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Abstract
Background
Small polyfunctionalized heterocyclic compounds play important roles in the drug discovery process and in the isolation and struc-

tural identification of biological macromolecules. It is expected that ready access to diverse sets of heterocycles can not only help

improving the known biological and pharmacokinetic properties of drugs, but also assist the discovery of molecules that exhibit

biological effects beyond those associated with previously known macromolecules. By virtue of their inherent convergence, high

productivity, their exploratory and complexity-generating power, multicomponent reactions (MCRs) are undoubtedly well suited

for creating molecular diversity. The combination of MCRs with an efficient post-functionalization reaction has proven to be an

efficient strategy to increase the skeleton diversity.

Results
The Ugi reaction of an o-iodobenzaldehyde (2), an aniline (3), an isocyanide (4), and a carboxylic acid (5) afforded α-acetamido-α-

phenylacetamide (6) in good to excellent yields. The palladium-catalyzed intramolecular C-H functionalization of these adducts

under ligandless conditions provided the functionalized dihydrophenanthridines (1).

Conclusion
Highly functionalized dihydrophenanthridines are synthesized in only two steps from readily accessible starting materials in good to

excellent overall yields.
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Introduction
Multicomponent  reactions  (MCRs)  offer  a  unique  way  to

generate efficiently libraries of complex molecules with high

degree of diversity [1,2]. Among them, the Ugi four component

reaction (Ugi-4CR) is without doubt one of the most powerful

transformations that has been extensively investigated for the

past twenty years [3]. In order to further increase its versatility

and the  complexity-generating  power,  a  variety  of  reaction

types have been associated with Ugi-4CRs for the synthesis of
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Table 1: Optimization of the direct CH arylation process.

Entry Solventa Catalyst Base T °C Time Yield %

1 DMSO Pd(OAc)2 KOAc 110 23 h 58
2 DMSO Pd(OAc)2 Ag2CO3 110 6 d 50
3 DMSO Pd(OAc)2 K3PO4 110 27 h 30
4 DMSO Pd(OAc)2 Cs2CO3 110 >7 d nd
5 toluene Pd(OAc)2 KOAc 110 74 h 40
6 dioxane Pd(OAc)2 KOAc 110 74 h 28
7 DMF Pd(OAc)2 KOAc 110 7 h 78
8 DMA Pd(OAc)2 KOAc 110 4 h 56
9 DMA Pd(OAc)2 KOAc 140 3 h 30

10 DMF Pd(OAc)2/PPh3 KOAc 110 22 h 82
11 DMF PdCl2 KOAc 110 3 h 83
12 DMF PdCl2(dppf) KOAc 110 4 h 71
13 DMF PdCl2{P(o-tol)3}2 KOAc 110 >1 d nd
14 DMF PdCl2/PPh3 KOAc 110 3 h 86

a General conditions: concentration of 6a: 0.01M; 0.5 equiv of catalyst, 2 equiv of base.

Scheme 1: Two-step synthesis of dihydrophenanthridines 1.

medicinally relevant heterocycles [4-6]. Using this MCR/post

functionalization  strategy,  we  have  developed  two-step

syntheses of a number of macrocycles including cyclophanes

and cyclodepsipeptides [7-10]. We have also reported the elab-

oration of Ugi-adduct containing two arylhalide functions for

the synthesis of 1,4-benzodiazepine-2,5-diones [11] and their

tetracyclic derivatives [12] featuring a key intramolecular C-H

functionalization reaction [13,14].  As a continuation of this

research  program,  we  were  interested  in  the  synthesis  of

dihydrophenanthridines 1 by combined use of Ugi-4CR and a

palladium-catalyzed direct CH-arylation process. The synthetic

sequence we envisioned is shown in Scheme 1. The Ugi four-

component  reaction  between  an  o-iodobenzaldehyde  2,  an

aniline 3, an isocyanide 4 and a carboxylic acid 5 should afford

an α-acetamido-α-phenylacetamide 6, which upon palladium-

catalyzed C-H activation process should provide dihydrophen-

anthridine 1  [15-21].  Parallel  to  our  work,  Chen,  Yang and

co-workers have independently developed a similar strategy for

the synthesis of this type of heterocycle [22].  In their work,

Chen and Yang demonstrated the importance of ligand struc-

ture on the outcome of the cyclization [optimized conditions:

Pd(OAc)2, PCy3, K2CO3, Bu4NBr, DMF, 100 °C]; we found

that the transformation of 6 to 1 can be realized under ligand-

less condition using palladium chloride as a palladium source

[PdCl2, KOAc, DMF, 110 °C] to afford the title compound in

good to excellent yield. Furthermore, the presence of activating

groups in arenes is not needed for the success of the cyclization.

We  report  herein  our  results  on  the  two-step  synthesis  of

dihydrophenanthridines  1  [23].

Results and Discussion
Reaction of o-iodobenzaldehyde (2a, R1 = H), aniline (3a, R2 =

H), tert-butyl isocyanide (4a) and butyric acid (5a) in trifluoro-

ethanol  (TFE)  at  room  temperature  afforded  the  four-

component  adduct  6a  (R1  =  R2  =  H,  R3  =  tert-butyl,  R4  =

n-propyl) in 84% yield. Cyclization of 6a was examined under a

variety of conditions and the results are summarized in Table 1.
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Table 2: Two step synthesis of dihydrophenanthridines 1.

Entry Aldehyde 2 Aniline 3 Isocyanide 4 Acid 5 6 (%) 1 (%)

1

2 2a 4a 5a

3 2a 4a 5a

4 2a 3b

5 4a

6 2a 4a 5c

7 2a 4a 5a
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Table 2: Two step synthesis of dihydrophenanthridines 1. (continued)

8 2a 4a 5b

9 2a 4a 5a

10 2a 4a 5a

11 2b 3h

12 3a 4c

Treatment of 6a under conditions we developed previously for

the  synthesis  of  tetracyclic  compounds  that  involved  a

CH-arylation step [DMSO, Pd(OAc)2, KOAc, 110 °C] afforded

compound 1a in 58% yield (entry 1) [11,12]. Using other bases

such as Ag2CO3, K3PO4 and Cs2CO3 under otherwise identical

conditions gave inferior results (entries 2–4). Solvent played

also an important role and among those screened (entries 5–9),

DMF stood out to afford 1a in 78% yield (entry 7). We next

changed  the  palladium  source  and  found  that  PdCl2  gave

superior  results  (entry  11).  Addition  of  triphenylphosphine

turned out to be beneficial, increasing slightly the yield of 1a

(entries 10, 14),  whereas the presence of dppf and P(o-tol)3

gave reduced yields of  the desired compound [24].  Overall,

following conditions: PdCl2, DMSO, KOAc, 110 °C turned out

to be optimal for the present CH arylation process in terms of

the yield and simplicity of the manipulation (entry 11). It  is

interesting to note that the alternative reaction pathway leading

to the formation of oxindole via an intramolecular N-arylation

process was not observed under these conditions [25-27]. The

preferential formation of compound 1a indicated that cycliza-

tion via palladium-catalyzed CH functionalization could be,

under appropriate conditions, a kinetically fast process related

to other elementary reactions [28-34]. These results indicated

that by careful choice of reaction conditions, one can easily
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reach two completely different scaffolds from the same starting

material. Such reagent-dependant divergent synthesis of hetero-

cycles is evidently valuable in diversity oriented synthesis.

The scope of this cyclization was next examined. From three

aldehydes, eight amines, five carboxylic acids, and three isocy-

anides, Ugi-adducts were prepared and their subsequent palla-

dium-catalyzed cyclization was investigated. The results are

summarized  in  Table  2.  4-Nitroaniline  (3c)  is  known to  be

inactive in Ugi reaction due to the reduced nucleophilicity of

the nitrogen and the low basicity of the resulting imine leading

consequently  to  a  low  concentration  of  the  iminium  ion.

However, by performing the reaction in trifluoroethanol (TFE)

[35], the reaction of 3c with o-iodobenzaldehyde (2a), tert-butyl

isocyanide  (4a)  and butyric  acid  (5a)  or  N-(tert-butoxycar-

bonyl)glycine (5c) afforded the corresponding Ugi adducts 6c

and 6f in yields of 31% and 51%, respectively (entries 3, 6).

The  intramolecular  C-H arylation  process  was  found  to  be

insensitive to electronic properties of the aromatic ring. Thus,

palladium-catalyzed cyclization of 6b, 6c, 6g, 6h, bearing elec-

tron-donating or  electron-withdrawing groups,  afforded the

corresponding cyclized products in comparable yields (entries

2, 3, 7, 8). Functional groups such as ester, carbamate, ether,

heterocyclic nuclei such as pyridine 1i are tolerated. The aryl

chloride function survived under the present conditions leading

to dihydrophenanthridine 1g and 1k in yields of 74% and 88%

(two regioisomers), respectively. The presence of a chlorine

atom in 1g and 1k provided a handle for further functionaliza-

tion taking advantage of transition metal catalyzed transforma-

tion of aryl chlorides [36]. When Ugi adducts 6j and 6k (entries

10,  11)  were  subjected  to  the  CH-arylation  procedure,  two

regioisomers were produced. Interestingly, in the case of 6k, a

sterically more hindered isomer (1k-b) was produced preferen-

tially (entry 11). The cyclization of 6l could in principle provide

a 6-membered as well  as a 7-membered ring [37],  however,

only the cyclization leading to the 6-membered ring occurred to

provide 1l in 80% yield. Finally, cyclization of 6i gave only one

regioisomer 1i resulting from the activation of C4-H, rather than

the C2-H, of the pyridine. The more pronounced acidity of the

C4-H could account for the observed regioselectivity [38].

The σ-H bond metathesis has been proposed as one of the major

pathways  to  explain  the  palladium-catalyzed CH activation

process.  According  to  this  mechanism,  the  CH-activation

process would depend on the acidity of the CH to be activated

rather than the electron density of the aromatic ring and those

protons with higher acidity should be energetically more prone

to  be  functionalized.  This  trend  is  indeed  observed  in  the

present study. The presence of a nitro group in the Ugi adduct

did not hamper the reaction, it actually accelerated the CH func-

tionalization reaction.  Furthermore,  when two protons  with

similar steric environment were present, the more acidic one is

activated selectively as it is observed in the cyclization of 6i

(entry 9).

In conclusion, we have developed an efficient palladium-cata-

lyzed  intramolecular  CH-arylation  reaction  leading,  under

ligandless  conditions,  to  dihydrophenanthridines in good to

excellent yields. In combination with the Ugi four-component

reaction, this medicinally important heterocycle can be easily

prepared in two steps from readily accessible starting materials.

Experimental
See Supporting Information File 1 for full experimental data.

Supporting Information

Supporting Information File 1
General information, typical procedure and spectroscopic

data of 1a–1l.
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