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Abstract—The effect of the isolation of individuals in the population on the dynamics of the epidemic
is analyzed. Based on the SIR model, a SIRDi model is built that takes into account the isolation of
individuals, as well as the presence of deceased patients, which is appropriate to use in cases of wide-
spread infection, when the number of infected is comparable to the number of susceptible individuals.
Simplified IRD and IRDi models are proposed for studying the spread of an infectious disease at the
initial stage of an epidemic (or for the case when the rate of infection is not high). It is found that there
is a threshold value of the coefficient (fraction) of isolation, which delimits the qualitatively different
behavior of the epidemic indicators of the population system. A comparison is made between different
models. It is shown that the simplified (IRDi) and more complex (SIRDi) models at the initial stage
of the epidemic give approximately the same results.
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1. INTRODUCTION

Currently, a great deal of attention is paid to modeling epidemic processes. This issue has become espe-
cially relevant in connection with the spread of the coronavirus infection COVID-19. Simple models that
approximately describe the dynamics of the epidemic are based on the principles of the “encounter the-
ory,” the foundations of which were laid in the early 20th century by the mathematicians V. Volterra [1]
and A. Lotka [2].

There are now various modifications of this theory in relation to modeling the spread of epidemics. The
SIR model [3—5] is among the most popular of these models, according to which the entire population is
divided into three groups: those susceptible to infection, actually infected, and recovered; and differential
equations are compiled that describe the interaction between different groups (the name of the model is
formed from the initial letters of the names of the three population groups mentioned above). More com-
plex models ([6—9], etc.) take into account various factors, such as natural birth and death rates, vaccina-
tion, the development or loss of immunity (SIRS model), the influence of climatic conditions, the het-
erogeneity of the population distribution, and the incubation period of the disease (for example, the SEIR
model). The works devoted to the constructing and studying mathematical models of immunological and
epidemiological processes in infectious diseases [10, 11], where the models are built based on modern
knowledge about pathogenesis and epidemiology, in particular, diseases such as influenza, pneumonia,
and tuberculosis, should also be noted.

Based on basic models such as SIR, many (sometimes quite complex) models have emerged recently,
taking into account various factors that describe the interaction between different groups in a population.
Some of them take into account the effect of quarantining infected patients (SIQR models) [12, 13]. This
introduces another variable Q, the number of individuals in quarantine, which leads to an increase in the
number of differential equations, and, accordingly, complicates the analysis of the system of model equa-
tions.

Considerable attention is paid to building models for studying the current problem: the COVID-19
pandemic [6, 13—16]. In [15], a kinetic model of the spread of epidemics is proposed that describes the
dynamics of changes in the number of healthy, infected, and recovered (the SIR model) based on a logistic
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equation with a lagging argument. It has been established that this model predicts the possibility of the
existence of a quasi-stationary mode of the epidemic, in which the number of infected people is constant
due to the balance of the daily increase in the infected patients and those who have recovered. Based on
data from the COVID-19 pandemic, it is possible to reliably predict the spread of the epidemic for up to
two months.

An analysis of the universal stages in the development of the COVID-19 viral infection epidemic is pre-
sented in [16]. It is assumed that during a pandemic, the rate of growth in the number of infected people
occurs similarly to the process of reproduction of virions in the affected organism. The indicator of the
rate of increase in the number of infected people reflects not only the medical and biological parameters
of a viral infection but also the characteristics of the social behavior of the population. The dynamics of
changes in the growth rate indicators is modeled by a system of ordinary differential equations of the relax-
ation type. The limit values of the rate of increase in the number of infected people are predicted based on
the immersion method, using the available experimental data.

In general, there are numerous works devoted to modeling epidemic processes; however, a detailed
analysis of the behavior of the system, taking into account the effect of isolation, has not been carried out.

The aim of this study is to model and study the dynamics of the epidemic in the presence of the isola-
tion of individuals (including both healthy and infected individuals) of the population system. Moreover,
unlike the SIQR model, a separate unknown variable is not introduced here for the group of isolated indi-
viduals, but the analysis is carried out using the isolation factor. Thus, the number of differential equations
in the presented models is the same as in the basic SIR model (the category of those who died due to the
illness, which is taken into account in this paper, can, in principle, be included in the group of those who
became ill under the assumptions made in this paper). In addition, here, together with the isolation of
those infected, the isolation of healthy individuals is taken into account, which also affects the rate of the
spread of the infection.

Studying the behavior of the infection at an early stage is most important, since, at this stage, it is pos-
sible to effectively stop the further spread of the disease among the population and prevent it from devel-
oping into an epidemic. One such method is the isolation of individuals in a population, which is import-
ant, especially in cases where a vaccine has not yet been developed. The effect of isolating individuals in a
population is very important, since with a sufficient number of isolated individuals, it leads to a decrease,
and in the future, a complete decline in the epidemic. In relation to this, the paper proposes simplified
models based on the basic SIR model, suitable for describing the dynamics of infection at the initial stages,
when only a small fraction of the population is infected and the criteria are established (taking into
account the isolation of individuals, both infected and healthy), which if maintained prevent the infection
from turning into an epidemic (i.e., the number of infected individuals decreases over time).

The advantages of the proposed approaches lie in the systematic and detailed study of the effect of iso-
lating individuals on the dynamics of the spread of an infectious disease (without increasing the number
of equations). In addition, in the simplified models that are presented in this paper, the differential equa-
tions, unlike the SIQR or SIRS models, are linear, which facilitates analysis. The novelty of this study lies
in the consistent consideration of the isolation effect in the entire population (both among infected and
healthy individuals) using the isolation coefficient.

2. SHORT DESCRIPTION OF THE SIR MODEL

Almost all models built to study epidemic processes are based on the SIR model. If 7 is the number of
infected people, and S is the number of those not infected (prone to infection), according to the theory of
encounters, the rate of growth in the number of the former and the decrease in the latter will be greater the
more encounters between the two, i.e., the greater the product IS. Let us assume that the population is
closed; i.e., there is no inflow or outflow of individuals from the system, and the natural birth and death
rates of the population are also neglected. Per unit of time (for example, per day), each infected individual
will be in contact with k other individuals in the population. Moreover, k£S/N (N is the population size) of
these contacts account for uninfected individuals. If a certain proportion of contacts 1| leads to the trans-
mission of infection, then each infected individual infects NkS/N uninfected individuals per unit of time.
Thus, in total, the infected individuals infect NkS1/N individuals among the uninfected. It is considered
that those who have been ill are not reinfected.

Under the assumptions made, the equations of the SIR model have the form

dS/dt = —ySI, dl/dt =—-ol +vySI, dR/dt=ol, (y=0/N, &=nk).
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Here, S, 1, and R are the number of susceptible (i.e., those who may be infected), actually infected, and
recovered individuals, while coefficients y and o characterize the rates of infection and recovery, respec-
tively. Obviously, S + I + R = N = const (this relation follows from the system of equations as the first
integral if they are added together and integrated), where N is the total number (size) of the population.
This model has been analyzed in detail in the scientific literature (see, for example, [3]). In particular, it
is shown that in the SIR model, the epidemic always disappears over time; this can be seen from the equa-
tion for R: if / does not tend to 0 over time, then R tends to infinity, which leads to a contradiction, since

R should be less than N. An effective reproduction index is introduced R, = R,S(0)/N [3], where S(0) is
the initial number of uninfected individuals and R, = /. is basic reproduction index. Then the “epi-
demic threshold theorem” is valid [3, 4], according to which, if R, < 1, the value /(#) decreases monotoni-
cally to zero at f — oo, and if R, > 1, I(¥) behaves nonmonotonically: first, it increases, reaches a maxi-
mum, then, drops to zero at f — oo (the scenario corresponding to the condition R, > 1 is called an epi-

demic). The proofs of these assertions can be found in [3]. This model underlies many studies of the
processes of an epidemic disease spreading in a population [17—19].

3. SIMPLIFIED EPIDEMIC MODELS

We consider the case when the number of infected individuals 7 is much less than the number of unin-
fected individuals S, so / < .§'= N. This situation occurs when the infection spreads at a low rate, and the
number of uninfected individuals .S does not change much. This assumption is also fulfilled at the initial
stage of the spread of the epidemic. As the statistics show, at the moment, in the case of coronavirus, a
similar situation takes place.

Unlike the SIR model, together with those who have been ill R, we will also take into account the pres-
ence of deaths among the infected; the number of deaths will be denoted by D (obviously, R, and D <« N).
Thus, the statistics on COVID-19 show that the number of deaths among those infected can reach signif-
icant values (for example, as of May 1, 2020, in Spain, the proportion of deaths among those infected was
about 11%; and in Italy, about 14%). In relation to this, the effect of the number of deaths must be taken
into account. An isolated population system is considered, i.e., S+ I+ R+ D = N = const. In addition,
as in the SIR model, it is assumed that those who have recovered do not become reinfected.

Next, we analyze several simple models based on the principles of the SIR model.

3.1. IRD Model

Assume that infected and uninfected individuals are not isolated from each other. Then, based on the
SIR model, equations can be written (within the assumptions made, we neglect the change in .S)

dl/dt = —ol —BI +ySI, dR/dt=ol, dD/dt=BI. (1)

Here, B is the proportion of patients who died per unit of time (for example, in one day). Insofar as § =
N—I—R—Dand I, R, and D <« N, the first equation of the system can be modified and instead of (1)
we obtain the following linear system:

dl/dt = —ol —BI +8I, dR/dt=al, dD/dt=BI, (&=7N). )

Let us set the initial conditions: assume that at some (initial) moment of time # = 0 we have I = 1(0),
R = R(0), and D= D(0). The solutions of Egs. (2), taking into account the initial conditions, have the form
(at constant coefficients o, 3, and 8)

I = 1(0)exp(v°t), (3)
R = R(0) + @[exp(v%) -1], (4)

D = D(0) + m[exp(vc’t) —1],
Ve Q)

ve =9 — (o + ).
Three cases are possible. In the first case, when v°< 0 (i.e., oo + B > d), value 7 tends to zero over time; and
the values R and D, to the limit values R(«0) = R(0) + a./(0)/(—=v°) and D(e0) = D(0) + B1(0)/(-v°), respec-
tively. In the second case, when v° > 0 (o + B < 9), the number of healthy, infected, recovered, and dead
individuals increases with z. In the third case, when v°= 0 (o0 + B = 3), we have an equilibrium state
1=1(0), i.e., the number of newly infected is equal to the sum of recovered and deceased patients. This
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case is degenerate, and the dependences R(¢) and D(f) corresponding to this case do not follow directly
from solutions (4) and (5) (the latter give uncertainties of type 0/0). The solution is obtained by substitut-
ing the value /(0) instead of / in the right parts of the second and third equations of system (2). Their sub-
sequent integration gives R = R(0) + o/ (0)t and D = D(0) + BI(0)z; thus, in this case the dependences
R(?) and D(¥) obey a linear law. Note that, as can be seen from solution (3), this equilibrium state is unsta-
ble, since any small deviation from this state leads to an exponential increase (or decrease) in the number
of infected people. From the obtained solutions, it follows that between R and D there is an obvious
relation D — D(0) = (B/o)(R — R(0)) (such a relationship also follows from the last two equations of sys-
tem (2), if we divide them into each other and integrate the resulting equation).

In addition, system (2) has the following first integrals
I-Y"R=const and I-LD= const,
o

where the constants on the right-hand sides can be determined, in particular, from the initial data. From
this the relation between R and D obtained above in a different way follows. The model given, by analogy
with the SIR model, will be conventionally denoted as the IRD model.

3.2. IRDi Model

We consider the case when some part of the population can be isolated. Assume o, and g are fractions
of isolated individuals among infected and uninfected individuals, which can be called isolation coeffi-

cients (obviously, 0 < o,, o < 1). Then the numbers of non-isolated individuals among infected and non-

infected groups that can contact each other are (1 — 0,)/ and (1 — 04)S, respectively. In this case, the first
equation of system (2) is modified, and the remaining equations do not change; thus, we have

dI/dt =~ +PB)I +(1-0,)1-05)dI, dR/dt=0ol, and dD/dt=0plI. (6)

The product of (1 — ¢,)(1 — o) can be equated to (1 — ), i.e., we get the equation (1 — 6,)(1 — og) =
(1 — ©), where ¢ can be called the generalized isolation factor. Hence,

c=1-(1-o0,)1-o0y). @)
Obviously, the relations that follow from (7) are satisfied:
I, if (o,=1lorog=1) or (o,=1andog=1),
o,, if (o4=0),
oy, if (o, =0),
0, if (o;=0 and o43=0).
Lines of equal values of parameter ¢ satisfying relation (7) are shown in Fig. 1.
Now, system (6) is rewritten in the form
dl/dt = —(o+B) +(1—-0)dI, dR/dt=ol, dD/dt=I. 8)

System (8) under the condition of constant coefficients and taking into account the initial conditions
(fort=0, I=1(0), R= R(0), D= D(0)) has the following solutions:

1 = 1(0)exp(vi), 9

R=RO)+ L Qlexpvy—1], D = D)+ BLQfexpvry - 1],
A% A%

v=(1-0)0-(a+p).

At o+ B > 9, as in the IRD model, the number of infected individuals 7 decreases to 0, while R and D
increase over time (regardless of the value of ¢). In this case, the limit values R and D will be

R(e) = RO0) + I (0)/(—v) and  D(es) = D(0) + BI(0)/(~v)(where v < 0), (11)

and they are less than the corresponding values in the IRD model (¢ = 0). Obviously, with an increase in
the isolation coefficient ¢, the limit values R(ec) and D(e~) will decrease, reaching their minimum values

(10)
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1.0
Gy

Fig. 1. Lines of equal values of the generalized coefficient ¢ on the plane (o, og): I, 6=0.1; 2,0.25; 3,0.5; 4, 0.75; and
5,0.95.

at 6 = 1: R(«0) = R(0) + aZ(0)/(o + PB), D(eo) = D(0) + BI(0)/(ov + B), and R(e<) + D(eo) = I(0) + R(0) +
D(0). As in the IRD model, system (8) has the first integrals

I — (/)R =const, [ —(v/B)D = const,
from which the same relationship follows between quantities R and D, as in the IRD model,
D - D(0) = B/a)(R — R(0)).

As an example, when o + 3 > 8, we consider the characteristic behavior of the quantities /(7) and R(7)
(assigned to 1(0)) for the values of the defining parameters oo = 0.05, B = 0.005, and & = 0.01, for which
the condition o + 3 > 0 is satisfied, are illustrated in Fig. 2 (in the case R(0) = D(0) = 0). When changing
the parameter ¢ from 0 to 1, all curves /(f) and R(r) will be located between the corresponding limit dashed
curves and curves 3.

In the case when o + 3 < 9, the sign of the coefficient before #in the exponent in (9) depends on param-
eter 6. At ¢ > G, where

G, =1—-(+P)/>d (a+P<9d), (12)

we have v < 0; i.e., in this case, the number of infected individuals / will decrease over time. At ¢ < o,
from (9) we obtain v > 0, so that value / will grow. When ¢ = o, (v =0), the number of infected individuals
over time remains unchanged and equal to the initial value / = /(0) (equilibrium state). Note that in the

degenerate case G = G, the solutions for R and D in the considered model have the same linear form as
in the IRD model.

Thus, there is a threshold value of the isolation factor o, which delimits the qualitatively different
behavior of dependence /(7): at ¢ < o, the number of infected people increases over time; at G > o, in

contrast, it decreases; and in the case ¢ = o,, the system enters an equilibrium state when the number of
infected individuals remains constant, and the number of recoveries and deaths grows linearly.

For known values of parameters o, 3, and 9, the value 6, can be interpreted as the threshold value of
the isolation coefficient, upon reaching which the infection does not develop into an epidemic.

By analogy with the previous model, this model will be conditionally called the IRDi model (addi-
tional symbol i from isolation).
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Fig. 2. Change in the number of infected ///(0) (decreasing curves) and recovered R/1(0) (increasing curves) individuals
in the case o + [ > & for different values of the isolation factor: 7, 6 = 0.1; 2, 0.25; 3, 0.5; 4, 0.75; 5, 1.0; dashed curves,
c=0.

1(r)

Beginning Start
of the epidemic of isolation

Fig. 3. The nature of behavior of dependence /(?) in different models: curve 7, IRD (for o + § < 8); 2, IRDi (for 0 < ¢ <
6x); 3, IRDi (for 6 = 6% > 0) or IRD (for o + = 3); 4, IRDi (at 0 < 64 < ©); 5, IRD (for o + B > 8); 6, IRDi (for o +
B > 9, Vo).

Using the expression for the critical quantity G,., parameter v in solutions (9) and (10) can be rewritten
in another form

v = &(0, — 0),

in which the role of the critical parameter G, is more clearly visible.

The nature of the behavior of the number of infected individuals /(7) in different models is schemati-
cally illustrated in Fig. 3. The dashed curve corresponds to the IRD model (in the absence of isolation,
o = 0), while the dashed line corresponds to the state of equilibrium ¢ = ¢, in the IRDi model and
o + B = 0 in the IRD model.

As can be seen from the presented diagram, at first value 7 (the number of infected patients) rises to the
value /(0) by the moment of the introduction of isolation; then, depending on the value of the degree of

isolation (coefficient 6), the number of infected people may increase (in the case ¢ < G,.) or decrease (if
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o > o,). Note that the equations in the considered models describe the dynamics of the infectious pro-
cess, starting from the moment of the introduction of isolation. It should also be noted that the system
takes on an equilibrium state in two cases: first, when the equality oo + 3 = & is fulfilled in the case of no

isolation (o = 0, IRD model), and second, in the case of isolation with coefficient o = G, in the IRDi
model. In general, the point corresponding to the moment of the introduction of isolation (=0, /= 1(0)),
can be interpreted as a bifurcation point, since, starting from this point, the behavior of the population
system, depending on the values of the defining parameters, branches out.

3.3. Reproduction Indices

Note that the critical value 6, can be written in terms of the well-known reproduction index [20—23],
which characterizes the rate at which an infectious disease spreads. To this end, we introduce reproduction
indices for different situations: in the absence of dead and isolated individuals (B = 0, ¢ = 0), the repro-

duction index will be R, = 8/ (which is often called basic), and in the presence of deceased individuals
(B # 0) but the absence of isolation (¢ = 0), we have R, = 8/(o. + B); similarly, for the case f = 0, but ¢ #
0, we get R, = (1 — 6)d/a., and in the general case, when 3 # 0 and ¢ # 0, we have R; = (1 — 6)3/(at + B).
For the introduced reproduction indices, the relations R; < (R, R,) < R, are satisfied (i.e., the presence
of isolation leads to a decrease in the reproduction index), and there is an obvious relationship between

them RyR; = R R,. As we can see, the definition of the reproduction index depends on the model.

Now expression (12) for o, is rewritten in the form
ox =1-1/R.

At the same time, the critical value ¢ = G, corresponds to the threshold value of the reproduction
index R, = 1. In the case of B =0, we have 6, =1—1/R,.

Thus, the lower the reproduction index the lower the critical value of the isolation coefficient. At R, =1

(or R, =l in the case 3 = 0), we have o,, = 0, which means that, in this case, any level of isolation leads to
a decrease in the epidemic.

Solutions (3)—(5), corresponding to the absence of isolation (¢ = 0), as well as (9) and (10), taking into
account the effect of isolation (¢ > 0), in the reproduction indices will be written as

[ = I(0)exp[(a. + B)(R — D],

o 10

R=RO)+ 2 BRI

) texpl(o+B)(R - r] - 1},

, o=0,
3, o0>0.

B 1(0) vl _
D= D)+ BR—I{exp[(Oﬁ+B)(R -1}, i {

From these expressions it follows that the values R, = 1 (i = 1, 3) are threshold values; i.e., they separate
cases of epidemic growth or attenuation of the spread of the disease in different situations: in the absence
of isolation (i = 1) or in the presence of isolation (i = 3). The same values correspond to the equilibrium
state of the system in these situations. From the formulas given above, we can obtain expressions relating
quantities /, R, and D:

R=RO)+—21L=1O0  p_ g B _I-10).
o+p R -1 o+B R -1
moreover, the following relation exists:
R=1+—AL (13)
AR+ AD

where Al =1 —1(0), AR = R- R(0), and AD = D — D(0), from which it follows that, in the simplified
models discussed above, the reproduction index can be determined based on the numbers of infected,
recovered, and deceased individuals (without using coefficients o, 3, 8, and ). Thus, at the early stage of
the spread of the epidemic, formula (13) can be used to quickly calculate the reproduction index. Note
that the reproduction index is determined not only by the increment in the number of infected people but

also by the increments in the number of those who have recovered and died. Moreover, R; < 1 (a condition
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Fig. 4. Change in the reproduction index (solid lines) and the critical value of the isolation factor (dashed lines) for
COVID-19 in Russia (curves /), Germany (2), and United States (3) from April 28 to May 11, 2021.

corresponding to a decline of the epidemic), unless A/ < 0. Obviously, the increments AR and AD are
always greater than zero.

As an example of using formula (13), Fig. 4 shows the results of calculating the reproduction index
using the specified formula in the case of the COVID-19 epidemic for Russia, Germany, and the United
States. The calculations were carried out with an interval of one day from April 28 to May 11, 2021. For
convenience, it is assumed that D = D(0) = 0. At the same time, the reproduction index R, turns into the

base reproduction index R,. It also shows the changes over the considered period of time of the critical
value of the isolation coefficient corresponding to the calculated reproduction index. It can be seen that
for Russia there are two peak values of the reproduction index: 2 and 9 May. In this case, the critical value
of the isolation coefficient is slightly more than 0.5. In the case of the United States, the reproduction
index is generally lower than in Russia and Germany. The smallest value of the critical isolation factor

(04 = 0.3) in the United States is reached on May 6th. If, starting from this day, approximately at least a

third of the population went into quarantine (isolation), then the epidemic would decline (the reproduc-
tion index would be less than 1).

The equations of the simplified models proposed above are solved analytically, and, thus, it becomes
possible to study in more detail the behavior of the population system during the spread of the epidemic
within the accepted assumptions.

4. SIRDi MODEL OF THE EPIDEMIC

In the previous section, we analyzed the case when the number of infected individuals [ is much less
than the number of uninfected individuals .5; thus, I < § (=N). This situation occurs when the infection
spreads at a low rate (or at the initial stage of the spread of the epidemic), and the number of people not
infected does not change much. In particular, as noted above, for the coronavirus infection, such a situa-
tion is currently being observed. If the epidemic reaches alarming proportions, when value /is comparable
to value S, then in order to describe the spread of the epidemic, we need to use a more complex model,
which should take into account the change in 5. Let us consider such a model.

4.1. SIRDi Model Equations

We consider the case when the change in .S cannot be neglected. In this case, it is necessary to add an
equation for S (similar to the SIR model, but taking into account the effect of isolation) to the equations
of the IRDi model (see above). We have

ds/dt = —(1 - o)ySI, (14)
dI/dt = —od —BI + (1 - S)ySI, (15)
dR/dt = al, (16)
dD/dt =PI, (17)
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Fig. 5. Diagram of the relationship between different models.
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Parameters o, 3, ¥, and 6 have the same meaning as in the previous sections. The proposed model can
be referred to as the SIRDi model. With 6 = 0 we get the SIRD model, and with § = 0, but with 6 # 0, we
get the SIRi model. In the event that at the same time 6 = 0 and § = 0, the SIRDi model changes into the
SIR model. The relationship between different models is conveniently presented schematically (Fig. 5).

Summing the first three equations (14)—(16) gives
diS+ 1+ R)/dt = -BI;

i.e., the living population will decrease on account of those who die due to the consequences of infection.
Thus, in contrast to the SIR model, in the SIRD and SIRDi models, the living population does not
remain constant, although the total number of individuals, taking into account the dead, is maintained:
S+ I+ R+ D= N=const. Note that in system (14)—(17) the first two equations can be considered sep-
arately from the rest, because they do not include quantities R and D. In addition, from Egs. (16) and (17),
(as in the IRD and IRDi models) the relationship between the numbers of recovered and deceased
patients D — D(0) = (B/o)(R — R(0)) immediately follows.

As in the SIR model (see above), it is easy to show that the SIRDi model also has the asymptotic prop-
erty (o) = 0.

4.2. Critical Value of the Isolation Factor

Similarly to [3], we determine the effective reproduction index REO‘) = AR,S(0)/N = AR,, which differs
from the number determined in the SIR model [3] R, = R,S(0)/N by the presence of the multiplier
A = (1 -0)a/(o + B). Note that the statements of the epidemic threshold theorem formulated for the SIR
model (see above) are also valid in this case (but only instead of R, we have to take Ré”). In particular, if

Rf‘) <1, then I(¢) decreases monotonically to zero as f — o, and in the case R‘_fx) > 1 I(¥) first increases,
then after reaching its maximum decreases to zero at t — o, i.e., /(o) = 0. The proofs of these assertions

are similar to those in [3]. The threshold value Rem =1 corresponds to the critical value of the isolation

factor
o, =1-[2FBL) (18)
o R,

Thus, the statements of the epidemic threshold theorem can be reformulated in terms of the critical
value of the isolation coefficient: at ¢ > ¢, the number of infected individuals drops to zero over time; i.e.,
the infectious disease does not turn into an epidemic, and in the case of ¢ < o,,, the number of infected
people first increases, then after reaching the maximum it decreases to 0.

We can usually assume S(0) = N, then expression (18) for o, transforms into the same form as in the
IRDi model, 6, =1-1/R,.

4.3. The maximum Number of Infected Individuals
Equating the right side of Eq. (15) to zero, we obtain the critical point at which / takes on its maximum
value /1,

max

S. = (o +B)/[(1 = o)yl

Another critical point / = 0, corresponds to the trivial situation when the system remains in an
unchanged state (the initial state, at # = 0 in the absence of infected individuals, or the final state at # = oo,
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Fig. 6. Dependence of value /,,,/N on Ry at different values of parameter A = 0.4 (curve 1), 0.5 (2), 0.6 (3), 0.7 (4),
0.8 (5), 0.9 (6), and 1 (7).

when the epidemic subsides completely). For /., it is not difficult to find a formula (the method of
obtaining it is similar to [3])

Loy = 1(0) + S(0) = S, In S(0) - S, + S, In ...
If at the initial time R(0) = 0 and D(0) = 0, then /(0) + S(0) = N. Then we have
[max =N - Sc{l + ln[(N - I(O))/SC]} .

In the case when there are very few infected individuals at the beginning, /(0) < N, we get

1 1 1 R,
mx — 1 _ 2 (1+InR)=1- I+InA s
N R3( ") KRO( N

insofar as S,/N=1/R;, and R; = AR,. Dependences /,,,,/N on R, for different A are shown in Fig. 6. The
curve constructed for A = 1 corresponds to the SIR model and is extreme (or limiting) for other values of

A < 1. The points where the curves touch the lower axis correspond to the threshold value AR, = R; =1,
to the right of which R; < 1, and according to the first statement of the threshold theorem [3], the quantity
I in this case decreases monotonically with time (i.e., it has no maximum). As parameter R, decreases,
magnitude /.. also decreases.

max

4.4. Limit Values of Variables

Similarly to the SIR model, in the case of the SIRDi model, it can also be shown that S(ec) > 0. To do
this, we divide Eq. (14) by Eq. (16) and obtain

dS/dR =—-xS, x=(0-0)y/a, (y=09/N).
Separating the variables and integrating, we find
S(1) = S(0)exp{—«[R(?) — R(0)]}. (19)
Hence, given that 0 < R(?) — R(0) £ N, we have S(¢) = S(0)exp(—«kN) or
S(e) 2 S(0)exp[-(1 - 0)R)] > 0,

which needed to be proved.
Next, we find an equation for S(e0). From (19) with R(0) = 0, it follows

S(e2)/N =15(0)/Nlexp{~(1 - )R R(=)/ N},
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Fig. 7. Dependences of limit values of S(o°)/N (curve I), R(>)/N (2), D(=)/N (3) on parameter R;.

or
In[S(e0)/N1= —(1 - G)R[R(=*)/ N1, (20)
as we can usually take S(0) = N. Dividing Eq. (14) by Eq. (17), we obtain
dS/dD =08, 0=(01-o0)Y/B.
Separating the variables and integrating, we find
S(#) = S(0)exp{-08[D(r) — D0)]}.
Given that D(0) = 0, from above expression at # — o we have
S(e0)/N =[S5(0)/Nlexp{—(1 - 6)(ct/B)RyD(=)/N}.
Usually S(0) = N, so that the last expression implies
In[S(e0)/ N1 = ~(1 - 6)(0,/B)Ry D(=)/N. 1)

Insofar as /(o) = 0 (according to the threshold theorem, see above), the following relation is obviously
satisfied:

S(c0) + R(e0) + D(0) = N. (22)
Solving Eqgs. (20)—(22) jointly, we arrive at a transcendental equation with respect to S(o):
In[S(e0)/NT= AR, [S(e0)/N —1],
or

In[S(e2)/N] = Ry[S(e=)/N —1]. (23)

Computing S(o0) from (23), it is easy to find the values R(oc), D(oc) according to the formulas
Re=) _ o [1 . S(oﬂ D) _ B [1 . S(oﬂ.

N  o+P NI N a+p N

Figure 7 shows the dependences of the quantities S(o°)/N, R(oc)/N, and D(o=)/N from parameter R;.
Values R(e°)/N and D(oc)/N are calculated at = 0.10., so D(=°) is smaller than R(c°) by a factor of 10.
As parameter Rj; increases, magnitude S(oc) decreases, while R(oc) and D(e°), in contrast, increase. Note
that for the values R; > 2.7 the limit number of not infected individuals will be less than the number of
deaths from infection, i.e., S(o°) < D(oc). The main changes in the limit values are observed with R,
increasing in the range from 1 to 3. The further growth of R; only weakly affects these values.
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Fig. 8. The change in S (curves ), T (2), R (3), D (4) in time at Ry = 2 and 1/o = 14 days. Solid curves, SIRDi model
(0 =0.1, B =0.1ar); dashed curves, SIRD model (¢ =0, = 0.1a); dashed-dotted curves, SIR model (¢ =0, § = 0).

4.5. Results of Calculations of an Epidemic’s Dynamics Using the SIRDi Model
We introduce dimensionless variables
S=S/N, T=I/N, R=R/N, D=D/N, N=S+1+R+ D =const.
In the new variables, system (14)—(17) takes the form
dS/dt = —-(1-06)dS1, dI/dt=-ol —BT +(1-0)3S7,
dR/dt = od, dD/dt=BI.
Figure 8 shows the results of the numerical integration of system (24) under the following initial con-

ditions: =0, 5(0) = 0.999, 7(0) = 0.001, R(0) = 0, and D(0) = 0 (the example is taken from [5], where
the dynamics of the COVID-19 epidemic were calculated using the SIR model). The basic reproduction

(24)

index R, = 2 and the isolation coefficient ¢ = 0.1, while the effective reproduction index Ref“ = 7»5(0)R0 =
1.64 > 1, which corresponds to the epidemic scenario according to the epidemic threshold theorem. The
critical value of the isolation factor G,., calculated by (18), is equal to 6, = 0.45; thus, in this case ¢ < o,.
Coefficient ot was considered equal to 1/14 = 0.07 [5] (here, it is taken into account that the recovery time
from the coronavirus infection is approximately 14 days). A ratio B = 0.1o was assumed between coeffi-
cients o and [ (the observed data for COVID-19 are roughly consistent with this ratio between o and [3).

For comparison, Fig. 8 also shows the results of calculations using the SIR and SIRD models. It is seen
that in the SIRD and SIRDi models, the peak values / decrease compared to the SIR model but the time

taken to reach them ¢,, increases. For example, according to the SIR model, 7, = 95 days, and, according
to SIRD and SIRDi models, #,, = 102 and 120 days, respectively. The peak values 1. themselves in the

models given above are 0.15, 0.12, and 0.09, respectively. It should be noted that the presence of even a
small proportion of isolated individuals (¢ = 0.1) leads to a noticeable decrease in the maximum number
of infected individuals, as well as in the number of deaths and recoveries, and an increase in the number
of individuals who are not infected. Accounting for the number of deaths also leads to noticeable differ-

ences in the size of the groups.

The results obtained in the simplified IRDi model, which is valid at the initial stage of the spread of an
infectious disease, and the SIRDi model, which covers the entire dynamics of the epidemic, including the
later stages, are compared in Fig. 9 (the values of the determining parameters correspond to Fig. 8) for two
characteristic situations: when ¢ < o, (Fig. 9a) and ¢ > G,, (Fig. 9b). In the first case, the calculations were
made for the initial stage of the epidemic. It can be seen that the dependences of the number of infected,
recovered, and deceased patients on time, calculated using the models given above, differ slightly. This cir-
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Fig. 9. Comparison of results obtained by IRDi (dashed curves) and SIRDi (solid curves) models at 6 = 0.1 < ¢« =
0.45 (a) and 6 = 0.6 > 6+« (b): curves 1, I/N; 2, R/N; 3, D/N.

cumstance allows us to conclude that at the initial stage of the spread of an infectious disease during an
epidemic (when ¢ < 6,,), as well as in the case of preventing an epidemic (when 6 > G,,), it is quite possible
to use a simplified IRDi model, where the solutions are expressed by simple analytical formulas (com-
pared to the SIRDi model, where differential equations have to be solved numerically).

Thus, it has been established that the presence of isolated individuals in the population significantly
affects the dynamics of the spread of an infectious disease. In particular, there is a threshold value of the
isolation factor ¢ = o,,, determined by the fact that, for values of ¢ exceeding this value, the number of
infected people decreases over time (the infection does not turn into an epidemic), and for values less than
this critical value, the number of infected people, in contrast, increases (the epidemic progresses). It is
shown that at the initial stage of the epidemic, it is quite possible to use simplified models, whose equa-
tions have a linear form and have simple analytical solutions.

The constructed models make it possible to evaluate and predict the nature of the behavior of epidemic
processes in the presence and absence of the isolation of individuals in a population. In particular, a fairly
convenient formula has been established for calculating the average value of the reproduction index by
increments over a certain period of time of the number of those individuals who were infected, recovered,
and died at the initial stage of the spread of the infection.

Note that vaccination affects the interaction of individuals of different groups in the same way as iso-
lation, since in both cases the vaccinated or isolated individuals do not participate in the process of trans-
mitting the infection (if the effect of the vaccine is instantaneous). Obviously, when vaccinating, the gen-
eralized isolation coefficient introduced above should be considered as the proportion of those vaccinated
in the group of uninfected individuals, i.e. 6, = 0 and 6 = o. Then, all the statements given above will be
true for the case of vaccination of individuals in the population.

In principle, the number of deaths, which is taken into account in these models, can be included in the
number of those individuals who have been ill without distinguishing them into a separate group (which
is done in most cases); however, if a situation arises when those who have been ill can be infected again
(loss of immunity), then we need to account for this category.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 14 No. 3 2022



1.

DEVELOPMENT OF MATHEMATICAL MODELS 479

REFERENCES

V. Volterra, “Fluctuations in the abundance of a species considered mathematically,” Nature 118 (2972), 558—
560 (1926).
https://doi.org/10.1038/118558a0

2. A.J. Lotka, Elements of Physical Biology (William and Wilkins, Baltimore, 1925).

W

. H. Weiss, “The SIR model and the foundations of public health,” Mater. Math. 2013 (3), 1—17 (2013).

4. R. M. Anderson, “Discussion: the Kermack—McKendrick epidemic threshold theorem,” Bull. Math. Biol. 53

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.
20.

21.

22.

23.

(1-2), 3—32 (1991).
https://doi.org/10.1007/BF02464422

. O.N. Bjornstad, K. Shea, M. Krzywinski, and N. Altman, “Modeling infectious epidemics,” Nature Methods

17, 455—456 (2020).
https://doi.org/10.1038/s41592-020-0822-z

. M. Mandal, S. Jana, S. K. Nandi, A. Khatua, S. Adak, and T. K. Kar, “A model based study on the dynamics

of COVID-19: Prediction and control,” Chaos, Solitons, and Fractals 136, 109889 (2020).
https://doi.org/10.1016/j.chaos.2020.109889

. M. J. Keeling and P. Rohani, Modelling Infectious Diseases in Humans and Animals (Princeton University Press,

Princeton, NJ, 2008).

. R. E. Baker, W. Yang, G. A. Vecchi, C. J. E. Metcalf, and B. T. Greenfell, “Susceptible supply limits the role of

climate in the early SARS-CoV-2 pandemic,” Science 369 (6501), 315—319 (2020).
https://doi.org/10.1126/science.abc2535

. U. Ledzewicz and H. Schittler, “On optimal singular controls for a general SIR-model with vaccination and

treatment,” Discrete Contin. Dyn. Syst., Conf. Publ. (Suppl. 2011), 981—990 (2011).
https://doi.org/10.3934/proc.2011.2011.981

A. A. Romanyukha, Mathematical Models in Immunology and Epidemiology of Infectious Diseases (BINOM,
Moscow, 2012) [in Russian].

G. 1. Marchuk, Mathematical Models in Immunology. Computational Methods and Experiments (Nauka, Mos-
cow, 1991) [in Russian].

Y. Liu and Y.-Y. Zhao, “The spread behavior analysis of a SIQR epidemic model under the small world network
environment,” J. Phys.: Conf. Ser. 1267, 012042 (2019).
https://doi.org/10.1088/1742-6596,/1267/1/012042

T. Odagaki, “Exact properties of SIQR model for COVID-19,” Phys. A 564, 125564 (2021).
https://doi.org/10.1016/j.physa.2020.125564

L. Zhong, L. Mu, J. Li, J. Wang, Z. Yin, and D. Liu, “Early prediction of the 2019 novel coronavirus outbreak
in the mainland China based on simple mathematical model,” IEEE Access 8, 51761—51768 (2020).
https://doi.org/10.1109/ACCESS.2020.2979599

A. 1. Shnip, “Epidemic dynamics kinetic model and its testing on the Covid-19 epidemic spread data,” J. Eng.
Phys. Thermophys. 94 (1), 6—17 (2021).

https://doi.org/10.1007/s10891-021-02268-y

I. V. Derevich and A. A. Panova, “Estimation of Covid-19 infection growth rate based on the imbedding meth-

od,” J. Eng. Phys. Thermophys. 94 (1), 18—29 (2021).
https://doi.org/10.1007/s10891-021-02269-x

H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Rev. 42 (4), 599—653 (2000).
https://doi.org/10.1137/S0036144500371907

C. Dye and N. Gay, “Modeling the SARS epidemic,” Science 300 (5627), 1884—1885 (2003).
https://doi.org/10.1126/science.1086925

J. Koopman, “Modeling infection transmission,” Annu. Rev. Public Health 25, 303—326 (2004).
https://doi.org/10.1146 /annurev.publhealth.25.102802.124353

J. H. Jones, Notes on R, (Stanford University, Stanford, 2007).

P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for com-
partmental models of disease transmission,” Math. Biosci. 180 (1-2), 29—48 (2002).
https://doi.org/10.1016/S0025-5564(02)00108-6

S. Zhao, Q. Lin, J. Ran, S. S. Musa, et al., “Preliminary estimation of the basic reproduction number of novel
coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the out-
break,” Int. J. Infect. Dis. 92, 214—217 (2020).

https://doi.org/10.1016/j.ijid.2020.01.050

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press,
Oxford, 1991; Mir, Moscow, 2004).

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 14 No.3 2022



	1. INTRODUCTION
	2. SHORT DESCRIPTION OF THE SIR MODEL
	3. SIMPLIFIED EPIDEMIC MODELS
	3.1. IRD Model
	3.2. IRDi Model
	3.3. Reproduction Indices

	4. SIRDi MODEL OF THE EPIDEMIC
	4.1. SIRDi Model Equations
	4.2. Critical Value of the Isolation Factor
	4.3. The maximum Number of Infected Individuals
	4.4. Limit Values of Variables
	4.5. Results of Calculations of an Epidemic’s Dynamics Using the SIRDi Model

	REFERENCES

		2022-05-24T01:24:40+0300
	Preflight Ticket Signature




