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ABSTRACT
Background Internet gaming disorder (IGD) is an ideal 
model to study the mechanisms underlying synaptic 
deficits in addiction as it eliminates the confounding 
effects of substance use. Synaptic loss and deficits 
are hypothesised to underlie the enduring maladaptive 
behaviours and impaired cognitive function that contribute 
to IGD.
Aims This study aimed to determine whether subjects 
with IGD have lower synaptic density than control subjects 
and the relationship between synaptic density and IGD 
severity.
Methods Eighteen unmedicated subjects diagnosed 
with current IGD according to the Diagnostic and 
Statistical Manual of Mental Disorders, Fifth Edition 
criteria and 16 demographically matched healthy 
controls (HCs) participated in the study and underwent 
18F- labelled difluoro- analogue of UCB- J (18F- 
SynVesT- 1) positron emission tomography scans to 
assess the density of synaptic vesicle glycoprotein 
2A (SV2A). The Internet Gaming Disorder Scale- 
Short Form (IGDS9- SF), Hamilton Rating Scale for 
Depression (HAMD), Hamilton Anxiety Rating Scale 
(HAMA), Barratt Impulsiveness Scale Version 11 (BIS- 
11), Stroop Colour- Word Test (SCWT), stop- signal 
paradigms and N- back tasks were administered to all 
subjects.
Results Patients with IGD had significantly higher 
scores on the IGDS9- SF, HAMD, HAMA and BIS- 11 than 
HCs. HCs performed better on the two- back and SCWT 
tests as well as in terms of stop- signal reaction times 
(SSRTs) in the stop- signal paradigms than patients 
with IGD. Lower uptake was found in the bilateral 
putamen, right pregenual anterior cingulate cortex and 
Rolandic operculum of patients with IGD compared 
with HCs. Furthermore, in the IGD group, IGDS9- 
SF scores and daily gaming hours were negatively 
correlated with the standardised uptake value ratios of 
18F- SynVesT- 1 in the bilateral putamen. Longer SSRTs 
were significantly associated with lower SV2A density 
in the right pregenual anterior cingulate cortex and 
right Rolandic operculum.
Conclusions The in vivo results in this study suggest 
that lower synaptic density contributes to the severity 
and impairments in inhibitory control of IGD. These 
findings may provide further incentive to evaluate 
interventions that restore synaptic transmission and 
plasticity to treat IGD.

InTRoduCTIon
Internet gaming disorder (IGD) is an 
emerging and increasing problem worldwide 
that leads to clinically significant impair-
ment or distress.1 2 As a specific behavioural 
addictive disorder, IGD involves excessive or 
poorly controlled preoccupations, impulses 
or behaviours regarding persistent and recur-
rent online gameplay. The prevalence of 
IGD ranges from 1.2% to 8.5% in the USA 
and Europe3–5 and from 6% to 12% in Asian 
countries,6 with a particularly higher prev-
alence among men and young people. As a 
behavioural addiction unique to humans 
that has received recognition in the past 
decade, IGD has been observed in the clinic. 
However, understanding of the neurobio-
logical mechanisms related to this disorder 
remains in its early stages. With the current 
lack of evidence- based treatments for IGD, 
neurobiological studies may be needed to 
inform the development of novel treatments.

WHAT IS ALREAdY KnoWn on THIS ToPIC
 ⇒ Synaptic loss and deficits have recently been found 
in various mental disorders.

 ⇒ 18F- labelled difluoro- analogue of UCB- J (18F- 
SynVesT- 1) is a new synaptic vesicle glycoprotein 
2A positron emission tomography (PET) radiotracer 
and a potentially sensitive biomarker indicating syn-
aptic density in vivo.

WHAT THIS STudY AddS
 ⇒ Using 18F- SynVesT- 1 PET imaging, synaptic deficits 
in the bilateral putamen, right pregenual anterior 
cingulate cortex and right Rolandic operculum were 
closely linked to the severity of internet gaming 
disorder.

HoW THIS STudY MIGHT AFFECT RESEARCH, 
PRACTICE oR PoLICY

 ⇒ Our novel in vivo findings provide new insights into 
the neuropathological mechanisms of internet gam-
ing disorder and may suggest possibilities for devel-
oping new treatments targeting synaptic function.
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Figure 1 Flowchart of study enrolment. 18F- SynVesT- 1,18F- labelled difluoro- analogue of UCB- J; BIS- 11, Barratt Impulsiveness 
Scale Version 11; DSM- 5, Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; HAMA, Hamilton Anxiety Rating 
Scale; HAMD, Hamilton Rating Scale for Depression; HC, healthy control; IGD, internet gaming disorder; IGDS9- SF, Internet 
Gaming Disorder Scale- Short Form; MRI, magnetic resonance imaging; PET, positron emission tomography; SCWT, Stroop 
Colour- Word Test; SST, stop- signal task.

Synaptic deficits are evident in different behavioural 
addictions. For example, enduring impairments in 
transmission and synaptic plasticity were shown at gluta-
matergic synapses in the nucleus accumbens subcom-
partment in rats with diet- induced obesity and food 
addiction.7 8 The effect of synaptic γ-aminobutyric acid 
release induced by dopamine rises was reduced or even 
reversed in problem gamblers.9 Furthermore, dopa-
mine transporter binding ratios in the bilateral caudate 
and putamen were inversely correlated with days spent 
gambling and reward- based decision- making in subjects 
with gambling disorders.10 In terms of IGD, dysregulation 
of postsynaptic dopamine D2 receptors in the orbitof-
rontal cortex and striatum was found.11 These findings 
provide evidence of aberrant synaptic connectivity and 
plasticity in individuals engaging in excessive and prob-
lematic non- substance use behaviours. However, abnor-
malities in synaptic density have not yet been elucidated 
in any behavioural addiction.

Synaptic vesicle glycoprotein 2A (SV2A) is an integral 
protein ubiquitously present in the presynaptic terminals 
of all synapses across the brain12 and is a suitable marker 
of synaptic density. 11C- UCB- J, a radioligand that has high 
specificity for SV2A,13 has recently been shown to be 
sensitive to region- specific decreases in synaptic density 
in cocaine and cannabis use disorders,14 15 depression, 
and post- traumatic stress disorder.16 A new SV2A positron 
emission tomography (PET) radiotracer, the 18F- labelled 
difluoro- analogue of UCB- J (18F- SynVesT- 1), showed 
similar useful imaging properties, a longer radioactive 
half- life and a superior signal to noise ratio compared with 
11C- UCB- J in healthy humans.17 Combined with PET data, 
these techniques allow the change in synaptic density in 
the brain to be evaluated in real time, dynamically and in 
vivo. We hypothesised that the region- specific abnormal 
synaptic density might also occur in IGD.

The current study aimed to investigate the behavioural 
performance of individuals with IGD and the neural 
correlates of cognitive function that underlie this disorder. 

We assessed the differences in synaptic density by using 
18F- SynVesT- 1 and PET imaging approaches in subjects 
with IGD and healthy controls (HCs). The Stroop Colour- 
Word Test (SCWT),18 stop- signal paradigms19 and N- back 
tasks20 are widely used to examine cognitive function in 
IGD and other addictions, and we also examined poten-
tial correlations between synaptic density and severity 
of IGD and specific cognitive impairment. We hypothe-
sised that patients with IGD would exhibit lower synaptic 
density in executive function or reward- seeking brain 
regions compared with HCs and that there is a relation-
ship between synaptic density and the severity of gaming 
addiction.

METHodS
Participants
The study included unmedicated clinical subjects diag-
nosed with current IGD according to the Diagnostic 
and Statistical Manual of Mental Disorders, Fifth Edition 
(DSM- 5)21 and 16 age- matched and sex- matched HC 
subjects who participated in the study. Participants were 
recruited by word of mouth, posters and flyers. All study 
participants provided written informed consent before 
inclusion in the study. They were screened with the Struc-
tured Clinical Interview for DSM- 5, Clinician Version, 
within 3 days of the PET scan to determine the presence of 
major psychiatric disorders. All subjects were medication- 
naive during the assessment. The flow chart of this study 
is shown in figure 1.

The inclusion criteria for participants with IGD were 
as follows: (1) primary use of the internet to play games 
and regular internet game use over the past 12 months 
(daily internet game use >7 hours/day or >30 hours/
week), (2) an Internet Gaming Disorder Scale- Short 
Form (IGDS9- SF) score ≥3222 and (3) an IGD diagnosis 
based on the DSM- 5 criteria. The inclusion criteria for 
HCs were as follows: (1) regular use of a smartphone, 
laptop or other electronic device but not diagnosed with 
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IGD based on the DSM- 5 criteria and (2) IGDS9- SF score 
<21. The exclusion criteria for IGD and HCs included 
(1) a lifetime or current diagnosis of a major psychi-
atric disorder (eg, met the DSM- 5 criteria for gambling 
disorders, nicotine or alcohol use disorders, neurodevel-
opmental disorders, schizophrenia spectrum disorders, 
bipolar disorders, or related disorders), (2) clinically 
significant medical conditions or laboratory abnormali-
ties, (3) other illicit substance use or nicotine use in the 
past 12 months, (4) pregnancy or lactation before any 
scan, and (5) contraindications to magnetic resonance 
imaging (MRI).

The custom- designed questionnaire included age, sex, 
education level and game usage and was used to collect 
sociodemographic data. The participants were evaluated 
to determine internet use patterns and were screened 
for IGD using the Chinese version of the IGDS9- SF.22 23 
The IGDS9- SF has been validated for use among Chinese 
participants and has high internal consistency (Cron-
bach’s α was 0.91).24 We used the Chinese version of the 
Hamilton Rating Scale for Depression (HAMD) (reli-
ability coefficient of 0.714 and validity coefficient of 
0.92),25 26 the Chinese version of the Hamilton Anxiety 
Rating Scale (HAMA) (reliability coefficient of 0.88)27 28 
and the Barratt Impulsiveness Scale Version 11 (BIS- 11)29 
to test impulsivity. The BIS- 11 has been translated into 
Chinese with good internal consistency and test–retest 
reliability.30 The BIS- 11 consists of three subscales: cogni-
tive impulsivity, motor impulsivity and non- planning 
impulsivity.

Cognitive function measures
Stop-signal task
Before entering the PET scanner, participants performed 
a manual version of the stop- signal task (SST)31 (online 
supplemental figure S1). During the SST, subjects were 
instructed to press the ‘F’ button in response to a circle 
and the ‘J’ button in response to a fork with the index 
finger of their left or right hand as rapidly and accurately 
as possible. In a minority of trials, a ‘Stop’ signal (in which 
the green box turned red unpredictably) was presented 
at varying delays after the ‘Go’ stimulus signals, indicating 
that the subject should withhold that motor response. A 
fixation cross was presented for a period of 1–5 s and the 
‘Go’ reaction time (Go RT) was shorter than 1 s. For each 
run, the ‘Stop’ signal delay (SSD) time was initially set at 
250 ms and then either increased or decreased by 50 ms 
after a successful or failed ‘Stop’ response, respectively. 
The staircase algorithm adjusted the temporal delay 
between ‘Go’ and ‘Stop’ stimuli in 50 ms increments to 
achieve a 50% target ‘Stop’ inhibition rate in stop trials. 
The stop- signal reaction time (SSRT) was calculated by 
subtracting the critical SSD from the mean RT in all 
correct- response go trials. The Go RT and SSRT were the 
primary performance measures, representing response 
initiation and inhibitory control, respectively. A shorter 
SSRT reflects a faster ‘stop’ process and represents better 
inhibitory control ability. Subjects with impaired motor 

inhibition are less able to inhibit their motor response 
and thus have longer SSRTs.32

Stroop Colour-Word Test
We administered the SCWT,33 consisting of three parts: 
word reading (WR), colour naming (CN) and colour 
word (CW). In each part, subjects were requested to read 
WR and name the colour of the ink of each item (a series 
of Xs in CN and the name of a colour different from that 
of the ink in CW) in a list of 100 elements. In each part, 
we recorded the number of elements correctly completed 
in 45 s and the interference score (IS). The IS, consid-
ered a measure of inhibitory control, was calculated from 
the other three scores [IS=CW−(WR×CN/WR+CN)].

Two-back and three-back tests
Subjects had to indicate whether the graphic presented 
in the centre of a computer screen was the same as the 
graphic presented two or three positions before (two- 
back or three- back).34 Participants responded by pressing 
the ‘F’ button of a keyboard with their left index finger 
when the graphic was the same (target) or the ‘J’ button 
with their right index finger when the graphic was 
different (non- target). In each test, a total of 63 trials 
were performed, but the first three non- target trials were 
not included in the analyses. The number of target trials 
was 20 (ie, ~32% of the total set). The stimulus duration 
was 500 ms, with a 2500 ms interstimulus interval. Accura-
cies on the whole test were recorded.

Magnetic resonance imaging
High- resolution MRIs were collected on a General Electric 
(GE) Healthcare 3.0 T MRI scanner. To register with PET 
images and check for structural abnormalities, a sagittal 
three- dimensional (3D) T1 bravo sequence was employed 
(echo time (TE)=3.2 ms, repetition time (TR)=8.5 ms, 
matrix=256×256 mm2, phase field of view (FOV)=1, voxel 
size 1.0×1.0×1.0 mm3, slice thickness=1.0 mm). All MRI 
data were quality- checked by a skilled neuroradiologist.

Positron emission tomography
18F- SynVesT- 1 was synthesised using a previously described 
method with radiochemical purity >99%.17 35 None of the 
participants took drugs targeted at SV2A for at least 1 day 
before the PET scans. The PET/computed tomography 
(CT) was carried out with a GE PET/CT scanner (Discovery 
690 Elite; GE Healthcare, Waukesha, Wisconsin). 18F- Syn-
VesT- 1 PET/CT imaging was performed 60 min after the 
radiotracer was intravenously injected at a dose of 3.7–4.44 
MBq (0.1–0.12 mCi) per kilogram of body weight. Static 
PET images were acquired in three dimensions for 30 min. 
First, a low- dose CT scan (120 kV; automatic mAs; pitch, 1:1; 
slice thickness, 3.75 mm; matrix, 512×512) was performed 
for attenuation correction. Next, all PET images were recon-
structed as a 256×256 transaxial matrix (35 cm field of view) 
using the 3D VUE Point (GE Healthcare) ordered- subset 
expectation- maximisation algorithm with six iterations and 
six subsets, which produced 47 transaxial images at 3.25 mm 
intervals. Participants were also monitored on- site for other 

https://dx.doi.org/10.1136/gpsych-2023-101112
https://dx.doi.org/10.1136/gpsych-2023-101112
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Table 1 Demographic and clinical characteristics

Variable
IGD
Mean (SD)

HC
Mean (SD) t P value

Age (years) 20.53 (3.69) 22.44 (5.44) −1.305 0.201

Male:female 14:4 10:6 0.456

Education (years) 13.12 (1.87) 13.38 (1.94) −0.382 0.705

Daily gaming (hours) 11.47 (2.83) N/A N/A N/A

Duration of IGD (years) 3.61 (1.64) N/A N/A N/A

Frequency of IG usage after midnight per week 4.29 (2.31) N/A N/A N/A

Frequency of IG usage overnight per week 2.81 (2.60) N/A N/A N/A

IGDS9- SF 35.33 (2.00) 13.00 (5.56) 15.753 <0.001

HAMA 11.00 (6.67) 3.1 (3.16) 3.999 <0.001

HAMD 18.89 (10.08) 3.46 (3.52) 5.268 <0.001

BIS- 11 cognitive 44.06 (15.10) 33.27 (11.96) −2.634 0.035

BIS- 11 motor 48.89 (15.56) 27.50 (14.03) −3.472 <0.001

BIS- 11 non- planning 55.58 (20.58) 32.11 (15.37) −2.580 0.002

BIS- 11 total 49.54 (12.66) 30.22 (10.81) −1.008 <0.001

Two- back test accuracy 0.73 (0.19) 0.87 (0.09) −2.419 0.022

Three- back test accuracy 0.62 (0.20) 0.74 (0.13) −1.842 0.076

SCWT

  WR 89.06 (11.97) 98.08 (3.33) −3.039 0.006

  CN 67.39 (17.45) 86.46 (10.91) −3.735 0.001

  CW 39.50 (12.20) 49.69 (8.60) −2.728 0.011

  IS 1.43 (6.48) 3.94 (7.31) −0.988 0.333

SST

  Go RT, ms 682.06 (106.57) 619.79 (120.25) 1.739 0.091

  SSD, ms 382.28 (84.53) 337.95 (100.13) 1.235 0.226

  SSRT, ms 300.36 (35.94) 274.34 (26.90) 2.434 0.021

BIS- 11, Barratt Impulsiveness Scale Version 11; CN, colour naming; CW, colour word; Go RT, reaction time in correct go 
trials; HAMA, Hamilton Anxiety Rating Scale; HAMD, Hamilton Rating Scale for Depression; HC, healthy control; IG, internet 
gaming; IGD, internet gaming disorder; IGDS9- SF, Internet Gaming Disorder Scale- Short Form; IS, interference score; N/A, 
not applicable; SCWT, Stroop Colour- Word Test; SD, standard deviation; SSD, stop- signal delay; SSRT, stop- signal reaction 
time; SST, stop- signal task; WR, word reading.

signs of adverse effects for 90 min after injection of 18F- Syn-
VesT- 1 and were asked to report any ensuing adverse effects.

MRI and PET analysis
The structural MRIs were standardised with automatic 
anatomical marker templates in the Montréal Neurological 
Institute space using statistical parametric mapping software 
(SPM V.12; Wellcome Department of Imaging Neurosci-
ence, London, UK). Then the transformation parameters 
determined by MRI spatial normalisation were applied to 
the coregistered 18F- SynVesT- 1 PET image for PET spatial 
normalisation. The standardised uptake values (SUVs) were 
calculated for all regions of interest. The SUV ratio (SUVR) 
with the centrum semiovale (CS) as a reference region was 
calculated for interpatient comparisons using SPM, as the CS 
has been reported to be free of SV2A and thus can be used 
as a reference region.36 The height threshold for synaptic 

density changes was set at p<0.001 with a cluster size of at least 
50. After data preprocessing with SPM, the xjView MATLAB 
toolbox was used to visualise and anatomically label signifi-
cant clusters.

demographic and clinical data analysis
Differences between the IGD and HC groups in demo-
graphic, clinical and radiotracer characteristics were 
assessed using independent- sample t- tests for contin-
uous measures and χ2 tests for categorical variables. 
The Mann- Whitney U test was applied to compare non- 
normally distributed variables. The Kolmogorov- Smirnov 
one- sample test was used to determine whether variables 
were normally distributed. The Bonferroni correction 
was adopted to adjust for multiple comparisons. Further-
more, group differences in the SUVR of 18F- SynVesT- 1 
between patients with IGD and the HCs were analysed 
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Table 2 Location and peaks of significant synaptic density reduction in patients with IGD compared with HC

Location

Cluster level Peak level Coordinates

Cluster 
KE

P value 
(uncorrected) t Z- score

P value 
(uncorrected) x (mm) y (mm)

z
(mm)

Left lenticular nucleus, putamen 77 0.002 5.371 4.501 <0.001 −28 2 8

3.527 3.217 <0.001 −32 −4 4

3.442 3.151 <0.001 −24 16 0

Right lenticular nucleus, putamen 130 <0.001 5.308 4.462 <0.001 24 10 4

4.716 4.079 <0.001 28 4 8

Right Rolandic operculum 53 0.008 5.048 4.297 <0.001 56 −16 18

3.612 3.283 <0.001 44 −10 14

Right anterior cingulate cortex, 
pregenual

59 0.005 4.477 3.916 <0.001 2 38 −6

Left anterior cingulate cortex, 
pregenual

77 0.002 3.788 3.417 <0.001 −2 40 10

HC, healthy control; IGD, internet gaming disorder; KE, cluster size.

in various brain regions using a two- sample t- test as a 
confounding covariate. However, given the exploratory 
nature of these analyses and the limited sample size, no 
adjustments for multiple comparisons were made. The 
relationship between the SUVR of 18F- SynVesT- 1 and clin-
ical/cognitive parameters was explored with a scatter plot 
in subjects with IGD. Pearson correlation analyses were 
used to examine the relationship between the SUVR of 
18F- SynVesT- 1 and clinical/cognitive parameters. SPSS 
V.23.0 was used to perform the analysis, and GraphPad 
Prism V.7.0 (GraphPad Software, Boston, Massachusetts, 
USA) was used to generate figures. The two- tailed p values 
had a significance level of α=0.05.

RESuLTS
In total, 18 patients were enrolled in the IGD group and 
16 in the HC group. The demographics were well matched 
between the two groups. All participants enrolled in the 
study were right- handed. The mean (SD) age was 20.53 
(3.69) for the IGD group and 22.44 (5.44) for the HC 
group. There were four women enrolled in the IGD 
group and six in the HC group. None of the participants 
reported previous or current neurological or psychiatric 
disorders, illegal drug use, or nicotine or alcohol use 
disorders. The 18F- SynVesT- 1 injection was well tolerated, 
with no subjective or objective adverse effects detected. In 
addition, all the participants were free of depressive and 
anxiety disorders. However, a minority of subjects with 
IGD had mild to moderate anxiety or depression symp-
toms, as assessed by the HAMA and HAMD, respectively 
(table 1).

The IGD group scored higher on the IGDS9- SF than 
the HC group (p<0.001). The mean (SD) daily internet 
gaming (IG) usage reached 11.47 (2.83) hours, and IG 
usage after midnight/overnight each week reached 
4.29 (2.31)/2.81 (2.60) times in the IGD group. The 

details of the demographic and clinical characteris-
tics of the subgroups are summarised in table 1. The 
results also indicated the presence of significant group 
differences on the BIS- 11 cognitive (t=−2.634, p=0.035), 
motor (t=−3.472, p<0.001) and non- planning subscales 
(t=−2.580, p=0.002), in addition to the BIS- 11 total scores 
(t=−1.008, p<0.001).

HCs performed better on the two- back test (t=−2.419, 
p=0.022), but not on the three- back test (t=−1.842, 
p=0.076), than patients with IGD. On the Stroop test, the 
accuracies for WR (t=−3.039, p=0.006), CN (t=−3.735, 
p=0.001) and CW (t=−2.728, p=0.011) were significantly 
higher in HCs than in patients with IGD, but no differ-
ence in IS scores on the SCWT was found between the 
groups (t=−0.988, p=0.333). The staircase algorithm in 
the SST guaranteed that the participants had an approx-
imately 50% success rate in stop trials. Both the IGD and 
HC groups had accuracy rates higher than 50% in the 
stop trials despite a group difference, indicating that the 
present task was conducted successfully. Relative to HCs, 
patients with IGD had significantly longer SSRTs (t=2.434, 
p=0.021). Regarding the other indices of the SST (Go RT 
and SSD), no significant group difference between the 
IGD and HC groups was found.

Compared with HCs, patients with IGD showed lower 
uptake of 18F- SynVesT- 1 in the right pregenual anterior 
cingulate cortex (ACC), bilateral putamen and right 
Rolandic operculum (height threshold at p<0.001, with 
a level above 50 contiguous voxels; table 2, figures 2 
and 3, online supplemental table S1). The associations 
between synaptic density (SUVRs of 18F- SynVesT- 1) and 
clinical characteristics are summarised in online supple-
mental table S2. Significant linear relationships between 
higher IGDS9- SF scores or longer daily gaming hours and 
lower synaptic density (SUVR of 18F- SynVesT- 1) of the left 
putamen (r=−0.476, p=0.046; r=−0.573, p=0.015) and the 

https://dx.doi.org/10.1136/gpsych-2023-101112
https://dx.doi.org/10.1136/gpsych-2023-101112
https://dx.doi.org/10.1136/gpsych-2023-101112
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Figure 2 Comparison of the clusters of synaptic changes by 18F- SynVesT- 1 PET with patients with IGD versus HCs was 
performed in (A) render view and (B) slice view (p<0.001 with cluster thresholding, k=50 voxels). Voxels with significantly low 
uptake are shown in red. 18F- SynVesT- 1, 18F- labelled difluoro- analogue of UCB- J; HCs, healthy controls; IGD, internet gaming 
disorder; PET, positron emission tomography.

right putamen (r=−0.479, p=0.044; r=−0.479, p=0.010) 
were observed in patients with IGD (figure 4). SSRTs were 
negatively correlated with the SUVR of 18F- SynVesT- 1 in 

the right pregenual ACC (r=−0.573, p=0.013) and the 
right Rolandic operculum (r=−0.527, p=0.025). There 
were no associations between SV2A availability and 
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Figure 3 Voxel- wise analysis results of group comparison with 18F- SynVesT- 1 SUVR in IGD and HCs using a two- sample t- test 
(**p<0.001). 18F- SynVesT- 1,18F- labelled difluoro- analogue of UCB- J; ACC, anterior cingulate cortex; HC, healthy control; IGD, 
internet gaming disorder; SUVR, standardised uptake value ratio.

frequency of IG usage, BIS- 11 subscales and total scores, 
accuracies for WR, CN and CW, and IS scores for SCWT.

dISCuSSIon
Main findings
To the best of our knowledge, this is the first study to measure 
SV2A synaptic density using SV2A in IGD in vivo. Using the 
new radiotracer (18F- SynVesT- 1), patients with IGD had signif-
icant reductions in synaptic density compared with HCs in 
three prespecified brain areas: right ACC, bilateral putamen 
and right Rolandic operculum. Lower synaptic density in 
the bilateral putamen, which is part of the reward system, is 
correlated with the severity of IGD. Moreover, a correlation 
between worse inhibitory control and lower synaptic density 
in the right ACC and Rolandic operculum was found in the 
IGD group. Therefore, the pattern of associations between 
altered synaptic integrity and behavioural measures of IGD 
suggests that such alterations may be disorder- specific and 
a potentially novel candidate for a brain- based functional 
biomarker of this disorder.

The findings of this study add to the evidence indicating 
that synaptic density changes occur in addictive disorders. 
To date, a relationship between synaptic density and addic-
tive behaviour has been demonstrated only in substance use 
disorder (SUD). Two recent studies using 11C- UCB- J PET 
found lower levels of the synaptic terminal protein SV2A in 
the frontal and temporal cortices of patients with cocaine 
and cannabis use disorders.14 15 Based on the above research, 
we believe that IGD and SUDs likely share at least a subset 
of similar underlying neurobiological mechanisms. Further-
more, results from recent studies suggest that reduced metab-
olism, volume and synaptic deficits in brain regions involved 
in executive function, reward- related processing, decision- 
making and impulse inhibition occur in these disorders, 
according to in vivo PET11 37 and functional MRI studies,38–40 
which is in line with our findings.

Consistent with our hypothesis, lower SV2A availability in 
reward circuit- related brain regions was found in patients 
with IGD. The putamen, along with the globus pallidus, forms 
the lentiform nucleus; it and the caudate nucleus compose 
the striatum, a subcortical limbic structure. The putamen 
is involved in reward- related processing and the develop-
ment of addiction.41 42 In addition, the ACC, particularly the 
pregenual component, and the adjacent medial prefrontal 
cortex have been implicated in the craving processes related 
to cocaine and gambling.43 The cingulate gyrus is part of 
the limbic system, which activates in response to addiction- 
related cues, resulting in immediate, strong emotional reac-
tions. Studies assessing reward processing in individuals with 
IGD have shown reduced putamen functional connectivity 
of the putamen with the posterior insula- parietal oper-
culum44 and decreased bidirectional interactions between 
the putamen and ACC.45 A PET study using 11C- raclopride 
found that striatal dopamine release is reduced in subjects 
with internet addiction.46 Another 18F- fluoro- 2- deoxyglucose 
PET study reported that the regional cerebral metabolic rate 
of glucose in the right ACC was associated with the severity 
of IGD.47 Notably, a longitudinal study of recovered subjects 
with IGD showed increased ACC lentiform connectivity at 
1 year relative to onset.45 Together with our observations, 
these results suggest that patients with IGD exhibit hypome-
tabolism, synaptic loss and lower connectivity in the ACC and 
putamen.

In addition, we also found significant reductions in 
synaptic density in the right Rolandic operculum (ie, 
postcentral operculum) in patients with IGD compared 
with the HCs. The Rolandic operculum is implicated 
in the semantic processing of language, emotional 
processing of facial expressions, sensorimotor integration 
and bodily self- consciousness. Our result is consistent 
with those of previous voxel- based morphometry studies 
showing decreased grey matter volume in the bilateral 
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Figure 4 Significant relationships between synaptic density with severity of IGD and inhibitory control in subjects with IGD. 
The SUVR of 18F- SynVesT- 1 PET was negatively correlated with IGDS9- SF and daily gaming hours in the bilateral putamen 
(A and B) and also negatively correlated with SSRT in the right pregenual ACC and right Rolandic operculum (C and D). 18F- 
SynVesT- 1, 18F- labelled difluoro- analogue of UCB- J; ACC, anterior cingulate cortex; IGD, internet gaming disorder; IGDS9- SF, 
Internet Gaming Disorder Scale- Short Form; SSRT, stop- signal reaction time; SUVR, standardised uptake value ratio.



9Hou J, et al. General Psychiatry 2023;36:e101112. doi:10.1136/gpsych-2023-101112

General Psychiatry

Rolandic operculum in individuals with addiction- related 
disorders compared with HCs (p<0.005).48 Resting- state 
functional MRI data from subjects with IGD revealed 
lower static functional connectivity between the dorso-
lateral prefrontal cortex and the Rolandic operculum.49 
However, the exact mechanism of Rolandic operculum 
abnormalities in IGD remains unclear, and more research 
is needed to explain this in the future.

Similar to those with SUD, patients with IGD might display 
faulty inhibitory control mechanisms. Consistent with find-
ings in this field,50–52 we observed greater impulsivity and 
worse performance on the gaming working memory task, 
attentional inhibition and prepotent motor inhibitory 
control in patients with IGD than in HCs. Regarding the 
effect of synaptic density on SST performance, decreased 
synaptic density of the right pregenual ACC and right 
Rolandic operculum was associated with a more negative 
SSRT change. Previous work has established that lower activa-
tion in the ACC19 53 and Rolandic operculum54 is associated 
with worse behavioural inhibition and execution (longer Go 
RTs and SSRTs). Additionally, we also demonstrated that the 
severity of IGD was associated with synaptic density changes 
in the putamen, providing a possible molecular explanation 
for synaptic density alterations that may underlie behavioural 
and cognitive impairments in IGD. This hypothesis needs to 
be evaluated with further studies exploring the longitudinal 
trajectories of these measures and investigating the synap-
togenic effects of interventions, such as transcranial direct 
current stimulation,55 cognitive–behavioural therapy, family 
therapy or electronic- based intervention,56 to reduce cravings 
and promote recovery in patients with IGD.

Limitations
Several limitations of this study should be noted. First, 
although the sample size of this study was appropriate for 
the standards of previous similar PET/CT studies,14–16 57 
it was relatively small. Therefore, the presence of false- 
negative results in the frontal and temporal lobes cannot 
be ruled out. We readily acknowledge that this is a prelim-
inary analysis, and replication in a larger sample is needed 
to support our interpretations. Second, this is a cross- 
sectional study. Therefore, we cannot determine whether 
the lower synaptic density in patients with IGD represents 
a cause or a consequence of IGD. Further longitudinal 
investigations measuring synaptic density after a period of 
gaming abstinence could help to determine whether the 
lower synaptic density increases after withdrawal, enabling 
us to better understand the relationship between synaptic 
density changes and the course of IGD.

Implications
To the best of our knowledge, this study is the first to 
provide in vivo evidence of synaptic alterations in patients 
with IGD using 18F- SynVesT- 1- PET imaging. This inves-
tigation provided intriguing preliminary translational 
support for relatively low uptake distribution in the right 
ACC, bilateral putamen and right Rolandic operculum 
in patients with IGD compared with HCs. These findings 

also imply that the synaptic deficits in these regions are 
closely linked to the severity of addiction and impair-
ment of inhibitory control in IGD, although further 
work is needed to clarify the nature of this association. 
Such work can advance our understanding of the role of 
synaptic function in IGD and identify more effective and 
novel treatment approaches based on synapse- related 
mechanisms.
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