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To elucidate the key molecules, functions, and pathways that bridge mild cognitive

impairment (MCI) and Alzheimer’s disease (AD), we investigated open gene expression

data sets. Differential gene expression profiles were analyzed and combined with

potential MCI- and AD-related gene expression profiles in public databases. Then,

weighted gene co-expression network analysis was performed to identify the gene

co-expression modules. One module was significantly negatively associated with MCI

samples, in which gene ontology function and Kyoto Encyclopedia of Genes and

Genomes pathway enrichment analysis showed that these genes were related to

cytosolic ribosome, ribosomal structure, oxidative phosphorylation, AD, and metabolic

pathway. The other two modules correlated significantly with AD samples, in which

functional and pathway enrichment analysis revealed strong relationships of these genes

with cytoplasmic ribosome, protein binding, AD, cancer, and apoptosis. In addition,

we regarded the core genes in the module network closely related to MCI and AD as

bridge genes and submitted them to protein interaction network analysis to screen for

major pathogenic genes according to the connectivity information. Among them, small

nuclear ribonucleoprotein D2 polypeptide (SNRPD2), ribosomal protein S3a (RPS3A),

S100 calcium binding protein A8 (S100A8), small nuclear ribonucleoprotein polypeptide

G (SNRPG), U6 snRNA-associated Sm-like protein LSm3 (LSM3), ribosomal protein

S27a (RPS27A), and ATP synthase F1 subunit gamma (ATP5C1) were not only major

pathogenic genes of MCI, but also bridge genes. In addition, SNRPD2, RPS3A, S100A8,

SNRPG, LSM3, thioredoxin (TXN), proteasome 20S subunit alpha 4 (PSMA4), annexin

A1 (ANXA1), DnaJ heat shock protein family member A1 (DNAJA1), and prefoldin subunit

5 (PFDN5) were not only major pathogenic genes of AD, but also bridge genes. Next,

we screened for differentially expressed microRNAs (miRNAs) to predict the miRNAs

and transcription factors related the MCI and AD modules, respectively. The significance

score of miRNAs in eachmodule was calculated using a hypergeometric test to obtain the

miRNApivot-Module interaction pair. Thirty-four bridge regulators were analyzed, among
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which hsa-miR-519d-3p was recognized as the bridge regulator between MCI and AD.

Our study contributed to a better understanding of the pathogenic mechanisms of MCI

and AD, and might lead to the development of a new strategy for clinical diagnosis

and treatment.

Keywords: MCI, AD, WGCNA, PPI, GO, KEGG, microRNA, transcription factor

INTRODUCTION

Alzheimer’s disease (AD), a complex neurodegenerative disease
and the most common cause of dementia, is characterized by
brain atrophy, loss of synapses and neurons, amyloid plaques,
and neurofibrillar tangles (NFTs) (1, 2). Clinical symptoms of
AD include memory loss, daily living disorders, neuropsychiatric
symptoms, and other behavioral disorders, all of which have
serious effects on a patient’s quality of life (3). Mild cognitive
impairment (MCI) is an intermediate stage between normal
brain aging and dementia, which is characterized by the relative
preservation of basic daily function. MCI usually occurs before
AD, and the difference between MCI and AD depends on the
severity of cognitive decline that leads to functional impairment
(4). MCI mainly includes amnesia MCI (aMCI), single domain
non-amnesia MCI, and multiple domain MCI. Patients with
aMCI and multiple domain MCI are at greater risk of developing
AD, and the transition from MCI to AD can be conservatively
estimated at 5–10% per year (5–8). Therefore, it is important to
explore effective diagnosis methods for the early or prodromal
stage of AD. The identification of non-invasive biomarkers for
the rapid screening patients at high risk of progressing from
MCI to AD would make a valuable contribution to guiding
clinical treatment.

Weighted gene co-expression network analysis (WGCNA)
is a bioinformatic analysis method that can determine the
bridge between sample characteristics and gene expression
changes (9). Previous studies had reported that WGCNA
could be utilized to analyze the relationships between genes
and relationships between gene expressions and clinical
characteristics of neurodegenerative diseases (10–12). Six genes
were recognized to be involved in the pathological changes of
AD (11). It had been reported that 44 pathway pairs and 52
risk genes might participate in the pathological changes of PD
(12). Protein-protein interactions (PPIs) are very important in
most biological functions and processes (13) and mainly focus
on detecting the relationship between protein complexes and
functional modules (14).

The transcriptome of pan-cortical brain regions has been
analyzed to screen the changes of gene expression related
to the severity of AD. At the same time, region-specific co-
expression networks and gene modules were constructed, which
were correlated with disease characteristics and showed that
changes to oligodendrocytes mainly occurred in the early
stages of AD progression (15). Combining the brain-specific
protein interaction group with the gene network demonstrated
that there were extensive changes in the expression levels of

different complex gene clusters in AD, among which overall
expression was downregulated for gene associated with synaptic
transmission, metabolism, cell cycle, survival, and immune
response (16). Three new candidate genes screened by differential
gene expression, gene ontology (GO) enrichment analysis,
pathway analysis, and PPI analysis, were identified as potential
candidates for AD pathology (17). These studies laid the
foundation for understanding the potential pathogenesis and
potential new treatment targets of MCI and AD.

MicroRNAs (miRNAs) are small non-coding RNAs with
a length of approximately 22 nucleotides. MicroRNAs play
important roles in regulating the expression of mRNAs,
representing effective post-transcriptional regulators of gene
expression (18). MicroRNAs can act as biomarkers for a variety
of diseases, either alone or in combination with other known
biomarkers. In addition, cells can secrete miRNAs through
exocrine or extracellular vesicles, and the secreted miRNAs
can remain stable in body fluids (19, 20). Six miRNAs (miR-
483-5p, miR-486-5p, miR-30b-5p, miR-200a-3p, miR-502-3p,
miR-142-3p) in plasma samples were able to support the
diagnosis of possible early AD in patients with MCI compared
with the control group (21). The expression of six different
microRNAs (miR-181a-5p, miR-361-3p, miR-23a-3p, miR-15b-
3p, miR-130a-3p, miR-27b-3p) is associated with a SNAP25
(encoding synaptosome associated protein 25) polymorphism
that could affect the neuroplasticity of the brain in patients with
AD and had an influence on AD progression (22).

Currently, most studies have investigated pathogenic genes
or biomarkers for a single stage of MCI or AD. The use of
gene microarray technology has made great progress in clarifying
the potential molecular mechanisms of MCI and AD. However,
research on genes that play a vital role in the progression
from MCI to AD is limited. Therefore, studying the key bridge
molecules between MCI and AD is important for early diagnosis
and treatment. The goal of this study was to analyze a dataset
of 711 samples by using bioinformatic methods to analyze the
differentially expressed genes in the public database. According
to the connectivity information provided by WGCNA and PPI
analyses, we screened major pathogenic genes, bridge genes, and
bridge pathways. Then, the interaction data of miRNA-mRNA
and mRNA-TF were downloaded from a public database. The
miRNA and TF regulatory factors were predicted and the bridge
regulators between MCI and AD were identified. The identified
major pathogenic genes, bridge genes, bridge pathways, and
bridge regulators might lead to novel therapeutic approaches
for patients who are at higher risk of progressing from MCI
to AD.
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MATERIALS AND METHODS

Microarray Data Preparation and
Processing
The human whole bloodmRNA expression data of the GSE63063
dataset (23) were downloaded from Gene Expression Omnibus
(GEO) database (24). This dataset belonged to two platforms
(GPL6947 and GPL10558). There were 329 samples in the dataset
belonging to the GPL6947 platform, including 80 MCI samples,
145 AD samples, and 104 normal samples. There were 388
samples belonging to the GPL10558 platform, consisting of 109
MCI samples, 139 AD samples, 134 normal samples, 3 borderline
MCI samples, 1 control (CTL) to AD sample, 1 MCI to CTL
sample, and 1 other sample. We also downloaded 261 human
MCI-related genes from The National Center for Biotechnology
Information (NCBI)-Gene database (25) and the top 200 human
MCI-related genes were downloaded from the Online Mendelian
Inheritance in Man (OMIM) database (26). We also downloaded
544 human AD-related genes from the NCBI-Gene database and
the top 200 human AD-related genes from the OMIM database.
The miRNA expression data of the GSE120584 dataset (27) were
downloaded from the GEO database, which included 1,021 AD
samples, 32 MCI samples, and 288 normal samples. The protein
interaction data were downloaded from The Human Protein
Reference Database (HPRD) (28). MiRNA-mRNA interaction
data were downloaded from the Starbase v2.0 database (29)
and the mRNA-TF interaction data were downloaded from the
TRRUST (transcriptional regulatory relationships unraveled by
sentence-based text-mining) database (30).

Analysis of Differentially Expressed Genes
The gene expression profile data of the two platforms (GPL6947
and GPL10558) in the GSE63063 dataset were integrated. Only
MCI samples, AD samples, and normal samples were retained
in the two platforms by removing borderline MCI samples, CTL
to AD samples, MCI to CTL samples, and other samples from
the GPL10558 platform. According to the platform annotation
data, the probes of the two platforms are associated with the
gene symbols. If one gene corresponded to multiple probes, the
mean expression value of the probes was taken as the expression
value of the gene. Surrogate Variable analysis (SVA 3.28.0) in
the R package (31) was used to remove the batch effect between
the two platforms and the gene expression profile was obtained
after the batch effect was removed. The differentially expressed
genes between MCI samples and normal samples (DEG1), the
differentially expressed genes between AD samples and normal
samples (DEG2), and the differentially expressed genes between
MCI samples and AD samples (DEG3) were screened and
obtained using the Limma 3.36.5 R package (32) for differential
expression analysis (fold-change > 1.2 or fold-change < 5/6, p
< 0.05). The hierarchical clustering analysis (33) was done and
DEGs were displayed in heat map and volcano plot.

Analysis of WGCNA Co-expression
WGCNA was used to cluster genes into models or networks
according to the weighted correlation coefficient between the
genes and analyze the correlation between the module and the

characteristics of the samples. The DEG1 data between MCI
samples and normal samples and DEG3 data between MCI
samples and AD samples and MCI-related genes in public
databases were combined to obtain the potential genes associated
with MCI and then used to construct the potential gene
expression profile of MCI. Co-expression analysis was carried
out using WGCNA in the R-package. The DEG2 data between
AD samples and normal samples and DEG3 data between
MCI samples and AD samples and AD-related genes in public
databases were combined to obtain the potential genes associated
with AD and then used to construct the potential gene expression
profile of AD. Co-expression analysis was again carried out
by WGCNA. The WGCNA algorithm was used to excavate
the co-expressed gene modules, and the relationships between
these modules and the phenotype of the sample were analyzed.
Statistical significance is revealed by regression of characteristic
genes of features and modules, also known as trait analysis (34),
which reveals the modules that are significantly associated with
disease (P < 0.05). The correlation between CTL and disease is
examined with Pearson’s correlation coefficient. Cytoscape was
used to identify the MCI- and AD-related modules for network
display (35).

Functional Enrichment Analysis of Module
Genes and Identification of Bridge
Function, Pathway, Genes, and Pathogenic
Major Genes
EnrichR 1.0 in the R package (36) was used to analyze the
function and pathway enrichment of the genes in the MCI-
and AD-related modules. The intersections of the functions and
pathways in the two groups of modules was regarded as the
bridge functions and pathways. The genes in the MCI- and AD-
related modules was intersected and the core genes in these two
types of module network were identified and termed as the bridge
genes. The protein interaction data was downloaded from the
HPRD database. The genes in the MCI-related modules and the
AD-related modules were subjected to PPI analysis to determine
their connectivity. We identified the genes with high connectivity
as major pathogenic genes and the connectivity of bridge genes
was observed.

Screening for Differentially Expressed
miRNAs
The differentially expressed miRNAs between the MCI samples
and normal samples, and between AD samples and normal
samples, were screened using the R software package Limma for
differential expression analysis (fold-change > 1.2 or foldchange
< 5/6, p < 0.05).

Prediction and Analysis of Regulatory
Factors of microRNAs and TFs to Identify
Bridge Regulators
By taking the humanmiRNA-mRNA interactions included in the
Starbase as the interaction background, we looked for miRNAs
that could regulate the functional modules ofMCI and AD. Based
on the 9,396 pairs of human TF-mRNA regulatory relationships
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FIGURE 1 | Removal of batch effects. The closer the scatter is to the straight line, the smaller the batch effect is. (A,B) Batch effects between the two platforms were

corrected using SVA R package by normal Q-Q plot. (C,D) Batch effects between the two platforms were corrected using SVA R package by inverse gamma Q-Q plot.

recorded in the TRRUST v2 database, the TFs that could
regulate the functional modules of MCI and AD were identified.
Cytoscape was applied to visualize the interaction between the
miRNAs and TFs and the modules. The intersection of the
regulatory factors (miRNA, TF) of the MCI- and AD-related
modules were termed bridge regulators.

RESULTS

Data Preprocessing
First, the gene expression profile data of the two platforms
(GPL6947 and GPL10558) of the GSE63063 dataset were
integrated to retain only MCI samples, AD samples, and normal
samples by removing borderline MCI samples, CTL to AD
samples, MCI to CTL samples, and other samples. Finally, a total
of 711 samples were obtained from the two platforms, including
189 MCI samples, 284 AD samples, and 238 normal samples.
The samples on the GPL6947 platform were annotated to 29,957
genes and the samples on the GPL10558 platformwere annotated
to 24,899 genes. The genes common to the two platforms (19,460
genes) were extracted to construct the expression profile of the
shared genes between the two platforms.

A batch effect between the data from two platforms was
identified and removed using the sva R package (Figures 1A–D)
to obtain the final gene expression profile for further analysis.

Screening of Differentially Expressed
Genes
The Limma R package identified 205 DEGs between 189
MCI samples and 238 normal samples, of which eight were

upregulated and 197 were down-regulated in MCI (DEG1,
Table S1). The heat map of the DEG1 dataset is shown in
Figure 2A and a volcano plot is shown in Figure 2B.

Similarly, Limma identified 315 DEGs between 284 AD
samples and 238 normal samples, of which 247 genes were
upregulated and 68 genes were downregulated in AD (DEG2,
Table S2). The heat map of the DEG2 data is shown in Figure 2C

and the volcano plot appears in Figure 2D.
Finally, 83 DEGs were identified among 189 MCI samples

and 284 AD samples, of which 1 was upregulated and 82 were
downregulated in MCI (DEG3, Table S3). Thus, the difference
between the MCI samples and AD samples was significantly
smaller than that between the disease samples and the normal
samples. The heat map of the DEG3 data is shown in in Figure 2E
and the volcano plot is shown in Figure 2F.

WGCNA Co-expression Analysis
The differentially expressed genes in DEG1 screened between
MCI samples and normal samples and those in DEG3 screened
between MCI samples and AD samples were combined with the
MCI related genes in the public database (NCBI, OMIM) (a Venn
diagram is shown in Figure 3A). A total of 1,029 potential MCI
genes were obtained, and the potential gene expression profiles of
MCI were constructed. Co-expression analysis was carried out by
using R-package WGCNA.

The differentially expressed genes in DEG2 screened between
AD samples and normal samples and those in DEG3 screened
between MCI samples and AD samples were combined with the
AD related genes in the public database (NCBI, OMIM) (a Venn
diagram is shown in Figure 3B). A total of 1,284 potential AD
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FIGURE 2 | The heat maps and volcano plots of differentially expressed genes (DEGs) were obtained by cluster analysis. The horizontal axis represents the specimen

in heat maps: CTL represents the normal sample, MCI represents the mild cognitive impairment sample, and AD represents the Alzheimer’s disease sample. Red

indicates genes that are up-regulated, while blue indicates genes that are down-regulated in heat maps. Red indicates genes that are up-regulated, while green

indicates genes that are down-regulated in volcano plots. (A,B) The heat map and volcano plot of differentially expressed genes between MCI samples and normal

samples. (C,D) The heat map and volcano plot of differentially expressed genes between AD samples and normal samples. (E,F) The heat map and volcano plot of

differentially expressed genes between MCI and AD samples.

genes were obtained, and the potential gene expression profiles
of AD were constructed. Co-expression analysis was carried out
by using R-package WGCNA.

Through the analysis of WGCNA co-expression, three
modules were excavated from the potential gene expression
profile of MCI. Figure 3C shows the systematic tree diagram

of module clustering. The relationship between the three MCI
modules and traits (normal, disease) is displayed in Figure 3D.
The gene expression level in the blue module was significantly
negatively correlated with the disease characteristics ofMCI (r2 =
−0.26, p = 6e−08), implying that the blue module could be used
as the core module of MCI. Three modules were also excavated
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FIGURE 3 | WGCNA co-expression network construction. (A) A total of 1029 potential MCI genes were obtained and displayed in venn figure. (B) A total of 1284

potential AD genes were obtained and displayed in venn figure. (C) The systematic tree diagram of module clustering for MCI genes. (D) WGCNA modules of MCI:

each line corresponds to a gene co-expression network (marked with color). The numbers in the table represent the Pearson correlation coefficient r and the

associated p-value in parentheses. (E) The systematic tree diagram of module clustering for AD genes. (F) WGCNA modules of AD: each line corresponds to a gene

co-expression network (marked with color). The numbers in the table represent the Pearson correlation coefficient r and the associated p-value in parentheses.

from the potential gene expression profile of AD. The systematic
tree diagram of ADmodule clustering is shown in Figure 3E. The
relationship between AD-related modules and traits is showed in
Figure 3F, which suggested that the genes in the blue module
were negatively related to the disease characteristics of AD (r2

= −0.22, p = 6e−7), whereas the genes in the turquoise module
were positively associated with the disease characteristics of AD
(r2 = 0.097, p= 0.03). Therefore, the blue and turquoise modules
could be utilized as the core module of AD.

Module Network Construction
To further identify related modules for network display, we used
Cytoscape to visualize the gene network of the relevant modules
of MCI and AD, respectively. The network diagram of the MCI
blue module is shown in Figure 4A, the network diagram of
the AD blue module is shown in Figure 4B, and the network

diagram of the AD turquoise module is shown in Figure 4C

(green for downregulated genes and red for upregulated genes).
We demonstrated that all the genes in the MCI blue module
network diagram were differentially expressed, indicating that
the DEGs were indeed related to the characteristics of MCI. We
also concluded that most genes in AD blue module network
diagram was differentially expressed. Moreover, there were also
differentially expressed genes in the AD turquoise module,
implying that the differentially expressed genes were indeed
associated with the characteristics of AD.

Functional Enrichment Analysis of Modular
Genes and the Identification of Bridge
Functions and Pathways
The GO functional enrichment analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis
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FIGURE 4 | Module network construction. (A) The network diagram of the MCI blue module (green for down-regulated genes, red for up-regulated genes). (B) The

network diagram of the AD blue module (green for down-regulated genes, red for up-regulated genes). (C) The network diagram of the AD turquoise module (green

for down-regulated genes, red for up-regulated genes).

of the related module genes of MCI and AD were carried
out by using g:profile. Top 10 GO functional enrichment
analysis diagram and KEGG pathway enrichment diagram
of the MCI-related blue module and the AD related blue
and turquoise modules are displayed in Figures 5A–F. The
results of enrichment analysis suggested that most of the MCI
blue module genes were enriched in several GO terms, such
as (signal recognition particle) SRP-dependent cotranslational
protein targeting to membrane and cytosolic ribosome. Besides,
the result of KEGG analysis revealed ribosome and oxidative
phosphorylation as significant enriched pathways in MCI.
Cytosolic ribosome, SRP-dependent cotranslational protein
targeting to membrane and protein targeting to ER (endoplasmic
reticulum) were mainly enriched GO terms of AD blue module
genes. In additon, the result of KEGG analysis of AD blue
module genes showed ribosome was the most significant
enriched pathway. Whereas, AD turquoise module genes mostly
demonstrated a highly significant enrichment of AD, cancer-
related pathways, and apoptosis in KEGG analysis. Previous
studies have reported that several ribosomal protein genes were
downregulated in the hippocampus of patients with AD at

first stage (I–II) preceding neuron loss, which are regulated by
nucleolar stress (37). In fact, MCI and AD blue module genes
were enriched inmany similar pathways and functions, especially
in ribosome-related biological processes, which implied that
ribosome dysfunction might participate in the pathogenesis and
progression of both MCI and AD.

The intersection of all the GO functions in MCI and AD
were used as bridge functions and a total of 326 bridge functions
were obtained (Table S4). Moreover, we analyzed the intersection
of all the KEGG pathways with significant enrichment in MCI
and AD as bridge pathways, which identified 10 bridge pathways
(Table S5).

Identification of Bridge Genes
The genes in the MCI related blue module and the AD related
modules (blue, turquoise) were intersected, which were regarded
as the overlapping genes (n = 61). Next, the core genes in
the two disease module networks were identified as crosstalk
genes (Table S6). The degree of gene nodes with a connection
threshold >0.3 in the MCI blue module and AD blue module
network were calculated and the top 40 genes were utilized as
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FIGURE 5 | Functional enrichment analysis of modular gene. (A,B) The 10 most significant GO functions and KEGG pathways of MCI blue module. (C,D) The 10

most significant GO functions and KEGG pathways of AD blue module. (E,F) The 10 most significant GO functions and KEGG pathways of AD turquoise module.

candidate crosstalk genes. The degree of the gene node with a
connection threshold >0.6 in the AD related turquoise module
network was calculated and the genes with the highest screening
degree were used as the crosstalk genes of the candidate AD
turquoise module. Finally, 123 crosstalk genes were obtained
from MCI module (blue) and AD module (blue, turquoise). By
selecting overlapping genes and crosstalk genes as bridge genes,
we identified 120 bridge genes (Table S7).

Identification of Major Pathogenic Genes
The genes in the MCI related module (blue) and AD related
modules (blue, turquoise) were subjected to a PPI connectivity
analysis. Genes with high connectivity were identified as major
pathogenic genes and the connectivity of bridge genes was
observed. As shown in Figures 6A,B, the genes in the MCI-
related blue module and AD-related blue module were placed
into the network map of the PPIs. The genes in the AD-related
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FIGURE 6 | Protein interaction network (PPI). Orange represents module genes, blue represents PPI genes. (A) The genes in the MCI-related blue module were put

into the network map of the PPI. (B) The genes in the AD-related blue module were put into the network map of the PPI. (C) The genes in the AD-related turquoise

module were put into the network map of the PPI.

turquoise module were placed into the network map of the
PPIs, as shown in Figure 6C. Then, the top 10 genes of the
MCI_PPI network connectivity were selected as the major genes
of MCI, among which, SNRPD2, RPS3A, S100A8, SNRPG, LSM3,
RPS27A, and ATP5C1were not only major pathogenic genes of
MCI, but also bridge genes (Table 1). Furthermore, we selected
the top 10 genes of the AD_PPI network connectivity as themajor
genes of AD, among which, SNRPD2, RPS3A, S100A8, SNRPG,
LSM3, TXN, PSMA4,ANXA1,DNAJA, and PFDN5were not only
major pathogenic genes of AD, but also bridge genes (Table 1).
In addition, SNRPG, RPS3A, LSM3, S100A8, and SNRPD2 were
common major pathogenic genes of both MCI and AD.

Screening of Differentially Expressed
miRNA
The Limma R package was used to screen differentially expressed
miRNAs (DEmiRNA_AD) between 1,021 AD samples and 288
normal samples in the miRNA expression data of GSE120584

dataset. We also identified differentially expressed miRNAs
(DEmiRNA_MCI) between 32 MCI samples and 288 normal
samples. As a result, 178 differentially expressed miRNAs were
obtained between AD samples and normal samples (Table S8)
and 218 differentially expressed miRNAs were obtained between
MCI samples and normal samples (Table S9).

Factors With Predicted Regulatory
Functions on the Modules (miRNA, TF)
The interaction between human miRNAs and mRNA was
obtained from the Starbase 2.0 database. The miRNAs that
are important in regulating the MCI functional modules (blue)
and AD functional modules (blue, turquoise) were selected to
calculate the significance scores of miRNAs and modules using
the hypergeometric test (p < 0.05), under the conditions that
at least two genes interacted with each other. The interaction
between human TFs and mRNA were obtained from TRRUST
database. Next, we selected the important TFs regulating MCI
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TABLE 1 | Bridge genes in major pathogenic genes of MCI and AD (The common

bridge genes are shown in bold).

Disease Gene Upregulated or

downregulated in diseases

P-value

MCI SNRPD2 Down 3.68E-13

RPS3A Down 6.79E-10

S100A8 Down 6.65E-09

SNRPG Down 1.82E-07

LSM3 Down 3.38E-07

RPS27A Down 5.44E-07

ATP5C1 Down 4.48E-06

AD SNRPD2 Down 4.44E-14

RPS3A Down 2.37E-07

PFDN5 Down 3.18E-06

LSM3 Down 9.59E-06

S100A8 Down 1.31E-05

TXN Down 1.76E-05

PSMA4 Down 6.52E-05

SNRPG Down 8.85E-05

DNAJA1 Down 0.000116

ANXA1 Down 0.007498

functional modules (blue) and AD functional modules (blue,
turquoise) to calculate the significance scores of the TFs and
modules using the hypergeometric test (p < 0.05), under the
conditions that at least two genes interacted with each other.

In our study, 34 miRNApivot-Module interaction pairs
were obtained for the MCI blue function module; however, no
significant TFpivot-Module interaction pairs were identified
(Table S10). The network diagram of the relationship between
the MCI module and the regulatory factors is shown
in Figure 7A. For the AD blue function module, seven
miRNApivot-module interaction pairs were obtained; however,
no significant TFpivot-module interaction pairs were identified.
We constructed the network diagram of the relationship
between the AD blue module and the regulatory factors in
Figure 7B. Nevertheless, we performed 118 miRNApivot-
module interaction pairs and 61 TFpivot-module interaction
pairs for the AD turquoise function module (Table S11). The
network diagram of the relationship between the AD turquoise
module and the regulatory factors is displayed in Figure 7C.

Identification of Bridge Regulators
For more direct analysis, the intersection of the regulatory factor
(pivot) of the MCI module and the AD module was used as the
bridge regulator, and a total of 34 bridge regulators were obtained
(Table S12). Among the 34 bridge regulators screened, hsa-miR-
519d-3p was not only a bridge regulator, but also a differentially
expressed miRNA between the MCI and normal samples.

DISCUSSION

Our present study was aimed to find the common characteristics
of MCI and AD by integrating research data from these two

diseases to explore the potential gene expression profile. The
major workflow and conclusions were showen in Figure 8. A
total of 711 samples, including those from patients with MCI
and AD, and normal controls, were analyzed systematically. By
screening the association of DEGs with disease-related genes
in public databases, 1,029 potential MCI genes and 1,284
potential AD genes were identified and subjected to WGCNA
co-expression analysis. The modules significantly related to the
disease characteristics were constructed and analyzed. Functional
enrichment analysis revealed 326 bridge functions, 10 bridge
pathways, and 120 bridge genes. MCI module genes were mostly
enriched in cytosolic ribosome, SRP-dependent cotranslational
protein targeting to membrane, oxidative phosphorylation,
ribosomal structure, Parkinson’s syndrome, AD, andmetabolism.
Meanwhile, AD module genes showed a significant enrichment
of cytosolic ribosome, SRP-dependent cotranslational protein
targeting to membrane, protein targeting to ER, protein binding,
AD, apoptosis, and cancer-related pathways and functions.
Previous studies had reported that differentially expressed genes
between AD patients and normal brain tissues were mainly
enriched in oxidative phosphorylation, Parkinson’s disease,
protein transport, Alzheimer’s disease and SRP-dependent
cotranslational protein targeting to membrane, etc. (11, 38, 39),
which are generally consistent with our findings. The enrichment
of AD genes in cancer-related pathways reveal that some degrees
of overlap in the potential pathogenesis of AD and cancers. Genes
associated with neurodegenerative diseases, such as PD, are often
abnormally expressed in cancers and also involved in cell cycle
maintenance (12). Therefore, genes involved in cancers may be
potential therapeutic targets for AD. Indeed, MCI and AD are
enriched in many similar functions and pathways, which might
be important for the pathogenesis and progress fromMCI to AD.

According to our results, ATP5C1, RPS27A, SNRPG, LSM3,
RPS3A, S100A8, and SNRPD2 were not only major pathogenic
genes of MCI, but also bridge genes. Furthermore, SNRPG,
LSM3, RPS3A, S100A8, SNRPD2, ANXA1, DNAJA1, PFDN5, and
PSMA4 were not only major pathogenic genes of AD, but also
bridge genes. In addition, a total of 34 bridge regulators were
obtained, among which, hsa-miR-519d-3p was a differentially
expressed miRNA between MCI and normal samples and was
identified as a bridge regulator between MCI and AD. Our
findings support the idea that changes in peripheral blood are
associated with progression fromMCI to AD.

In our study, ATP5C1 and RPS27A were regarded as
major pathogenic genes of MCI, which is consistent with the
conclusions that mitochondrial dysfunction and oxidative stress
are closely associated with progression of cognitive impairment
(40). The increased accumulation of Aβ caused by mitochondrial
dysfunction might be strongly related to the occurrence and
progress of AD. We found that mitochondrial F1 complex
ATP5C1 was downregulated in MCI, which could lead to
mitochondrial dysfunction (41), suggesting that ATP5C1may be
a potential diagnostic and therapeutic target. Oxidative stress can
cause transiton of cell cycle from the stationary G0 phase to
irregular DNA replication and mitosis by causing DNA damage
in neurons (42), which leads to tau overphosphorylation and
aggregation into NFTs probably (43). It is worth emphasizing
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FIGURE 7 | The network diagram of the relationship between the module and the regulatory factors. The rectangle represents the module and the oval represents the

regulator. The darker the color of the regulatory factor, the more significant the P-value of the interaction. (A) 34 miRNApivot-Module interaction pairs were obtained in

MCI blue module. (B) 7 miRNApivot-module interaction pairs were obtained in AD blue module. (C) 118 miRNApivot-module interaction pairs and 61 TFpivot-module

interaction pairs were obtained in AD turquoise module.

that cell cycle-related proteins exhibit abnormal expression in
hippocampal neurons of patients with MCI (44, 45). RPS27A
is synthesized as a C-terminal extension of ubiquitin, while
ubiquitin is involved in DNA repair, cell-cycle regulation, and
protein degradation via the proteasome. The expression of
RPS27A is specifically induced in the middle and late G1 phase
of the cell cycle, mainly to ensure that the biological process of
the cell cycle proceeds smoothly (45). We recognized RPS27A
showed decreased expression level comparing with normal
samples, indicating that reduced RPS27A expression might be
involved in the development of MCI through conducting to
arrest of cell cycle.

Recent studies demonstrated that hippocampal atrophy in
patients with AD is mainly secondary to neurofibrillar tangles
formation, and neuronal atrophy or loss. However, the main
reason for hippocampus atrophy may be the decrease of protein
synthesis. In fact, in the early stage of AD, nucleolar stress

changes the level of ribosomal gene expression, which leads to
changes in the ribosomal composition and damage to protein
synthesis in the cortical region of patients with MCI or those
with dementia caused by AD. The main manifestations are
decreased expression levels of rRNA and ribosomal proteins,
decreased ability of isolated polyribosomes to bind S-methionine
to proteins, and changes in the expression of ribosomal protein
genes before cell death (37, 46).

We identified SNRPG, LSM3, RPS3A, S100A8, and SNRPD2
as major pathogenic genes of both MCI and AD. During the
occurrence and progression of MCI and AD, several genes are
enriched in ribosomal structure and function. Ribosomes are
complexes composed of nucleic acids and proteins that are
responsible for mediating the synthesis of all proteins, and
comprise specialized nucleic acids, rRNA, and tRNA molecules,
which are necessary for ribosomes to convert mRNA into
proteins (47, 48). During protein synthesis, rRNA and tRNA
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FIGURE 8 | The major workflow and conclusions.

levels decreased and rRNA oxidation was increased in the
cognition related brain regions of patients with MCI (46).
Nevertheless, the expression levels of transcription factors
leading to a reduction in protein synthesis showed no significant
changes, implying that decreased protein synthesis might be
strongly associated with ribosomal dysfunction in the early stage
of MCI. SNRPG belongs to the small nuclear ribonucleoprotein
peptide family, which can directly bind to the Sm site of
small nuclear RNA (snRNA) to form a variety of snRNP cores
needed for RNA maturation, including pre-mRNA splicing,
mRNA degradation, and telomere formation (49). We identified
decreased expression level of SNRPG, which might participate
in the progression from MCI to AD. In our study, LSM3 was
another major pathogenic gene, showing reduced expression in
MCI and AD. LSM3 is the most critical activating factor for
mRNA removal in eukaryotic cells and participates in all steps of
RNA metabolism, including RNA silencing and degradation (50,
51). Therefore, abnormal expression of LSM3might contribute to
cognitive impairment. RPS3A is a ribosome chaperone protein in
mammals, which was downregulated in bothMCI andAD.When
nerve cells become aged, the protective effect of RPS3A might
be reduced, which results in α-synaptic nucleoprotein becoming
increasingly toxic and leads to the eventual progression of
neurodegenerative diseases (52). Moreover, RPS3A can prevent
apoptosis by inhibiting poly ADP-ribose polymerase (PARP)
activity, together with B-cell lymphoma-2 (BCL2) (53). Recent
studies have shown that one of the RPS3A homologous genes was

significantly associated with delayed AD (LOAD) in case-control
studies, suggesting that RPS3A or its homologs are associated
with adjacent genes or other functional variants, and play a
crucial role in the pathogenesis of AD (54).

The severity of cognitive impairment is also related to
synaptic and neuronal inflammatory injury (2). Thus, how
to effectively intervene in neuroinflammation has become a
new therapeutic target for MCI and early AD. We defined
S100A8 as a major pathogenic gene of both MCI and AD,
which has higher connectivity in MCI and AD PPI networks.
An increased expression level of S100A8 aggravated neuronal
inflammation by promoting the formation of amyloid β (Aβ)
plaques and showed co-localization with Aβ plaques, which
was compatible with the activation of astrocytes in the brains
of APP23 mice, a mouse model of AD (55). However, our
results showed decreased expression of S100A8 in venous blood
of patients with MCI or AD, which may be due to the
tissue specificity of S100A8 expression level and needs more
investigation. Our results also identified SNRPD2 as a major
pathogenic gene of MCI and AD, with decreased expression
level. The interaction of SNRPD2with nuclear retention elements
significantly inhibits the export of long non-coding RNAs
(lncRNAs) and mRNAs from the nucleus to the cytoplasm and
knockdown of SNRPD2 leads to an increase in the cytoplasmic
distribution of endogenous lncRNAs (56), which might correlate
with the pathogenesis from MCI to AD; however, further study
is needed.
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There are several genes identified as (47, 49–54) major
pathogenic gene of AD, includingANXA1,DNAJA1, PFDN5, and
PSMA4. ANXA1 was reported to be associated with the early
stage of AD in patients and animal models. By inhibiting the
secretion of inflammatory mediators stimulated by Aβ, ANXA1
could stimulate microglial phagocytosis of Aβ and reduce the
level of Aβ (57). Our study revealed that ANXA1 had decreased
expression in patients with MCI and AD, indicating that a lower
level of ANXA1 might contribute to the increased degree of
neuroinflammation and cognitive impairment. Thus, abnormal
expression levels of inflammation-related factors are likely to
participate in the progression of MCI and AD. In addition to
the inflammatory mechanism, the protein toxicity mechanism
mediated by the Aβ-peptide oligomer is also considered a key
factor in the pathogenesis and progression of MCI and AD.
The essence of Aβ is the aggregation of misfolded peptides.
In the present study, we demonstrated that the genes related
to Aβ misfolding, aggregation, or degradation were abnormally
expressed to some extent. DNAJA1, also known as heat shock
protein 40 (HSP40 or HSC40), can preserve misfolded proteins
or polypeptide chains, and transport peptides through the
membrane. By regulating the assembly and decomposition of
protein complexes, DNAJA1 mainly prevents the aggregation
of misfolded polypeptide chains (58). Our results showed that
DNAJA1 was decreased in AD and might lead to the increased
level of Aβ. PSMA4 encodes a proteasome core structural protein
and had decreased expression level in patients with AD. PSMA4
can selectively regulate the expression level of intracellular
protein and promote the degradation of misfolded proteins,
and is expected to become a new target for the therapy of
MCI and early AD (59). The PFDN family is expressed in a
variety of tissues in eukaryotes, and could bind and stabilize
unfolded target peptides and deliver newly synthesized peptides
to II group chaperones (molecular chaperones) to complete
the folding process and prevent misfolding (60). PFDN5 is
highly expressed in nerve cells and can protect cells from cell
death induced by aggregated proteins and decreases the toxicity
of misfolded proteins (61, 62). In addition, PFDN5 indirectly
reduces ribosomal biosynthesis by inhibiting the transactivation
of c-myc, the main regulator of ribosomal biosynthesis (63, 64).
Our results identified PFDN5 had decreased expression level in
AD, which might contribute to the increased toxicity of Aβ and
ribosomal dysfunction. PFDN5 might become a new biomarker
for the diagnosis and treatment of AD.

Oxidative stress plays an important role in the pathological
process of most neurodegenerative diseases, including AD.
Oxidative stress induced by Aβ has adverse effects on nerve
transmission, synaptic function, and cognitive function (65).
Previous studies have reported that the levels of oxidative stress
in patients with MCI were significantly higher than those in
patients with AD and healthy samples, whereas the antioxidant
capacity of patients with MCI and AD were similar (66, 67).
High levels of oxidative stress might be a key factor leading
to the development from MCI to AD. TXN (TRX1) plays a
protective role in maintaining the intracellular environment
and antioxidant capacity, which is involved in many redox
reactions (68). Compared with control samples, the level of

TRX1 decreased significantly in the middle frontal cortex and
hippocampal CA1 area of patients with AD (69, 70), which was
clearly consistent with our research. We identified TRX1 as a
major pathogenic gene of AD, which was downregulated and
implying that low expression levels of TRX1 might lead to the
development of AD (48).

In the present study, miRNA hsa-miR-519d-3p was
identificated to be differentially expressed (upregulated)
between MCI and normal samples, implying it as a bridge
regulator betweenMCI and AD. Overexpression of miR-519d-3p
inhibited the growth of pancreatic cancer cells by inhibiting
expression of ribosomal protein (71). In addition, miR-519d-3p
plays an important role in the occurrence and development of
many kinds of tumors, including inhibiting the proliferation
of laryngeal squamous cell carcinoma (72), inhibiting the
proliferation and migration of colorectal cancer (73), inhibiting
the invasion of gastric cancer (74), and promoting the apoptosis
of cervical cancer cells (75). Furthermore, previous studies
revealed that downregulation of miR-519d-3p could reduce
the cardiomyocyte apoptosis induced by hypoxia (76). Taken
together, these findings implied that a low expression level of
miR-519d-3p might play a protective role in nerve cells.

There have been no previous reports of miR-519d-3p being
involved in the pathogenesis of MCI and AD. Considering the
increased expression of miR-519d-3p in MCI, we hypothesized
that miR-519d-3p might inhibit the expression of a ribosomal
protein in neurons, which in turn affected the level of
protein synthesis. Furthermore, reduction of ribosomal function
and protein synthesis has a negative impact on cognitive
function. Thus, abnormal expression levels of miR-519d-3p
might play a key biological role in the progression from
MCI to AD. MicroRNA-519d-3p is expected to become
a new biomarker to screen for those patients with MCI
that are more likely to progress to AD and to guide
clinical treatment.

CONCLUSION

In summary, this present study revealed many bridge genes and
pathways related to MCI and AD, and the related gene and
pathway network could be used to guide further research to
explain the molecular mechanism of MCI and AD. Some bridge
genes, major pathogenic genes, and bridge regulators might also
be potential therapeutic targets, although more comprehensive
investigations are needed to verify the role of these genes in the
development of MCI and AD.
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