
inflammatory components, creating an environment that can be
subverted by the pneumococcus.

Impact of Influenza-Mediated Alterations
to Epithelial Crosstalk on Pneumococcal
Infection
Surface expressed TLRs on epithelial cells can sense S.
pneumoniae by recognition of numerous bacterial components,
including TLR2 agonists type 1 pilus, peptidoglycan, lipoteichoic
acid and bacterial lipoproteins, and the TLR4 agonist
pneumolysin (105–110). Although IAV is not directly recognized
by either TLR2 or TLR4, the regulation and activation of TLRs
during influenza has been shown to enhance susceptibility
to secondary bacterial infection. Increased TLR2 signaling
during IAV/S. pneumoniae co-infection results in heightened
production of IL-1β, augmenting inflammation and morbidity
(111). Additionally, IAV infection positively regulates TLR3
on pulmonary epithelial cells (112), which recognizes double-
stranded RNA and impairs the clearance of S. pneumoniae from
the lungs following activation by poly I:C (113). Stimulation
of TLR3 also leads to early production of IFNβ by AECs
(114), contributing to the type I IFN response elicited during
influenza, which is a key factor in host susceptibility to secondary
pneumococcal infection, as discussed later in this review.

A crucial initial step in pneumococcal pathogenesis is bacterial
adherence to the respiratory epithelium. Initially, S. pneumoniae
establishes itself in the host by colonizing the nasopharynx,
which is considered a necessary precursor to pneumococcal
disease (115). IAV-induced epithelial cell death may expose the
basement membrane to which S. pneumoniae can bind to and
use as a shortcut to the bloodstream (116, 117). Pneumococcus
surface proteins including PavA and PavB, PfbA and PfbB,
PepO and pilus subunit RgrA all have the ability to bind
basement membrane components fibronectin, laminin, and
collagen (118–122).

From the URT, pneumococci can migrate to the lungs
and establish symptomatic infections such as pneumonia and
bacteremia (123). In a healthy individual, most wayward
pneumococci in the airways are expelled by the mucociliary
escalator before reaching the LRT (13). However, a recent IAV
infection reduces the velocity of ciliary beating and causes
death of ciliated tracheal cells, providing pneumococci an
opportunity to bind to the epithelium observed as early as 2 h
after challenge in mice (116, 124). In addition to increased
access, IAV regulates binding receptors for S. pneumoniae on
the epithelial surface (Figure 3). Numerous viruses, including
IAV, can increase the prevalence of host platelet activating factor
receptor (PAFr), which binds phosphorylcholine moieties in the
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FIGURE 3 | Continuation of the mucosal damage cascade permitting opportunistic infection. A host recovering from virus-induced damage to the lung mucosa is

highly susceptible to Streptococcus pneumoniae infection possibly due to exposed binding partners on the host cells as well as an open barrier (gate) due to

significant loss of epithelial cells. A second wave of type I IFNs may help promote bacterial colonization as it negates the positive influence interleukin (IL)-17 has on the

recruitment of phagocytes. Transforming growth factor (TGF)-β produced during the late phase of influenza as a repair mechanism may also promote bacterial

adherence to the mucosal surface.

pneumococcal cell wall (125–127). The activation of latent TGFβ
by IAV NA present in the airways during influenza primes
the epithelium for bacterial adherence by stimulating cells to
upregulate bacterial receptors such as integrins (128). In the
absence of TGFβ signaling, IAV-infected epithelial cells lose their
increased vulnerability to pneumococcal colonization (129).

Although invasive disease is arguably not a favorable outcome
for an extracellular respiratory bacterium like S. pneumoniae
where optimal infection doesn’t extend past the airways, prior
influenza can promote its migration from the lungs to the
bloodstream (130, 131). Under homeostatic conditions, however,
the strict maintenance of TJs between cells in the epithelial
and endothelial barriers prevents pneumococcal migration by
physically restricting the movement of bacteria between cells
and masking receptors. The disruption of TJs during influenza
permits S. pneumoniae to migrate from the airways to the
bloodstream. Pneumococci can also enter the blood from the
airways by transmigrating through epithelial and endothelial cells
(132–134). Following the binding of cell wall phosphorylcholine
moieties to host PAFr, pneumococci can be internalized when
the receptor is recycled (132, 135, 136) (Figure 3). Alternatively,
invasion may be facilitated by the interaction of polymeric
immunoglobulin receptor (pIgR) with pneumococcal CbpA and
RrgA pillus subunit, the latter of which is involved in pIgR-
mediated invasion of the brain microvascular endothelium,
a mechanism that may also be applicable to nasopharyngeal
epithelial cells (134, 137, 138). While levels of epithelial
surface activation markers associated with bacterial defense
EpCAM, IL-22Rα1, HLA-DR, CD40, CD54, and CD107a are
not altered during pneumococcal colonization of the URT,
bacterial uptake by pharyngeal epithelial cells is associated with
strain-dependent changes to the transcriptome (139). While

invasive strains like TIGR4 induce the upregulation of more
genes compared to strains typically associated with carriage, the
regulated pathways common to both colonizing and disease-
causing S. pneumoniae strains are those associated with the innate
immune response, such as NFκB and MAP kinase activation,
toll receptor and cytokine signaling (139, 140) and correspond
to hypersecretion of IL-6, and IL-8 (139). Furthermore, the most
profound changes to the transcriptome following pneumococcal
infection coincide with clearance of colonizing bacteria in
an experimental human pneumococcal carriage model (139),
suggesting that transmigration to the bloodstream may be
an unintentional consequence during the innate resolution of
pneumococcal carriage.

Epithelial-Leukocyte Crosstalk During
Pneumococcal Infection
During pneumococcal infection, IL-17 is produced by γδ T-cells
(predominant source of IL-17 during pneumococcal pneumonia)
and later by TH17 CD4+ T-cells. IL-17 and a TH17 response at
the mucosal epithelium participate in pneumococcal clearance
in the nasopharynx and lungs by recruiting monocytes and
neutrophils, and offer protection against reinfection (141–144).
However, the induction of type I IFN during influenza inhibits
TH17 defense during secondary pneumococcal infection and
suppresses the expression of IL-17 by pulmonary γδ T-cells,
resulting in impaired recruitment of these phagocytes (129,
141, 145) (Figure 3). Furthermore, type I IFN also reduces the
production of CCL2, leading to fewer recruited macrophages
in the airways during a concurrent pneumococcal infection
and increased colonization of the URT (146). Mice recovering
from influenza are also unable to mount an effective KC
and MIP-2 response following infection with S. pneumoniae,
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which stunts neutrophil recruitment (147). Macrophages and
neutrophils are major components of the innate cell response
against extracellular bacteria, controlling bacterial infection by
phagocytosis, direct killing, and recruitment/activation of other
inflammatory cells (148, 149). Early induction of type I IFN by
AMs, DCs and AECs is of fundamental importance to antiviral
immunity during influenza (150–154), but, can be detrimental
during pneumococcal infection by disrupting the recruitment of
cells that are important in controlling bacterial outgrowth (147).
Accordingly, mice lacking IFNAR signaling have fewer bacteria
in the lungs, lower levels of bacteremia and a better outcome
following IAV-S. pneumoniae co-infection (147).

Mononuclear cells and neutrophils that are recruited to the
airways during influenza contribute to damage of the respiratory
epithelium. Recruited macrophages cause significant TRAIL-
dependent apoptosis and leakage through the AECs (155).
The increase in recruited macrophages is paralleled by a loss
of AMs, hampering the host’s ability to restrict a secondary
pneumococcal infection which rapidly progresses to pneumonia
(69). Neutrophil extracellular traps released in response to IAV
are potentially damaging to the epithelium and are ineffective
against secondary pneumococcal infection (156).

Pneumococci that enter the post-influenza RT not only are
presented with an environment harboring reduced numbers
of resident macrophages (69), but also encounter lymphocytes
that are in a state of immunological exhaustion and unable
to appropriately respond to the infection (157). Type I IFN
produced by epithelial cells and others during IAV infection
causes polyclonal activation of T- and B-cells which, despite the
cells returning to a “baseline” state several days after infection,
prevents activation by subsequent exposure to type I IFN. This
state of exhaustion lasts for several days, during which the host is
particularly vulnerable to secondary infections (157).

IAV infection is not solely good news for S. pneumoniae,
with the host response to the viral infection also promoting
protection against secondary bacterial infection in some
instances. For example, while type I IFN disrupts cell recruitment
during pneumococcal infection, its induction also restricts S.
pneumoniae pathogenesis by up-regulating the expression of TJ
proteins (ZO-1, claudin 4, claudin 5, claudin 18, and E-cadherin)
and decreasing PAFr levels in epithelial and endothelial lung
cells (158). Adenosine is present in the extracellular environment
during stress and inflammation, and has been shown to be
released by respiratory epithelial cells amongst others (159).
During IAV infection of mice, ATP levels in the airways are
elevated due to increased de novo synthesis and poor alveolar
fluid clearance (160, 161), which can be sequentially hydrolyzed
to generate adenosine (162, 163). The activation of A1-adenosine
receptors by extracellular adenosine decreases expression of the
PAFr on the lung epithelium (164) and promotes the recruitment
of neutrophils, monocytes and lymphocytes during influenza
(161), which contribute to protection against secondary infection
with S. pneumoniae (164, 165).

IL-22 is produced during influenza by pulmonary NK cells
(166) and RORγ+ αβ, and γδ T cells (167) and binds IL-22Rα1
on AECs and endothelial cells (168–170), an interaction that can
be antagonized by its soluble form, IL-22BP (171, 172). Human

endothelial cells respond to IL-22 by increasing production
of CCL2 and CCL20 (169), which are chemoattractants for
cells involved in the resolution of bacterial infection such as
monocytes, dendritic cells, and lymphocytes. IL-22 is critical to
epithelial repair following infection with A/PR/8/1934 (173), and
in its absence, mice sustain significantly higher lung injury and
loss of airway epithelial integrity during sublethal IAV infection
followed by S. pneumoniae co-infection (167). Administration of
exogenous IL-22 to mice with influenza causes the upregulation
of genes encoding proteins involved in cell-cell adhesion such as
Cldn24 and Pcdh15 (encoding claudin 24 and protocadherin 15,
respectively) in the lungs, and reduces systemic dissemination
of S. pneumoniae during secondary bacterial infection (174).
Interestingly, although mice lacking the IL-22 decoy IL-22BP
have significantly reduced bacterial outgrowth in the lungs
during co-infection, dissemination is unaffected (175).

Impact of IAV-Pneumococci Co-infection
on Immune Defense at the Respiratory
Barrier
The mucoepithelial barrier is one of the most important host
respiratory defenses against encroaching bacterial pathogens.
However, local damage and the inflammatory milieu occasioned
during influenza can compromise the efficacy of the physical
barrier and its interactions with other components of the
inflammatory repertoire. It is interesting that many aspects of
the post-influenza lung microenvironment known to exacerbate
pneumococcal infection, are also targeted by S. pneumoniae in
order to avoid immune clearance and establish infection. The
pneumococcal cytotoxin, pneumolysin, disrupts TJs and reduces
cilia organization and prevalence with negligible impact on
ciliary beating (117, 176). In addition, S. pneumoniae causes cell
damage and loss of planar epithelial architecture at the mucosal
surface (117, 176). Pneumococci are able to evade neutrophils
by expressing a polysaccharide capsule that also physically
reduces deposition of complement and antibodies (177, 178),
and by molecular mimicry wherein bacterial phosphorylcholine
moieties bind PAFr, preventing PAF from initiating neutrophil
phagocytosis and bactericidal activities (135, 179–181). In this
respect, IAV is a perfect partner for S. pneumoniae, providing it
with a compromised mucosal epithelial barrier that is permissive
for it to establish infection, while at the same time dampening
antibacterial host responses.

In reported in vivo models of co-infection, animals are
commonly challenged with S. pneumoniae 3–7 days after IAV,
corresponding to the most pronounced changes to morbidity
and mortality (100, 182). However, influenza still predisposes
mice to S. pneumoniae infection at later times of challenge,
and clinically there are positive correlations between influenza
and severe pneumococcal pneumonia with up to 4 weeks
separating the two infectious agents, suggesting the IAV imparts
long term effects in the host (183, 184). This is predictable,
as IAV causes profound destruction of type II pneumocytes
causing impaired regeneration after disease resolution, and
also infects EpCamhighCD24lowintegrin(α6β4)highCD200+

epithelial stem/progenitor cells thereby reducing renewal
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of cells at the respiratory barrier (185, 186). Influenza that
precedes a pneumococcal infection may also affect the immune
response during reinfection with S. pneumoniae. TH17 immunity
promotes accelerated bacterial clearance in the URT following
a secondary infection with S. pneumoniae (144). Considering
that type I IFN inhibits TH17 activation (145) and thus the
generation of memory cells, influenza may prevent TH17-
mediated protection against subsequent infections with the same
or heterologous pneumococcal serotypes (144, 187, 188).

TARGETING IAV AND S. PNEUMONIAE AT
THE MUCOSAL BARRIER

Clinical influenza disease commonly manifests as an
uncomplicated upper respiratory infection with fever, malaise,
headache, cough, and myalgias. Symptomatic treatment consists
of over the counter anti-inflammatory and pain medications.
The mainstay of current influenza antiviral medications are the
NA inhibitors: oseltamivir, zanamivir, and peramivir. The sialic
acid cleavage activity of NA is required for release of virions from
infected epithelial cells and also facilitates migration through the
epithelial mucin layer (189, 190). Benefit from NA inhibitors is
primarily restricted to uncomplicated disease where treatment
is instituted within the first 48 h of symptoms with a modest
reduction in duration of illness (191, 192). A recently approved
antiviral, baloxavir marboxil, acts as a selective inhibitor of
influenza cap endonuclease (193). Similar to NA inhibitors,
baloxavir marboxil has proven benefit in early treatment of
uncomplicated influenza cases (193). Additionally, there was an
observation of rapid development of resistance in outpatient
trials raising concern for its long-term usage (194). Nitazoxanide
is an antiprotozoal drug used to treat Cryptosporidium and
Giardia infections. In vitro data demonstrate antiviral activity
against influenza A and B strains (195, 196). It acts by inhibiting
influenza HA trafficking through the epithelial endoplasmic
reticulum and Golgi apparatus and preventing maturation by
blocking HA terminal glycosylation (197). A phase 2b/3 trial of
nitazoxanide in uncomplicated influenza was well-tolerated and
showed reduced symptoms and viral loads (198). A randomized
placebo-controlled phase III trial was completed in March 2019
and remains currently unpublished (196). If approved, this drug,
through its primary targeting of the virus, will also affect the
local immune responses to the virus initiated by the respiratory
epithelial cells as detailed above.

Severe influenza can lead to respiratory failure and acute
respiratory distress syndrome (ARDS) which has a mortality rate
of 27–45% (199). Epithelial barrier disruption and pronounced
pulmonary edema are hallmarks of ARDS and since there are
no directed treatments that counteract these effects at present,
and care remains predominantly supportive with mechanical
ventilation, secretion clearance, and extracorporeal membrane
oxygenation when necessary. As such, there is an evident need
for additional influenza therapies, particularly for hospitalized
patients with severe disease. As the primary site of infection,
the respiratory epithelium represents an important area of focus
for disease treatment. Fludase is a recombinant sialidase that

cleaves the sialic acid receptor for IAV on AECs preventing
viral entry into cells (200). Pre-clinical trials show broad in
vitro influenza antiviral activity and protective effects in animal
models (200, 201). In phase I and II trials, Fludase was well-
tolerated and led to decreased viral load and shedding (202,
203). However, Fludase liberation of sialic acid raises interesting
questions regarding S. pneumoniae co-infection as sialic acid has
been shown to facilitate its colonization during IAV infection
(104). S. pneumoniae infection of Fludase-treated mice with
influenza did not alter bacterial colonization or mortality (204).
The effects of continued Fludase treatment with concurrent S.
pneumoniae colonization/infection are not fully elucidated.

As detailed above, late influenza infection leads to significant
TRAIL-mediated apoptosis contributing to continued
pathogenesis even as the viral load subsides. Pre-clinical
data show that IAV-infected mice treated with anti-TRAIL
sera had attenuated lung epithelial apoptosis, lung leakage
and increased survival after IAV infection (155). Moreover,
anti-TRAIL treatment was able to reduce bacterial load and
protect against S. pneumoniae coinfection (205). Alternatively,
Bcl-2 inhibitors which were developed to treat certain cancers are
anti-apoptotic and have been suggested as potential treatment
for influenza. In vitro data showed decreased viral replication
and spread due to these agents (206, 207). Maintenance of the
epithelial barrier and induction of antiviral mechanisms involve
IFN signaling during influenza. Interferon-lambda treatment in
mice leads to reduced viral load and improved survival without
inducing a pro-inflammatory cytokine release (208). In another
study, IFNλ treatment was able to prevent viral spread from
the nasal passages to the lungs and confer resistance to IAV
in mice for up to 6 days (209). However, in a model of IAV
and methicillin resistant Staphylococcus aureus/Streptococcal
superinfection, increased INFλ in IAV-infected mice lead to
increased bacterial burden due to decreased bacterial uptake by
neutrophils (210). It remains to be seen if any of these potential
therapies will prove beneficial in treating human influenza.

Corticosteroids are routinely used for their anti-inflammatory
properties in chronic conditions such as asthma and chronic
obstructive pulmonary disease (COPD). Because influenza and
ARDS manifests with a severe pro-inflammatory response,
appropriately blunting that response may be beneficial during
clinical illness. Additionally, corticosteroids have direct effects
on the respiratory epithelium that may be protective. In
vitro steroid treatment led to decreased epithelial permeability
through the action of claudin-8 and occludin recruitment
to TJs (211). However, corticosteroids were not found to
be of benefit to patients during IAV infections (212, 213).
A Cochrane review and another meta-analysis highlighted
significant heterogeneity in published studies and did not show
benefit but instead had a trend toward increased mortality (214,
215), and therefore, their efficacy as a therapy during influenza
remains controversial.

S. pneumoniae is typically susceptible tomany commonly used
β-lactam antibiotics like penicillin. However, their resistance to
multiple antibiotic classes is growing (216). Current vaccines
for pneumococcal disease include 13-valent pneumococcal
conjugate and 23-valent polysaccharide vaccines (217). Despite
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broad immunization practices however, invasive pneumococcal
disease remains common with high morbidity and mortality.
Similar to influenza, targeting the microbe-host interaction
could provide novel treatment strategies for pneumococcal
disease. One example is S-carboxymethylcysteine (S-CMC)
which is a mucolytic agent used in COPD which has been
shown to inhibit adherence to both pharyngeal and alveolar
epithelia (218, 219).

CONCLUSION

As a mucosal organ system with a large surface area and
unremitting exposure to the external environment, protection of
the respiratory barrier is of utmost importance to human health.
Since barrier breach is a necessary first step for environmental
pathogens to gain a foothold in the RT, maintaining the integrity
of the mucosal barrier is a focus point of host defense and
redundant mechanisms/pathways may be utilized to ensure
its subsistence. Herein, we reviewed findings that pertain to
crosstalk between structural cells and local leukocytes that play
a role in immune defenses against IAV and S. pneumoniae.
Although not covered here, the endogenous microbiome is
likely to play an important role as a mediator of pulmonary
immune responses during infection. The crosstalk at the
interface of microbial pathogens and human host epithelium
presents multiple opportunities for the development of clinically
relevant therapies. Targeting host mechanisms may provide less
opportunities for the emergence of pathogen resistance, and if

used in combination with direct antimicrobial medications may
prove superior to monotherapy.

As these pathogens evolve, it is imperative that additional
information is garnered on interactions that occur between host
cells and these agents as well as cell-cell crosstalk in order
to discover more effective therapeutic strategies to overcome
infection when the mucosal barrier is breached. It is also
of importance to determine how these primary mechanisms
relate to an individual with underlying chronic lung disease
such as asthma, COPD, and interstitial pulmonary fibrosis,
as the immune and structural architecture as well as the
microbiome of these hosts are fundamentally different which
likely leads to alterations in the defense mechanisms during
respiratory infections.
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