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Abstract: The effectiveness of magnetic resonance imaging for diagnosing lateral epicondylitis
severity is controversial. We aimed to verify whether individual evaluations of the common extensor
tendon and lateral collateral ligament would improve the severity diagnostic accuracy of magnetic
resonance imaging for lateral epicondylitis. We obtained coronal images of the lateral elbow in three
groups: healthy, clinically mild, and clinically severe. We used our scoring system for evaluation
using combined and individual methods. We developed the receiver operating characteristic curve
for diagnosis using the scores of the healthy and mild groups and that for severity diagnosis using
the scores of the mild and severe groups. The scores, in decreasing value, were those of the severe,
mild, and healthy groups, with a significant difference in both methods. The curve for diagnosis
showed an area under the curve of 0.85 for the combined evaluation and 0.89 for the individual
evaluation, without a significant difference between the methods (p = 0.23). The curve for severity
diagnosis showed an area under the curve of 0.69 for combined and 0.81 for individual evaluation,
with a significant difference between the methods (p = 0.046). Individual evaluation of the common
extensor tendon and lateral collateral ligament improved the severity diagnostic accuracy of lateral
epicondylitis.

Keywords: lateral epicondylitis; magnetic resonance imaging; severity diagnosis; diagnostic accuracy;
MRI; high-resolution MRI

1. Introduction

Lateral epicondylitis (LE) is tendinopathy of the common extensor tendon (CET) of
the forearm [1,2], with an estimated prevalence of 1.1–4.9% in the general population [3–6].
Recent studies reported that the lateral collateral ligament (LCL) of the elbow was also
injured along with the CET in LE [7–9].

Imaging studies can detect this degeneration and damage to the CET/LCL complex;
ultrasonography and magnetic resonance imaging (MRI) are used in daily examinations.
Ultrasonography depicts edematous changes and degeneration at the CET/LCL complex
as hypointense changes or thickening, with a sensitivity rate of 64% and specificity rate of
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82% [10]. However, the accuracy of ultrasonography depends on the examiner’s experience,
resulting in low inter-examiner reliability [11]. The true value of ultrasonography lies in
its simultaneous use in diagnosis and treatment, rather than its diagnostic ability alone.
Ultrasonography is used as an essential tool for LE in accurate injection therapy and
percutaneous needling [12–14].

Meanwhile, the validity of MRI for LE has been controversial. MRI of patients with
LE shows high-signal changes in the CET/LCL complex reflecting degeneration or rup-
ture [7,15,16]. Due to its excellent imaging quality, the inter-observer reliability is high [7,15].
However, the diagnosis of LE was based solely on physical examination findings [17,18].
MRI was only a supplemental examination for patients who had not responded to conserva-
tive treatment [1,17,19]. Although MRI is performed to diagnose pathogenesis and severity,
in addition, MRI reflects asymptomatic structural abnormalities and degeneration [20,21].
Because of this low specificity, some studies have reported a negative relationship between
MRI findings and clinical severity [22,23]. Conversely, more recent studies have reported
positively, as MRI resolution has improved [7,15]. Despite such conflicting results, compar-
ing the literature has proven difficult because there is no method for standard quantitative
evaluation. For example, some papers evaluate the CET and the LCL together [23], while
others evaluate them individually [7,15]. Furthermore, no studies have demonstrated the
clinical validity for their MRI scoring. As a clinical indicator for LE, the validity of MRI
remained unknown.

Based on these findings, we felt the need to demonstrate the clinical validity of MRI in
the diagnosis of LE. We hypothesized that individual evaluation of the CET and the LCL
would contribute to the accuracy of the assessment of severity. This study aimed to verify
this hypothesis using high-resolution MRI.

2. Materials and Methods
2.1. Study Design and Participants

The study protocol conforms to the principles outlined in the 1964 Declaration of
Helsinki. The study was approved by the institutional review boards of the institutions
involved in this study: Mito Kyodo General Hospital (Study Number: 16–25, approved 7
September 2016) and Takahagi Kyodo General Hospital (Study Number: 10, approved 3
March 2021). We obtained written informed consent from all participating patients.

This was a case–control study. The inclusion criteria were LE patients with high-
resolution MRI in our hospital and healthy adults without any history of elbow disorder.
Exclusion criteria were a history of elbow trauma, elbow osteoarthritis (Kellgren–Lawrence
classification 2 or higher), osteochondritis dissecans of the humeral capitellum, and rheuma-
toid arthritis. Our medical database identified 366 LE patients diagnosed from January 2013
to December 2020. We excluded 258 patients who did not undergo MRI, 7 patients with
inappropriate MRI, and 1 patient with rheumatoid arthritis. We reviewed the electronic
medical records of the remaining 100 candidates and classified them according to their
clinical severity at the time of MRI; patients with a Nirschl phase rating scale of III or IV [18]
were assigned to the clinically mild group (M group), and those with a score of V to VII
were assigned to the clinically severe group (S group). We included 100 LE patients, of
whom 41 constituted the M group and 59 the S group. Moreover, we included 30 volunteers
for the healthy group (H group). The volunteers were medical coworkers in our hospital,
and we selected them to match the LE patients in gender and age. The subjects comprised
a total of 130 cases (median age, 49 years; age range, 23–78; 64 males, 66 females) (Figure 1).
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We prescribed occupational therapy and elbow bands for all patients. Steroid injections 
were administered to patients, once extra-articularly and once intra-articularly, who did 
not respond to occupational therapy or orthotics. Some patients had received multiple 
steroid injections at their previous medical institutions. MRI was performed for patients 
who were refractory to the aforementioned conservative treatment for at least one month 
and had severe activity limitation due to pain, (i.e., Nirschl phase rating scale III or higher) 
[18]. 

2.2. MRI Protocol and Definition of the Structures 
We used a clinical 3.0-Tesla imager (Magnetom Symphony, SIEMENS, Munchen, 

Germany) with a small-diameter surface coil (Loop Flex Coil, SIEMENS) above the lateral 
epicondyle of the humerus. We placed the patients’ elbows in the center of the MRI scan-
ner, with the elbow extended beside the trunk, and the forearm supinated. We obtained a 
coronal section of the lateral aspect of the elbow under the following three sequences: T2*-
weighted images (T2*WI) using the gradient echo to evaluate synovial folds, proton-den-
sity-weighted images (PDWI) using the high-speed spin echo to recognize the morphol-
ogy of the CET/LCL complex attachment, and T2 fat-saturated weighted images (T2FSWI) 
to evaluate the severity of LE (Table 1). 
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Figure 1. Flow diagram of patients included in the study.

Two upper-extremity orthopedic surgeons with 23 and 28 years of experience, respec-
tively, made all clinical decisions for patients with LE. The diagnosis of LE was based on
physical findings, positive Thomsen tests or middle finger tests, and tenderness at the
lateral epicondyle [17,18,24]. Initially, we provided conservative treatment for all patients.
We prescribed occupational therapy and elbow bands for all patients. Steroid injections
were administered to patients, once extra-articularly and once intra-articularly, who did not
respond to occupational therapy or orthotics. Some patients had received multiple steroid
injections at their previous medical institutions. MRI was performed for patients who were
refractory to the aforementioned conservative treatment for at least one month and had
severe activity limitation due to pain, (i.e., Nirschl phase rating scale III or higher) [18].

2.2. MRI Protocol and Definition of the Structures

We used a clinical 3.0-Tesla imager (Magnetom Symphony, SIEMENS, Munchen,
Germany) with a small-diameter surface coil (Loop Flex Coil, SIEMENS) above the lateral
epicondyle of the humerus. We placed the patients’ elbows in the center of the MRI scanner,
with the elbow extended beside the trunk, and the forearm supinated. We obtained a
coronal section of the lateral aspect of the elbow under the following three sequences: T2*-
weighted images (T2*WI) using the gradient echo to evaluate synovial folds, proton-density-
weighted images (PDWI) using the high-speed spin echo to recognize the morphology of
the CET/LCL complex attachment, and T2 fat-saturated weighted images (T2FSWI) to
evaluate the severity of LE (Table 1).

Table 1. Imaging parameters.

Sequence T2*WI PDWI T2FSWI

Voxel size 0.2 × 0.2 × 1.5 0.2 × 0.2 × 1.5 0.2 × 0.2 × 1.5
Matrix 160 × 320 240 × 320 256 × 256
FOV 60 mm 60 mm 60 mm

Base resolution 320 320 256
Phase resolution 50% 50% 50%
Slice thickness 1.5 mm 1.5 mm 1.5 mm

TR 553.0 ms 553.0 ms 3000.0 ms
TE 24 ms 24 ms 94 ms

Bandwidth 180 Hz/Px 180 Hz/Px 145 Hz/Px
Flip angle 30 170 122

FOV: field-of-view, TR: repetition time, TE, echo time, T2*WI, T2*-weighted imaging; PDWI, proton-density-
weighted imaging; T2FSWI, T2 fat-saturated weighted imaging.
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Our protocol provided a clear and enlarged view of the lateral aspect of the elbow; we
could recognize the CET and the LCL as rather isolated structures. Furthermore, we used
bony landmarks to define the CET and the LCL independently (Figure 2) [25,26]. In the
coronal MRI images, we defined the CET as the structure attached to the superior tubercle
or the epicondylar ridge and the LCL as the structure attached to the intertubercular sulcus
or the inferior surface of the posterior tubercle.
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Figure 2. Consecutive MRI slices under PDWI of the unaffected lateral elbow (a) and corresponding
schemas (b). These schemas represent bony landmarks and the CET and the LCL in this study. * su-
perior tubercle; ** anterior tubercle; *** posterior tubercle; white arrow, intertubercular sulcus; black
arrow, epicondylar ridge; green area, CET; blue area, LCL; MRI, magnetic resonance imaging; PDWI,
proton-density-weighted imaging; CET, common extensor tendon; LCL, lateral collateral ligament.

2.3. MRI Scoring and Evaluation

We chose T2FSWI for MRI scoring because PDWI and T2*WI had short echo times and
may have overestimated the findings due to the magic-angle phenomenon (Figure 3) [27–29].
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Figure 3. Differences in signal intensity of the CET/LCL complex by sequence. The unaffected elbow
of a 32-year-old male. These images are same-level slices of the MRI coronal section in each sequence.
In this case, T2*WI shows a high signal at the CET/LCL complex despite a complete low signal in the
sequence of PDWI and T2FSWI. MRI, magnetic resonance imaging; T2*WI, T2*-weighted images;
PDWI, proton-density-weighted images; T2FSWI, T2 fat-saturated weighted images; CET, common
extensor tendon; LCL, lateral collateral ligament.

With reference to the previous literature [30,31], we created an MRI scoring scale
which evaluated the strength and extent of signal changes within a coronal section on
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a scale of 0 to 4. The region of interest for our MRI scoring was the CET and the LCL
between the articular surface of the radial head and lateral epicondyle of the humerus.
Using this MRI scoring, we performed two patterns of MRI evaluation. The combined
evaluation method evaluated the CET and the LCL together on a scale of 0–4. In contrast,
the individual evaluation method evaluated the CET and the LCL individually on a scale
of 0–4 and subsequently added the individual scores for a total score of 0–8 (Figure 4).

Two examiners independently assessed the images: an orthopedic surgeon (exam-
iner 1) and a hand surgeon (examiner 2) with 9 and 23 years of experience, respectively. The
examiners repeated the image analysis twice, with the second analysis being performed
one month after the initial analysis. In the MRI evaluation, a third person blinded any
clinical data and randomized the MR images.

2.4. Statistical Analysis

We adopted the values measured by examiner 1 for further analysis. We performed the
Shapiro–Wilk test for each evaluation item as a normality test, and none of them followed a
normal distribution.

We compared all of the groups’ collected variables, including clinical characteristics
and MRI scores. We used the chi-squared test for categorical variables, the Mann–Whitney
U test for continuous variables between two groups, and the Kruskal–Wallis test for com-
parison among three groups. When the Kruskal–Wallis test showed a significant difference,
we performed Scheffe’s multiple comparison procedure. In cases of missing data for clinical
characteristics, we replaced the data with the median scores of the other patients in the
same group.

We created the receiver operating characteristic curve (ROC curve) for the diagnosis
of LE from the MRI scoring of the H and M groups, and the ROC curve for the diagnosis of
severity from the M and S groups.

We used Fleiss’ kappa analysis to evaluate intra-observer and inter-observer reliability
for the entire MRI scoring process. The interpretation of the kappa coefficient was defined
as follows: 0.81–1.00 = excellent, 0.61–0.80 = good, and 0.41–0.60 = fair.

In principle, we set the level of statistical significance as p < 0.05. In performing the
chi-square test among three groups, we corrected the significance level with Bonferroni’s
method (i.e., p < 0.016).

We performed all statistical analyses using Bellcurve for Excel version 3.20 (SSRI Co.,
Tokyo, Japan).

2.5. Sample Size

Based on the previous studies [20,32], we predicted the area under curve (AUC) of
ROC curves for diagnosis to be 0.65 to 0.85. Subsequently, we calculated that with a sample
of 30 patients per group, the study would have an 80% power to create an ROC curve with
an AUC of 0.68 and a type I error of 5%. For the diagnosis of severity, we predicted the
AUC of ROC curves for severity diagnosis to be 0.6 to 0.8 [15]. We calculated that with
a sample of 98 patients, with 49 patients per group, the study would have 80% power to
create an ROC curve with an AUC of 0.6 and a type I error of 5%. From these results, we
collected 30 cases for the H group and a total of 100 cases for the M and S groups.
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Figure 4. MRI examples of each score and its corresponding schema. The scoring criteria are as
follows: (0) (normal), dark, linear low-signal structure without changes in signal intensity; (1) (mild
degeneration), thickening or mild signal change below the signal intensity of the muscle; (2) (localized
degeneration), high signal change above the signal intensity of the muscle, localized below 50% of
the evaluation range; (3a) (extensive degeneration), high signal change above the signal intensity of
the muscle, beyond 50% of the evaluation range; (3b) (partial tear), high signal change equivalent
to joint fluid, within 75% of the tendon or ligament width; (4) (extensive tear), high signal change
equivalent to joint fluid, more than 75% of the tendon or ligament’s width. The yellow area indicates
degeneration; * tear; MRI, magnetic resonance imaging. The blue dotted line surrounds the region of
interest for MRI scoring in each evaluation method. Black lines are auxiliary lines to determine the
evaluation area, which runs parallel to the articular surface of the radial head. † combined evaluation;
†† individual evaluation; yellow area, degeneration.
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3. Results
3.1. Demographic and Clinical Characteristics

Table 2 summarizes the demographic and clinical data of each group. There was no
significant difference in gender or age between the H, M, and S groups. As for comparisons
between the two groups, the S group received more frequent injection therapy and was
affected for a longer period than the M group. Fifty patients of the S group did not respond
to conservative treatment and received surgical treatment; no patients of the M group
required surgery.

Table 2. Demographic and clinical data of each group.

Healthy Group Mild Group Severe Group p-Value

Sex Male 12 21 31 p = 0.51
Female 18 20 28

Age (y) † 49 (27–69) 49 (34–77) 49 (23–78) p = 0.27
Injection therapy - p < 0.001

0 21 6
1–2 17 29
3≤ 3 24

unidentified 0 0
Duration of pain

(months) † - 6.4 (2.1–81.0) 12.5 (1.4–133.1) p = 0.032

0–1 month 0 0
1–3 months 6 4
3–6 months 12 12

6–12 months 12 12
>12 months 9 31
Unidentified 2 0

Required surgery †† - 0/41 50/59 p < 0.001
† Data are presented as median (minimum–maximum); †† The surgical indication was for the patients with
Nirschl’s clinical scale score of V or higher, who were resistant to the conservative treatment for at least 6 months.

3.2. MRI Scoring

In the combined evaluation, the median MRI score and 25–75 percentile were 1 (1–2), 3
(2–3), and 4 (3–4) in the H, M, and S groups, respectively. There was a significant difference
among all groups: p < 0.001 for the H and M groups, p < 0.001 for the H and S groups,
and p = 0.001 for the M and S groups (Figure 5). In the individual evaluation, the median
MRI score and 25–75 percentile were 2 (1–2), 4 (3–5) and 6 (5–6) in the H, M, and S groups,
respectively. There was a significant difference among all groups: p < 0.001 for the H and M
groups, H and S groups, and for the M and S groups (Figure 6). Additionally, we described
the distribution of the CET and LCL scores in each group in the supplementary materials
(Table S1).

3.3. ROC Curve

In the ROC curve for diagnosis, shown in Figure 7, the AUC was 0.84 for combined
evaluation (p < 0.001) and 0.86 for individual evaluation (p < 0.001). In the comparison of
the evaluation methods, there was no significant difference in the AUC (p = 0.63).
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In the ROC curve for the diagnosis of clinical severity, shown in Figure 8, the AUC
was 0.69 for the combined evaluation (p < 0.001) and 0.81 for the individual evaluation
(p < 0.001). In the comparison of the evaluation methods, the AUC of the individual
evaluation was significantly larger than that of the combined evaluation (p = 0.003).

3.4. Repeatability of MRI Scoring in This Study

The kappa values and their 95% confidence intervals for intra-observer agreement
were 0.87 (0.85–0.90: p < 0.001) for examiner 1 and 0.86 (0.84–0.89: p < 0.001) for examiner
2. For inter-observer agreement between examiners 1 and 2, the kappa value was 0.84
(0.82–0.86: p < 0.001). The repeatability of MRI scoring was excellent.
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4. Discussion

The most significant finding of this study was that individual MRI evaluations of the
CET and the LCL improved the accuracy of the severity diagnosis of LE. Since MRI images
reflect pathological change, we can accurately quantify pathological severity with detailed
MRI scoring. Some of the studies investigating the relationship between clinical and MRI
severity are commensurate with the results of this study. The literature with quantitative,
individual evaluations of the CET and the LCL reported a positive association between
clinical and MRI severity [7,15]; the studies without quantitative evaluation did not show
this association [22]. Studies with quantitative, combined evaluations of the CET and the
LCL reported conflicting conclusions [23,33]. This study suggests that the CET and the LCL
should be individually evaluated using MRI to indicate the severity diagnosis.

Furthermore, we demonstrated the accuracy of MRI for the diagnosis of LE. According
to the ROC curve for the diagnosis of LE, MRI had a high diagnostic capability, as reported
in other tendinopathies [32]. Nevertheless, MRI is not always necessary for diagnosis since
most patients with LE can be diagnosed based on physical findings. We should perform
MRI only for patients who are refractory to conservative treatment. Differential diagnosis
should be considered when MRI shows an absence or slight change in the signal on
CET/LCL, e.g., the entrapment of the posterior antebrachial cutaneous nerve [34,35], radial
tunnel syndrome, synovial fold disorder, posterolateral elbow instability, inflammatory
disorders, cervical radiculopathy, and so on [36].
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Meanwhile, further study is necessary to demonstrate the validity of MRI-positive
findings for the severity diagnosis. Although MRI scores were higher in the group with
higher clinical severity, there was some variation among cases. As Nirschl et al. showed,
there is interindividual variation in symptoms and pathologic severity of LE [18,37]. Fur-
thermore, some studies reported that psychological factors play a role in the intensity of the
clinical symptoms in LE [38,39]. These findings indicate that the symptoms of LE are multi-
factorial, though based on pathological abnormalities. Thus, the cross-sectional study of the
correlation between MRI scoring and clinical severity is necessarily limited. A longitudinal
study should be conducted in the future to reveal the validity of positive MRI findings in LE.
Since the literature suggests surgery in cases with severe pathology [18,37,40], MRI severity
may predict the prognosis of conservative treatment. In particular, since posterolateral
instability is reported to be associated with clinical severity [41,42], individual evaluation
of LCL is significant. Overall, the findings of this study will be a basis for future research.

Our study had several strengths. Firstly, to our knowledge, this study used the
highest-resolution MRI of any study to date; this allowed us to provide reliable data.
The repeatability of MRI scoring was excellent. Secondly, we conducted a quantitative
evaluation with a sufficient sample size, including the healthy group. Since previous
reports have not quantitatively evaluated healthy subjects, we believe our data will serve
as a basis for future MRI evaluations.

Although the study had many strengths, it also had some limitations. This study was
retrospective, and we collected data on clinical symptoms from medical records. Although
our treatment protocols and MRI indications are standardized at a single institution, there
were some differences in the timing of MRI imaging in some cases. Additionally, our study
included patients who received steroid injection therapy, which may have influenced the
MRI findings or clinical assessment. Finally, we selected the subjects of the H group from a
specific environment of medical coworkers in our hospital. Therefore, there is a possibility
of selection bias that we could not predict.

In conclusion, MRI individual evaluation of the CET and the LCL improved the accu-
racy of diagnosing the severity of LE. The CET and LCL should be evaluated individually
to reflect the relationship of clinical severity to MRI severity accurately.
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