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Abstract: Primary liver cancer is an aggressive, lethal malignancy that ranks as the fourth leading
cause of cancer-related death worldwide. Its 5-year mortality rate is estimated to be more than
95%. This significant low survival rate is due to poor diagnosis, which can be referred to as the
lack of sufficient and early-stage detection methods. Many liver cancer-associated non-coding
RNAs (ncRNAs) have been extensively examined to serve as promising biomarkers for precise
diagnostics, prognostics, and the evaluation of the therapeutic progress. For the simple, rapid,
and selective ncRNA detection, various nanomaterial-enhanced biosensors have been developed
based on electrochemical, optical, and electromechanical detection methods. This review presents
ncRNAs as the potential biomarkers for the early-stage diagnosis of liver cancer. Moreover, a
comprehensive overview of recent developments in nanobiosensors for liver cancer-related ncRNA
detection is provided.

Keywords: liver cancer; non-coding RNAs (ncRNAs); biosensors; electrochemical; optical; electrome-
chanical; nanomaterials

1. Introduction

Cancer is the most common cause of death worldwide. According to the global
cancer data in 2018, the universal burden of cancer has risen to 18.1 million new cases
and 9.6 million cancer-related deaths. Primary liver cancer is anticipated to be the sixth
most commonly diagnosed cancer and also the fourth leading cause of cancer mortality
worldwide, with an estimated 841,000 new cases and 782,000 deaths, which is the high-
est mortality rate due to cancer [1,2]. Hepatocellular carcinoma (HCC) and intrahepatic
cholangiocarcinoma (ICC) are the two major histological types of liver cancer. However, the
overall liver cancer rate is greatly specified by HCC, as it comprises about 75% of all liver
cancer incidences, in comparison to 15% for ICC [3,4]. Chronic infections with hepatitis
B virus (HBV) and hepatitis C virus (HCV), non-alcoholic fatty liver disease (NAFLD),
as well as exposure to aflatoxin, alcohol, obesity, diabetes, cirrhosis, and lipid blood are
the main risk factors for liver cancer [5–12]. Unfortunately, detection of liver tumors by
a physical exam is difficult, as the right rib cage covers most of the liver. Additionally,
liver carcinogenesis is a long-term process and shows no specific symptoms until its later
stages. Therefore, most liver tumors are detected at an advanced stage, resulting in a poor
5-year survival rate [13–15]. Conventional examination tools for liver tumor diagnostics
are computed tomography (CT), ultrasonography (US), magnetic resonance imaging (MRI),
and biopsy. These methods suffer from some limitations, such as being expensive, being
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operator-dependent, and having poor sensitivity, as well as requiring contrast agents to de-
tect small tumor cells, which in most cases are accompanied by various side effects [16–18].
Therefore, there is an urgent need to develop sensitive, selective, relatively low-cost and
simple analytical techniques for the early diagnosis of liver cancer. In the last several years,
the detection and analysis of cancer biomarkers have been established as an effective cancer
screening tool in diagnosis, prognosis, and treatment. Biomarkers are biomolecules in
humans’ tissues and body fluids whose levels change with the development of abnormal
conditions and various diseases, such as cancers [19]. Most recent research has been dedi-
cated to identifying biomarkers, including proteins, nucleic acids, and metabolites, with
the approach of enabling liver cancer diagnosis through serological testing [20–22].

Recently, various databases have been developed to address experimentally validated
and reliable liver cancer-related biomarkers such as cBioPortal [23], BioXpress [24], On-
coMX [25], and CancerLivER [26]. Accordingly, different types of biomarkers have been
studied and identified in the early or late stages of HCC, including peptides, glycopro-
teins, enzymes, and RNAs, which can be obtained from the liver tissue and blood serum
of HCC patients [21]. The most utilized pathological biomarker for HCC screening is
alpha-fetoprotein (AFP) [27] which has several limitations, such as having high levels
in liver cirrhosis and hepatitis, low sensitivity, and poor selectivity at an early stage of
disease [28,29]. Therefore, AFP alone is not subjected to HCC detection guidelines.

The RNAs are classified into two classes: coding RNAs (cRNAs), which are translated
into proteins, and non-protein coding RNAs (ncRNAs). Despite the fact that ncRNAs
do not encode for proteins, they are recognized as a new and distinct class of cancer
biomarkers acting as cellular regulators [30,31]. They play a remarkable role as a regulator
in a variety of biological and cellular processes. Commonly, their expression levels vary in
the blood serum and other body fluids of liver cancer patients [32]. ncRNAs are opening an
excellent era for bringing precious diagnostic information into clinical practice and showing
significant potential as an efficient biomarker for sensitive, specific, and noninvasive liver
cancer detection at an early stage [33,34].

Till now, many different methods have been developed for ncRNA detection, such as
northern blotting [35], microarray [36], and reverse transcriptase quantitative polymerase
chain reaction (RT-qPCR) [37]. Despite the acceptable analytical performance of these
techniques, they possess critical drawbacks, such as being time-consuming and requiring a
large volume of sample and expensive instrumentation. Therefore, the development of new
platforms is crucially required, integrating ncRNA screening in routine point-of-care diag-
nostics. Over the last few years, several biosensing concepts and related biosensor-based
techniques have been developed to detect specific biomarkers such as ncRNAs [38,39].
Furthermore, intelligent integration of nanomaterials into biosensor structure leads to
enhanced bioassay signals, sensitivity, and selectivity with higher accuracy and preci-
sion [40,41]. Electrochemical, optical, and electromechanical-based biosensors have been
extensively utilized for liver cancer-related ncRNA detection to diagnose the cancer at an
early stage [42].

In this review, we focus on ncRNAs as the potential biomarkers contributing to the ma-
jor histological types of liver cancer, specifically HCC. An overview of the recent advances
in the development of biosensors for liver cancer-related ncRNA detection with a special
focus on electrochemical, optical, and electromechanical biosensors is provided. Further,
the role of nanomaterials in the biosensing performance of the developed biosensors is
highlighted. Figure 1 summarizes liver cancer-associated incidence causes, biomarkers and
detection methods.
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2. Liver Cancer-Related Noncoding RNAs

According to the transcript length of ncRNAs, they are classified into two main classes:
short ncRNAs (sncRNAs), containing less than 200 nucleotides, and long ncRNAs (lncR-
NAs), having more than 200 nucleotides [43], which are unable to encode proteins [44,45].
The most extensively studied sncRNA molecules (containing 18–25 nucleotides) are micro-
RNAs (miRNAs), PiWi-interacting RNAs (piRNAs), small-interfering RNAs (siRNAs),
ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNAs (snRNAs) [46–50].
They play a significant role in various cellular processes and biological activities. They are
involved in transcriptional and post-transcriptional regulation of protein-coding genes.
Therefore, any malfunction, which affects the biogenesis pathway of sncRNAs, is strongly
associated with malignant transformation, making them key contributors to tumor ini-
tiation, metastasis promotion, and disease progression. It is proven that ncRNAs have
exceptional stability in clinical samples of plasma and serum which led to their rapid ascent
as a novel class of biomarkers for several diseases, including cancers [51]. Among ncRNAs,
most studies have been dedicated to miRNAs, as they are involved in various biological
processes which underlie liver tumor formation [52]. In other words, the abnormal expres-
sion pattern of miRNA has contributed to liver cancer initiation and progression [52,53].
They may act either as oncogenes or tumor suppressors [54], can be extracted easily from
tissues, plasma, serum, urine, and feces, and have a great potential as prognostic and thera-
peutic tools for HCC. Shi et al. validated the most HCC-associated miRNA dysregulation
in a clinical setting [55]. According to their study, miR-93-5p, miR-224-5p, miR-221-3p,
and miR-21-5p were up-regulated and miR-214-3p, miR-199a-3p, miR-195-5p, miR-150-
5p, and miR-145-5p were down-regulated in HCC tissues. A study was performed by
Zekri et al. [56] on serum miRNA panels as potential biomarkers for early detection of HCC,
on top of HCV infection between HCC patients with liver cirrhosis (LC), chronic hepatitis C
(CHC), and control cases. It showed that miR-122 and miR-885-5p were common miRNAs
in the early detection of HCC in (LC) and control groups. According to a recent study by
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Yamamoto et al. [44], the accurate early-stage detection of HCC through an eight-miRNA
panel comprising miR-320b, miR-663a, miR-4448, miR-4651, miR-4749-5p, miR-6724-5p,
miR-6877-5p, and miR-6885-5p utilizing patient serum samples is enabled. The diagnosis
of eight serum miRNAs gave >97% sensitivity and >94% specificity in the early-stage HCC
detection. Some of the most relevant miRNAs which have been used for the development
of early-stage liver cancer biosensors are summarized in Table 1.

Additionally, lncRNAs are significantly involved in various cellular processes such
as gene transcription [57]. They have been reported to be overexpressed and proposed as
biomarkers in a high number of cancers [58], as well as in liver cancer [59]. Overexpression
can lead to the upregulation of lncRNAs, which raises a series of cancerous phenotypes such
as elevated stemness, abnormal metabolism, and metastasis, leading to the progression
of HCC. For example, lncRNA-WRAP53 in serum is an independent prognostic marker
for predicting a high relapse rate in HCC patients. lncRNAs are also able to modulate the
expression of non-protein-coding genes such as microRNAs. In this aspect, lncRNA H19 has
been shown to inhibit HCC metastasis through activating the miR-200 family by increasing
histone acetylation [60,61]. Inversely, highly up-regulated long non-coding RNA (HULC)
remarkably up-regulates in liver cancer and promotes the tumorigenesis and metastasis
of HCC via enhancing the epithelial–mesenchymal transition (EMT) progress in the miR-
200a-3p/ZEB1 signaling pathway [62]. The exact manner is reported for linc-ROR [63],
lncRNA-MUF [64], and lncRNA MALAT1 [65]. According to a study by Braconi et al., the
lncRNA MEG3 and microRNA 29a can form a reciprocal regulatory loop in hepatocellular
cancer [66].

Table 1. Sequences for miRNAs probes contributed to liver cancer.

miRNA Sequence (5′ to 3′) References

miRNA-122 UGGAGUGUGACAAUGGUGUUUG [67–70]
miRNA-148b GCCTGAGTGTATAACAGAACTT [70]
miRNA-192 GGCTGTCAATTCATAGGTCAG [70]

miRNA-Let7a UGAGGUAGUAGGUUGUAUAGUU [71,72]
miRNA-21 UAGCUUAUCAGACUGAUGUUGA [73]

miRNA-199a ACAGUAGUCUGCACAUUGGUUA [74]
miRNA-223 UGUCAGUUUGUCAAAUACCCC [75]

miRNA-125-b UCCCUGAGACCCUAACUUGUGA [76]

Regarding the important role of lncRNAs, they can serve as potential HCC biomarkers
with high sensitivity, alone or in combination with other molecules in order to improve
specificity. It is to be noted that lncRNA HULC [77] and homeobox (HOX) transcript
antisense intergenic RNA (HOTAIR) [78,79] are favorable noninvasive biomarkers which
have been utilized in the fabrication of biosensors for the early detection of HCC.

3. Other Biomarkers Related to Liver Cancer

As mentioned, the standard and the most commonly used biomarker for patients
at risk of liver cancer, especially HCC, is AFP [80]. It has been shown that AFP shows
a sensitivity of about 41–65%, with a specificity of 80–94% for HCC detection when a
cut-off value of 20 ng/mL is used [28]. However, AFP alone is not subjected to liver
cancer detection guidelines, as a high amount of AFP is also detected in the serum of
patients with cirrhosis, HBV, and HCV [33]. Besides ncRNAs and AFP, a large number of
serum-based proteins have been used as potential predictive biomarkers including: Des-
gamma carboxyprothrombin (DCP) [81], Osteopontin [82], Midkine (MDK) [83], Dikkopf-1
(DKK1) [84], Glypican-3 (GPC-3) [85], Alpha-1 fucosidase (AFU) [86], Golgi protein-73 (GP-
73) [87], and lens culinaris agglutinin-reactive fraction of alpha-fetoprotein (AFP-L3%) [88].
A recent study by Shen et al. indicates that serum DKK1 could enhance the diagnostic
accuracy of HCC better than AFP [84]. According to this study, Serum DKK1 was able to
distinguish HCC from chronic liver and also detect HCC in early-stage patients having
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normal AFP levels. However, most of these proteins have not shown superiority over AFP.
To address this deficiency of protein biomarkers for liver cancer detection, a combination
of markers (i.e., AFP, osteopontin, and DKK1) has been shown to make improvements
in the sensitivity and specificity of HCC diagnosis [82]. Carr et al. [88] revealed that the
HCC detection rate could almost be increased to 85.9% by combination detection of DCP,
AFP, and AFP-L3%. In addition to serum-associated biomarkers, tissue biomarkers can
function as appropriate targets for early diagnosis and development of antimetastatic
vaccines/drugs. The most highlighted tissue biomarkers for HCC and ICC are Glypican-3
(GPC-3) [89], Hepatocyte paraffin 1 (Hep Par 1) [90] and Heat shock protein 70 (HSP70) [91].

In order to enhance the specificity and sensitivity of biosensors, multi-marker detection
has been shown to be a powerful method for early liver cancer diagnosis. Due to the ultra-
low concentration of miRNAs in patient samples, the simultaneous detection of miRNA
and a protein biomarker shows great promise to achieve more sensitive and selective liver
cancer diagnostic methods. In this regard, Cheng et al. [92] developed an ultrasensitive
sensing strategy for liver cancer detection utilizing a combination of microRNA-223 and
AFP as efficient HCC biomarkers. Remarkably, this strategy demonstrated the poten-
tial applications in clinical settings. Yu et al. [76] introduced a multi-marker diagnosis
method for early HCC detection based on surface plasmon resonance (SPR) using AFP
and miRNA-125b. The proposed platform showed a clinical detection range of AFP and
miRNA-125b with concentrations lower than 200 pM. However, this method was unable to
distinguish HCC from ICC. To address this issue, Zhu et al. [93] developed a frequency
shift Raman-based sensing (SERS) method which responses three important challenges
of liver cancer diagnostics: multiplex serum miRNA quantification for early-stage HCC
detection; simultaneous quantification of serum miRNA and AFP in HCC patients; and
quantification of serum miRNA for discrimination between HCC and ICC. They could
detect miR-26a-5p, miR-223, and AFP simultaneously. They offered a cheap and accurate
approach towards multiplex assaying of serum microRNAs for the early detection and
discrimination of primary liver cancers.

4. Biosensors for Liver Cancer-Related ncRNA Detection

The field of DNA nanotechnology has shown a remarkable impact on biomedicine,
cancer research, diagnosis, and, in particular, biosensing. It has provided a versatile
promising platform in the creation of novel ncRNA biosensors [94] through sub-picomolar-
specific biomarker detection [95]. Regarding the key role of ncRNAs in the early detection
of cancers and diseases, several DNA-based biosensing tools have been developed and
reviewed [96–99]. The biosensor must have the ability to convert a specific biological
recognition event into a measurable signal. In principle, biosensor systems based on
nucleotide sequence base pairing measure nucleic acid hybridization events on the surface
of the transducer [100], which is related to the analyte concentration. Blake et al. conducted
a comprehensive review on biosensors for microRNA detection, emphasizing various
sensing techniques and DNA-based biosensor principles [101]. Further, extensive efforts
have been devoted to designing biosensors for the simultaneous detection of multiple
biomarkers [102,103]. In a recent study, Mao et al. [104] reviewed the isothermal nucleic
acid signal amplification strategies towards HCC-associated miRNA detection. Briefly, this
signal amplification approach will result in a remarkable enhancement of the detection
sensitivity of HCC-associated miRNAs. These studies are concerned with the possibility
of applying the detection strategies in clinical practice, designing point-of-care devices
for analysis of HCC-associated miRNAs, and simultaneous analysis of multiple HCC-
related miRNAs or multiple groups of samples to achieve an accurate and fast diagnosis of
HCC. As of yet, the most widely used DNA-based biosensors for the detection of cancer-
related biomarkers use electrochemical, optical, and electromechanical (mass, surface stress,
resonance) transducers depending on the type of biological response.
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4.1. Electrochemical Biosensors

Among various DNA-based biosensors, electrochemical biosensors offer an excellent
promise for biomarker detection because of their attractive advantages such as simplicity,
speed, low cost, and the possibility of miniaturization [105]. The basic working principle
of most electrochemical DNA biosensors is depicted in Figure 2.
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Figure 2. Schematic of various steps of miRNA biosensor fabrication including: surface functional-
ization of electrodes such as screen printed electrode (SPE), glassy carbon electrode (GCE), carbon
paste electrode (CPE), or indium tin oxide electrode (ITO); immobilization of ss-DNA and further
hybridization with complementary miRNA; and signal analysis through electrochemical methods
(differential pulse voltammetry (DPV), cyclic voltammetry (CV), Chronoamperometry, and electro-
chemical impedance spectroscopy (EIS)).

An important factor in the design of DNA-based biosensors is the immobilization
of the nucleic acid probe onto the transducer surface, which affects the overall biosensor
performances, such as sensitivity, selectivity, and reproducibility [106]. Two essential meth-
ods of DNA hybridization detection are label-free and label-based approaches (Figure 3).
Most of the label-free electrochemical DNA detections are based on the changes in the
redox properties of guanine and adenine in the structure of the DNA backbone. The basic
principle of label-free electrochemical DNA detection is based on the interaction of guanine
and adenine groups of DNA probes with its complementary thymine and cytosine bases of
the target during hybridization, which can cause changes in the number of free guanine
or adenine moieties available to sustain redox activities [107–111]. In a labeled approach,
each of the capture or target probes could carry an electroactive label, for instance, an
enzyme [112,113], nanoparticle [114–116], or an active redox indicator, such as methylene
blue (MB), ferrocene (FC), etc. [38,117,118] A DNA hybridization event is detected through
changes in electrochemical behavior or the redox activity of electroactive labels [106].
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Advancements in nanotechnologies and the use of new nanomaterials such as car-
bon nanotubes (CNTs) [119], graphene (G) [120], metal nanoparticles [121], nanocompos-
ites [122], etc. as immobilization matrices in DNA-based biosensors have enabled the
design of highly sensitive and specific sensing platforms, making them attractive for the
detection of ncRNA cancer biomarkers [123].

Recently, a great number of nanobiosensors have been developed in order to detect
liver disorders at an early stage and also for making therapeutic decisions. As a reliable
and valid biomarker for the early-stage diagnosis of liver cancer, many studies have been
dedicated to improving the sensitive and selective detection of miRNA-122. For the first
time, Lusi et al. [124] proposed a label-free electrochemical biosensor for sub-picomolar
miRNA-122 detection with high specificity and a limit of detection (LOD) of 0.1 pM. The
detection principle was based on guanine oxidation consequent to the formation of a
hybrid between the miRNA and its inosine substitute capture probe immobilized on the
surface of the screen-printed electrode (SPE). Oxidation of guanine during the hybridization
event generates an electrical signal on the electrode surface, which is related to analyte
concentration (Figure 4). Undeniably, this study opened a way towards tissue-specific
miRNA detection. In order to apply miRNA-122 detection to the clinical level and also
lower the assay time, Kilic et al. [125] designed a simple and reproducible biosensor based
on G-modified pencil graphite electrodes (PGEs) for miRNA-122 detection in an RNA
sample isolated from HUH-7 cell lines of HCC without any need for pre-concentration
or purification. In this study, exploiting the oxidation of the guanine signal, the LOD of
1.06 pM for miRNA-122 was achieved. A significant advantage of this study was decreasing
the immobilization and hybridization period to 30 min compared with previously reported
biosensors [124].
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Efforts for designing a sensitive electrochemical biosensor for miRNA-21 detection
continued with high interest in utilizing G in different forms or composites as a platform for
biological fragment immobilization. G and its related derivatives, such as graphene oxide
(GO) and reduced graphene oxide (rGO), have been some of the most popular choices in the
field of biosensors due to their superior electrical, mechanical, and thermal properties [126].
On the other hand, metal nanoparticles (NPs) have been widely used as powerful signal
indicators and effective electrode modifiers in DNA biosensors because of their unique
characteristics, including small size, high surface-to-bulk ratio, and interesting optical,
electric, and catalytic properties [127]. The combination of G, GO, or rGO and metal NPs
makes new ways of designing hybrid materials for electrochemical biosensing applications.
In this regard, Kasturi et al. [67] proposed a highly sensitive and selective electrochemical
DNA biosensor based on rGO/gold nanoparticles (AuNPs) for the detection of miRNA-
122. The coated gold electrode with rGO/AuNP nanocomposites showed a remarkable
capability for miRNA-122 detection with a wide linear range and enhanced sensitivity
as low as 1.73 pM. Eco-friendly synthesis of the rGO/AuNP nanocomposites, superior
electron transfer characteristics, as well as the large surface area could make it an efficient
material for the modification of electrode surfaces.

To enhance the sensitivity of miRNA-122 detection, Wang et al. [128] fabricated a
novel electrochemical miRNA biosensor based on direct growth of electroactive Prussian
blue (PB) on a GO-modified DNA electrode. The PB/GO-based electrochemical sensing
interface was fabricated via the assembly of GO on a DNA probe-modified gold electrode
through π-stacking, followed by in situ growth of highly electroactive PB on GO through
incubation in Fe3+ and Fe(CN)6

4− solution. Upon addition of miRNA-122 to the modified
electrode, due to the weak affinity of GO with the DNA/RNA hybrid rather than a single-
stranded DNA probe, the GO/PB will depart from the electrode surface. Consequently, the
electrochemical response of PB at the electrode surface will be reduced, and the miRNA-122
can be monitored. The obtained well-defined electrochemical response, as well as the high
sensitivity of 1.5 fM towards miRNA-122 of designed biosensor, can be attributed to the
synergy of GO and PB in nano sizes. The composite of PB/GO possesses two functions, i.e.,
a discriminator for the probe DNA and the hybridized duplex and excellent electrochemical
output response. However, a very long DNA immobilization period of 24 h is a drawback
of this biosensor which does not meet the requirement for fast, real-time analysis.
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In another work, in order to improve the catalytic efficiency and sensitivity and
decrease the immobilization period to 3 h, a composite of Pt-Pd bimetallic nanodendrite/
nanoflower-like clusters (PtPd BND/BNF) on GO/Au NPs/horseradish peroxidase (HRP)
was designed for the detection of HULC in liver cancer [129]. The application of GO
provides more active sites for the higher loading of PtPd BND/BNF, which results in a
wide linear response to HULC in the concentration range of 0.001 to 1000 pM with an
impressive LOD of 0.247 fM. Due to the catalytic characteristic of PtPd and the catalytic
potentiation of the BND/BNF structure, PtPd/GO could enhance the catalytic efficiency
toward H2O2 in cooperation with HRP and achieve triple-catalysis (Pt, Pd, and HRP). As
efforts for screening liver cancer-related lncRNAs continued, Soda et al. [78] developed
an amplification-free electrochemical biosensor for lncRNA (HOTAIR) detection with a
profoundly LOD of 1.0 fM with excellent reproducibility (% RSD = < 5% for n = 3).

HOTAIR sequences extracted from designated cells and plasma samples and ovarian
cancer patients were magnetically purified and isolated. Applying avidin-biotin affinity,
streptavidin-coupled HRP was attached to biotinylated capture probes, followed by a
sandwich hybridization method in which the target HOTAIR hybridized with a screen-
printed gold electrode-modified second capture-probe. This event was monitored by
the amperometry technique utilizing the H2O2/HRP/hydroquinone (HQ) system. To
authorize this method for analyzing HOTAIR expression levels in patient samples, the
standard RT-qPCR method was employed. This highly proved assay could be used as a
low-cost and reliable platform in conventional clinical frameworks for screening cancer-
related lncRNAs.

Mohammadniai et al. [73] developed a novel sensing platform based on a three-way
joint (3WJ) miRNA structure, utilizing an MB-modified hairpin (H-MB) structure as one
leg to function as the sensing element and the other two legs hybridized with barcode
gold nanoparticles (MB/barG) as the signal amplifiers. The addition of miRNA-21 re-
sulted in opening the hairpin moiety and further hybridization with a DNA-modified gold
nanoflower/platinum electrode (GNF@Pt) to form the MB-3 sensor (Figure 5). A consider-
able LOD of 135 aM in a broad linear detection range from 1 µM to 500 aM for miRNA-21
as a liver cancer biomarker was reported. The amplified signal could be attributed to the
electrodeposition of Pt with a GNF structure generating a significant electron conductive
nanostructure with a high surface to volume ratio. Additionally, the addition of MB/barG
boosted the electrochemical signal of the MB by almost 230 times (MBG-3).
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Besides miRNA-122, miRNA-let 7a has also received lots of attention as a potential
biomarker of liver cancer in assembling the electrochemical biosensors [72]. In this regard,
a highly sensitive platform for miRNA-let 7a determination in hepatocellular carcinoma pa-
tients and hepatic cancerous cultured cell lines Huh7 and HepG2 has been developed [130].
The sensor was constructed of carbon paste (CP) modified with silver nanoparticles (Ag-
NPs) and extracted propolis (bee glue) (AgNP/P). Utilizing electrochemical impedance
spectroscopy (EIS), an LOD of 1 aM was reported in this study. To enhance the sensitivity
and LOD for miRNA-let 7a detection, Elhakim et al. [71] proposed a biosensor based on a
nanocomposite of chrysin, AuNPs, and CNTs. They could reduce the immobilization and
hybridization time to 30 min and quantify miRNA-let 7a in the zepto-molar level (zM). Fur-
thermore, the proposed biosensing assay was applied to determine miRNA-let 7a in serum
samples of HCC patients and hepatic cancerous cultured cell lines Huh7 and HepG2 with
satisfactory results. Zhang et al. [131] proposed a novel isothermal electrochemical biosen-
sor for the sensitive detection of miRNA-221 without using nanomaterials. The biosensor
was fabricated based on a combination of the target-catalyzed hairpin assembly (CHA) and
super sandwich amplification strategies. Based on the dual signal amplification strategies,
the proposed biosensor showed a superior selectivity and sensitivity towards miRNA-221
with a LOD of 0.6 pM. Moreover, this approach was utilized to monitor miRNA-221 in the
real sample, and the results were in striking agreement with those obtained using qRT-PCR.
Table 2 summarizes the specifications and LODs of various electrochemical biosensors
developed for liver cancer-related ncRNA detection.

Table 2. Summary of introduced electrochemical biosensors for liver cancer-related ncRNA detection.

Target Technique Sensor
Material Electrode IP 1 (h) HP 2 (h) LOD LR 3 References

miRNA-122

DPV rGO/AuNP Gold 12 1 1.73 pM 10 pM to 10 µM [67]
DPV PB/GO Gold 24 1 1.5 fM 10 fM to 10 nM [128]
DPV n.m. 4 SPE 1 1 1 pM 5 nM to 1 µM [124]
DPV Graphene PGE 0.5 0.5 1.06 pM 0.5 to 7 µg/ml [125]

miRNA let7a DPV CNT/Chrysin/
AuNPs CPE 0.5 0.5 1.0 zM 1 zM to 11 nM [71]

EIS AgNPs/P CPE n.a. 5 0.5 1 aM 1 aM to 1 µM [130]
miRNA-21 DPV Pt SPE n.a. n.a. 135 aM 500 aM to 1 µM [73]

miRNA-221 Amperometry n.m. Gold 3 Over night 0.6 pM 0 to 20 nM [131]
lncRNA
(HULC) CV

PtPd BND/
BNF@GO/
Au/HRP

GCE 6 3 3 0.247 fM 1 pM to 1 mM [129]

lncRNA
(HOTAIR) Amperometry n.m. SPE 1 2 1 fM 1 fM to 1 nM [78]

1 Immobilization period, 2 Hybridization period, 3 Linear range, 4 Not modified, 5 Not available, 6 Glassy carbon electrode.

4.2. Optical Biosensors

Optical biosensing strategies are novel classes of detection methods, which have
attracted increasing attention in bimolecular analysis, especially in cancer diagnostics and
therapy, as well as drug discovery technology [132–136]. The main advantages of optical
biosensing systems include cost-effectiveness, simplicity, rapid results, and avoiding the
use of radiochemical assays. Optical assays such as colorimetric, chemiluminescence, SERS,
and localize surface plasmon resonance (LSPR) biosensors are the most developed systems
in DNA biosensing [137–140] (Figure 6).

Unique properties of nanomaterials such as notably small sizes, unique optical proper-
ties, a high specific surface area, and versatile surface chemistry allow special interactions
with a variety of capture molecules. This enabled the development of a variety of plasmonic
applications on the basis of the colorimetric sensing, which is provided by metal nanopar-
ticles [141]. AuNPs are the mainly used nanomaterials in optical biosensors due to their
unique properties [142]. The color of AuNPs, less than 15 nm in diameter, appears red and
can be changed to purple or blue upon interparticle plasmon coupling [138]. Such a color
change can be observed by naked eyes and also used as signal output in colorimetric biosen-
sors for miRNA biomarkers. Considering the elegant color-forming feature of AuNPs and
the strong chelating capability between EDTA•2Na and Au3+ metal chelator-labeled signal
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amplification, a notably sensitive colorimetric assay was proposed for miRNA-21 detection
with a low LOD of 8.9 fM and excellent stability [143]. In this strategy, EDTA•2Na-labeled
oligonucleotides operated as the plasmonic signal supraregulator probe, and oligonu-
cleotides labeled SiO2 microparticles (SiO2MPs) were performed as detecting platforms.
In the presence of target miRNA-21, the EDTA•2Na-labeled oligonucleotide probes were
immobilized on the SiO2MPs platform through the sandwich structure. The assembled
sandwich biosensor could chelate Au3+ to regulate the generation of AuNPs, resulting in
colorimetric signals to measure the various miRNA-21 concentrations (Figure 7a).
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A dye-free colorimetric assay for miRNA-122 detection was developed by
Wang et al. [144] This method was based on duplex-specific nuclease (DSN)-assisted
signal amplification coupled to the AuNPs in which two processes were involved. First,
designation of a target-mediated probe by a DSN enzyme and probe-triggered AuNP
aggregation, which acts as a switch for signal output. Second, construction of the reaction
system consisting of a probe complex composed of two partly complementary DNA probes
and two sets of distinct oligonucleotide-modified AuNPs with sequences complementary
to a DNA probe in the probe complex. In the presence of complementary miRNA-122, the
probe complex was invaded, resulting in the miRNA-probe hybridization, acting as a sub-
strate of the DSN enzyme and releasing the other probe to link to the AuNPs. The proposed
method attained a detection of miR-122 in the range of 20 pM to 1 nM and a LOD of 16 pM.
Additionally, this detection assay was reported to discriminate single-base differences and
successfully applied to quantify miR-122 in cancerous cell lysates accurately.
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Several types of optical biosensors have been used for ncRNA detection. Among them,
the SPR biosensors have been shown to be incredibly efficient for the direct sensing of ncR-
NAs [142]. To enhance the sensitivity of optical biosensors, a wide variety of amplification
strategies have been employed such as (i) target recycling reaction [145], (ii) magnetosome
amplification method [146], and (iii) DNAzyme-based reaction [147]. These strategies
helped to reduce the LOD up to sub-pM levels. However, these methods are expensive,
complex, and require a longer measuring time. For instance, the standard SPR method
needs less than a few minutes of operation, while the addition of an amplification strategy
extends the read-out to 1 h. Sipova et al. [148] designed a rapid and label-free detection of
miRNA-122 utilizing portable SPR sensor technology and a DNA/RNA antibody-based
assay. They could detect the miRNA in less than 30 min at concentrations down to 2 pM,
just by introducing an antibody that recognizes and binds to the DNA/RNA hybrids.
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To improve the diagnostic sensitivity and specificity simultaneously, Yu et al. [76] de-
veloped a multi-marker SPR-based sensor by the immobilization of anti-AFP antibodies
and the DNA probes on the surface of the SPR sensor for the recognition of AFP and
miRNA-125b as combined HCC markers. They increased the sensitivity of the developed
sensor using the double antibody sandwich method (DASM) and S9.6 antibody enhanced
method. The results indicated that the AFP detection could meet the clinical detection
range (25–400 ng/mL), and the LOD of miRNA-125b reached 123 pM in serum. In another
attempt, a SERS biosensor was fabricated for the simultaneous detection of multiple liver
cancer-related microRNA biomarkers. A new strategy was explored for the synthesis of
nanogap-based SERS nanotags by coating AuNPs with thiolated DNA and nonfluorescent
small encoding molecules and a simple method for green synthesis of hollow silver micro-
spheres (Ag-HMSs) with bacteria as templates [75]. Based on the sandwich hybridization
assay, DNA-conjugated SERS nanotags as SERS nanoprobes and capture DNA-conjugated
Ag-HMSs as capture substrates were used for the simultaneous quantification of the three
liver cancer-related miRNAs (Figure 7b). Multiplexed assays successfully distinguished
three target miRNAs with a limit of detection in the pM range.

In recent years, electrochemiluminescence (ECL) has received much attention as
a promising tool for various biological sample detections due to extraordinary proper-
ties of low background, high sensitivity, and being user friendly [149]. Different types
of luminescence species have been applied in ECL, such as quantum dots (QDs) [150],
Ru(bpy)3

2+ [151], luminol [152] graphene quantum dots (GQDs) [153], and PtPd embed
GQD [154].

Benefiting from the combination of metal NPs with GQDs, Li et al. [77] proposed
an ultrasensitive sandwich-type ECL sensor based on the electrodeposited AuNPs as the
matrix and Au@Ag/GQDs as a signal indicator. Actually, due to the synergistic effect
between Au and AgNPs, Au@Ag core-shell nanoparticles presented a large specific surface
area, better catalysis, and superior electronic transmission capacity in comparison to the
individual Au or Ag NPs. On the other hand, Au@Ag core-shell NPs could promote the
ECL performance of GQDs, resulting in the highly sensitive detection of HULC with a
wide linear range from 1 fM to 5 nM with an extreme lower LOD of 0.3 fM.

4.3. Electromechanical Biosensors

Electromechanical biosensors [155–158] are interesting analytical devices that use the
basic principle of a response to a change in mass. They are label-free, highly sensitive,
and offer non-invasive disease screening, gene tests, and diagnostics. In comparison to
optical and electrochemical biosensors, electromechanical biosensors are highly sensitive to
minor mass changes and are also capable of detecting molecules that don’t have electrically
conducting property or optical signal [159,160]. Major sensing platforms are cantilever,
quartz crystal microbalance (QCM), and surface acoustic wave (SAW) [70,161,162].

A biosensor based on QCM technology is one of the most popular label-free biosensing
platforms for the detection and quantification of a wide range of biomolecules. Furthermore,
the high sensitivity and short detection process offered by QCM biosensing assays make
them attractive for the development of novel and disposable diagnostic tools [163–165].
QCM biosensors consist of a piezoelectric crystal (quartz) coated with a metal electrode and
their function is based on the change in frequency of the quartz in response to the adherence
of a target molecule. DNA probes can be immobilized on transducer surfaces via chemical
interaction or electrostatic adsorption onto cationic films utilizing the negatively charged
phosphate group on oligonucleotide single strands, Au–S or avidin/streptavidin-biotin
bonds [166]. The addition of a sample and the hybridization of DNA/RNA causes a mass
loading at the crystal surface and creates a frequency response. In a recent study, a QCM
biosensor was developed for the sensitive and specific detection of miRNA-21 [165]. First,
miRNA-21 was incubated with AuNP-conjugated single-stranded DNA containing the
complementary sequence of miRNA-21 and then introduced to a pyrene-functionalized
QCM sensor chip. Next, gold staining solution was added to the modified surface, resulting
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in the catalyzed deposition of metallic gold onto AuNPs captured on the chip surface
(Figure 8). Utilizing this strategy, an LOD of 3.6 pM in the linear range of 2.5 pM to
2.5 µM was obtained. Furthermore, this approach was able to detect miRNA-21 in the
total RNA extracted from the human brain and A549 cell line. Therefore, this assay
might have potential as an alternative in clinical diagnosis. Huang et al. [167] studied
the development of the QCM-based immunosensor for detecting AFP. They pointed out
a high mass sensitivity (0.299 Hz/ng mL−1) and sensing linearity (99.23%) in a range of
10–40 ng/mL AFP concentration.
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In the past few years, cantilever-based biosensors have been shown to be the most
attractive candidate for practical application in the early diagnosis of cancers because
of their desirable characteristics such as simple batch fabrication, reliability, and cost-
effectiveness [155,158]. They can be operated in two different modes: static mode or
dynamic mode. The binding of the analyte generates a deflection or bending in the static-
mode and changes the resonant frequency in the dynamic-mode. Duffy et al. [70] reported
an automatic cantilever-based biosensor for non-invasive, rapid, and personalized miRNA
detection for liver cancer diagnostics (Figure 9). The proposed biosensor based on static
mode was able to detect miRNA-122, miRNA-148b, and miRNA-192 relevant to liver cancer
using only a few microliters of sample within one hour. Specific miRNA hybridization
to the upper cantilever surface induced a physical bending of the sensor, which could be
detected by controlling the position of a laser that reflects from the sensor’s surface. The
proposed platform may offer a new medical tool without the need to individually extend,
amplify, or label each target, allowing multi target analysis from one sample. Table 3 enlists
the specifications and LOD of various optical and electromechanical biosensors developed
for liver cancer-related ncRNA detection.
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Figure 9. Illustration of target binding on the cantilever array surface. Perspective is from inside the
fluidic chamber. The laser from the optical beam read out detection method is shown reflecting away
from a cantilever surface, out of the chamber, and towards the detector. Differential deflection (∆d)
arises between the in situ reference probes and target sensitive probes [70], reprinted with permission
from Royal Society of Chemistry.

Table 3. Summary of introduced optical and electromechanical biosensors for liver cancer-related ncRNA detection.

Target Technique Sensor Material LOD LR References

miRNA-122
SPR Antibody-based 2 pM 10 pM to 100 pM [148]

Colorimetric AuNP 16 pM 20 pM to 1 nM [144]
miRNA-21 Colorimetric SiO2MPs 8.9 fM 10 fM to 0.1 pM [143]

miRNA-125b SPR Antibody-based 123 pM 8 nM to 1000 pM [76]
miRNA-223 SERS AuNP >pM 10 pM to 10 nM [75]

lncRNA (HULC) ECL Au@Ag/GQDs 0.3 fM 1 fM to 1 nM [77]
miRNA-122

miRNA-148b
miRNA-192

Cantilever-based Pyrene n.a. 1 0 to 1 pM [70]

miRNA-21 QCM Ti 2/Au 3.6 fM 2.5 pM to 2.5 µM [165]
1 Not available, 2 Titanium.

SAW sensing platforms are alternative devices to QCM-based bioassays with higher
sensitivity and a higher operating frequency. SAW-based biosensors can detect the changes
in acoustic waves which are propagated at the surface of a piezoelectric substrate during
the mass loading process. Since their frequency ranges are from several hundred MHz to
GHz, they can record significantly small frequency shifts as a result of exceptionally small
mass loadings [168,169]. To the best of our knowledge, no SAW-based biosensor has been
reported to diagnose liver cancer-related miRNA biomarkers to date. The highly sensitive
SAW sensor designed for pancreatic cancer RNA biomarkers [170] can be utilized as an
appropriate pattern for designing such a sensor for the early detection of liver cancer.

A list of the abbreviations used in this review is provided in Table 4.
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Table 4. List of abbreviations used in this review.

Abbreviation Explanation Abbreviation Explanation

HCC Hepatocellular carcinoma CNTs Carbon nanotubes
ICC Intrahepatic cholangiocarcinoma G Graphene
HBV Hepatitis B virus LOD Limit of detection
HCV Hepatitis C virus LR Linear range

NAFLD Non-alcoholic fatty liver disease SPE Screen-printed electrode
CT Computed tomography PGEs Pencil graphite electrode
US Ultrasonography GO Graphene oxide

MRI Magnetic resonance imaging RGO Reduced graphene oxide
AFP Alpha-fetoprotein NPs Nanoparticles

mRNAS Messenger RNAs AuNPs Gold nanoparticles
ncRNAs Non-protein coding RNAs PB Prussian blue

sncRNAs Short ncRNAs BND/BNF Bimetallic
nanodendrites/nanoflower

piRNAs PiWi interacting RNAs HRP Horseradish peroxidase
siRNAs Small-interfering RNAs Pt Platinum
rRNA Ribosomal RN Pd Palladium
tRNA Transfer RNA HQ Hydroquinone

snRNAs Small nuclear RNAs 3WJ Three-way joint
lncRNAs Long ncRNAs H Hairpin
miRNAs Micro-RNAs GNF Gold nanoflower

RT-qPCR Reverse transcriptase quantitative
polymerase chain reaction AgNPs Silver nanoparticles

LC Liver cirrhosis P Propolis
CHC Chronic hepatitis C barG Barcode gold nanoparticles

HULC Highly up-regulated non-coding
RNA EIS Electrochemical impedance

spectroscopy
EMT Epithelial-mesenchymal transition CP Carbon paste
HOX Homeobox zm Zepto-molar

HOTAIR Transcript antisense intergenic RNA CHA Catalyzed hairpin assembly
DCP Des-gamma carboxyprothrombin LSPR Localize surface plasmon resonance
MDK Midkine SiO2MPs Silicon dioxide microparticles
DKK1 Dikkopf-1 DSN Duplex-specific nuclease
GPC-3 Glypican-3 DASM Double antibody sandwich method
AFU Alpha-1 fucosidase ECL Electrochemiluminescence

GP-73 Golgi protein-73 QDs Quantum dots

AFP-L3% Lens culinaris agglutinin-reactive
fraction of alpha-fetoprotein GQDs Graphene quantum dots

Hep Par 1 Hepatocyte paraffin 1 QCM Quartz crystal microbalance
HSP70 Heat shock protein 70 SAW Surface acoustic wave

SPR Surface plasmon resonance aa Ascorbic acid
SERS Shift Raman-based sensing FC Ferrocene
MB Methylene blue

5. Conclusions

The accurate determination of specific tumor biomarkers with non-invasive or min-
imally invasive procedures is the most promising approach to improve the long-term
survival of liver cancer patients and reduce the high incidence and mortality rate of this
disease. Among different types of biomarkers used for HCC diagnosis, ncRNAs are recog-
nized as a new and distinct class of cancer biomarkers for the early-stage detection of liver
cancer. Moreover, in certain cases a combination of several ncRNAs can help to overcome
the limitations such as low sensitivity and poor selectivity of other HCC biomarkers, such
as AFP. Regarding the key role of ncRNAs in the early detection of cancers and related dis-
eases, DNA-based biosensors offer a promising platform for ncRNA detection and present
various advantages, such as simplicity, reliability, and high sensitivity and selectivity. Due
to the low amount of ncRNAs in a real human cancerous sample at the early stage of liver
cancer, it is highly demanded to improve the sensitivity of related biosensors. To address
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this issue, various nanomaterials have been used to increase the sensitivity and selectivity
of biosensors. The ultrasensitivity and the specificity of liver cancer biosensors can also
be improved by detecting multiple relevant liver cancer biomarkers simultaneously and
exploiting signal amplification strategies. Among the various DNA-based biosensors for
ncRNA detection, much effort has been devoted to developing electrochemical biosensors.
However, despite progress, just a few studies on developing biosensing platforms for the
detection of ncRNA as an early-stage biomarker for cancers, particularly HCC, have been
reported. So, we envision that the integration of nanomaterials with extraordinary features
into the biosensing system for multi-biomarker detection provides an early and rapid
diagnosis method and offers the opportunity to fabricate disposable point-of-care devices.
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