
antibodies

Article

EBNA1 IgM-Based Discrimination Between
Rheumatoid Arthritis Patients, Systemic Lupus
Erythematosus Patients and Healthy Controls

Nicole Hartwig Trier 1, Anette Holck Draborg 1, Louise Sternbæk 1, Lone Troelsen 2,
Janni Lisander Larsen 3, Søren Jacobsen 3 and Gunnar Houen 1,4,*

1 Department of Autoimmunology, Statens Serum Institut; Oerestads boulevard 5, 2300 Copenhagen S,
Denmark; nhp@ssi.dk (N.H.T.); ahdraborg@gmail.com (A.H.D.); louise.sternbeak@phiab.se (L.S.)

2 Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9,
2100 Copenhagen, Denmark; lone.troelsen@gmail.com

3 Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark; jannilisander@icloud.com (J.L.L.);
soren.jacobsen.01@regionh.dk (S.J.)

4 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55,
5230 Odense M, Denmark

* Correspondence: gh@ssi.dk or gunnar.houen@regionh.dk

Received: 30 April 2019; Accepted: 28 May 2019; Published: 1 June 2019
����������
�������

Abstract: Epstein–Barr Virus (EBV) has been associated with development of rheumatic connective
tissue diseases like rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) in genetically
susceptible individuals. Diagnosis of RA and SLE relies on clinical criteria in combination with
the presence of characteristic autoantibodies. In addition, antibodies to several EBV antigens have
been shown to be elevated in patients with these diseases compared to healthy controls (HC). Here,
we elaborated improved enzyme-linked immunosorbent assays for antibodies (IgM, IgA, IgG) to the
EBV proteins Epstein-Barr Virus nuclear antigen (EBNA)1 and early antigen diffuse (EAD) in order to
determine their potential diagnostic role. We showed that especially EBNA1 IgM distinguished RA
from SLE and HCs and also distinguished SLE from HCs. EBNA1 IgA was almost as effective in
differentiating RA from SLE and HC, while EAD IgG and IgA were able to discern SLE patients from
RA patients and HCs. Collectively, these findings illustrate the potential diagnostic use of antibodies
to EBV proteins to diagnose RA and to differentiate SLE from RA.

Keywords: Epstein–Barr Virus; EBNA1; EAD; IgM; IgA; IgG; sensitivity; specificity; rheumatoid
arthritis; systemic lupus erythematosus

1. Introduction

Epstein-Barr virus (EBV), is one of the most common human viruses to encounter. As a consequence,
up to 99% of the world’s population is infected at some stage during their lifetime [1–3]. The majority
of the population is infected during early childhood (up to 95%) [1–3]. Primary infection with EBV
is usually mild but may give rise to infectious mononucleosis (IM), a condition with fever, excessive
production of lymphocytes and swollen nasopharyngeal lymph nodes, in adolescents [4]. Besides IM,
EBV has been associated with a broad range of diseases including lymphomas, nasopharyngeal cancer,
gastric cancer, multiple sclerosis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE).
However, the precise role of EBV in the etiology of these diseases remains unknown.

RA is a chronic autoimmune disease with inflammation of joints and multiple systemic
symptoms [5,6]. Characteristic antibodies are rheumatoid factors (RFs) and citrulline-dependent
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antibodies, referred to as anti-citrullinated protein antibodies (ACPAs) [5,7]. RA is most prevalent in
women and is caused by a combination of genetic and environmental factors [5,8]. Among multiple
genetic factors, especially major histocompability complex (MHC) II alleles with specific amino acid
motifs, collectively called the shared epitope (SE), strongly predispose to the disease, and especially in
ACPA-positive individuals [8–10]. Among the environmental factors, vitamin D, smoking, obesity in
adolescence and EBV infection are most influential.

SLE is another female predominant prototype autoimmune disease characterized by severe fatigue,
skin rash, and other symptoms [11–13]. The autoantibody spectrum in SLE is extremely diverse,
but characteristic autoantibodies are antibodies to double-stranded DNA and ribonucleoprotein
(RNP) [11–15]. Multiple genetic factors contribute to the development of SLE, but certain MHC II
alleles are strongly predisposing albeit not the same as in RA [16]. Environmental factors overlap with
those for RA to a large degree, and vitamin D, smoking and EBV infection have a major impact on
disease development [11,17–20].

The relation between SLE and EBV has been suggested for decades, and it has been shown that
SLE patients have defective/lower levels of EBV-specific T cells but increased levels of EBV antibodies,
particularly to the lytic early antigen diffuse (EAD) [21–25]. Similarly, the connection between RA and
EBV has been suspected for a long time, but the EBV antibody profile appears to be somewhat different
in comparison with SLE.

Here, we have investigated several isotypes of EBV antibodies in cohorts of RA and SLE patients
using an improved enzyme-linked immunosorbent assay (ELISA) setup and show that Epstein–Barr
virus nuclear antigen (EBNA) 1 IgM discriminates efficiently between RA patients, SLE patients and
healthy controls (HC)s. These results may have diagnostic value and further testify to the possible
etiological role of EBV in these diseases.

2. Materials and Methods

2.1. Materials

Tris, diethanolamine, alkaline phosphatase (AP)-conjugated goat immunoglobulins to human
IgM, IgA and IgG (GaHIgM/A/GAP) and para-nitrophenyl phosphate (pNPP) substrate tablets were
from Sigma (St. Louis, MO, USA). MgCl2, Tween 20, NaHCO3, Na2CO3, were from Merck (Darmstadt,
Germany). NUNC MaxiSorp and PolySorp plates were from Thermo Fisher Scientific (Roskilde,
Denmark).

EBV proteins, EBNA1 (recombinant, mosaic) (Escherichia coli-derived, EBV271, purity >95%) and
EAD (recombinant) (Escherichia coli-derived, EBV-272, purity >95%), were purchased from Prospec
Protein Specialist (Ness-Ziona, Israel).

2.2. Patient Sera

RA patient sera were collected at the Department of Rheumatology, Frederiksberg Hospital
(Copenhagen, Denmark). SLE patient sera were collected at the Center for Rheumatology, Rigshospitalet,
Copenhagen, Denmark. HC sera were obtained from volunteers at Rigshospitalet and at Statens
Serum Institut (Copenhagen, Denmark). Twenty-nine SLE sera were enrolled of which 28 were from
females. Average age for SLE patients was 36 years. HCs were gender and age matched according to
the SLE patients. Twenty-nine HCs were enrolled of which 27 were female. The average age for the
HC individuals was 41 years. Seventy-seven RA sera were enrolled in the study, 76% of these were
from females. The average age was 56 years for the RA individuals.
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2.3. Ethics

All samples were obtained with written consent. The study was conducted in accordance with
the relevant ethical guidelines and was approved by the Scientific Ethical Committee of the Capital
Region, Denmark H-A-2007-0114), project ID:19980024 PMC and H-15009640).

2.4. Enzyme-Linked Immunosorbent Assay

Polysorp plates were coated overnight at 5 ◦C with EBNA1 and EAD antigens (1 µg/mL) in
50 mM sodium carbonate buffer, pH 9.6 (100 µL/well). Then, the wells were washed and blocked with
Tris-Tween-NaCl (TTN) buffer (50 mM Tris, pH 7.5, 1 % Tween 20, 0.3 M NaCl,) by 3 × 5 min incubation
on a shaking table and using 200 µL/well. Sera were diluted 1:10 (IgM, IgA) or 1:100 (IgG) in TTN
buffer, added to the microtitre plates, in both coated and non-coated wells in duplicates, and incubated
for 1 h followed by 3 washes as described above. Secondary antibodies GaHIgM/A/GAP (one for each
plate) were diluted 1:2000 in TTN and added to wells (100 µL/well) and incubated 1 h followed by
another 3 washes with TTN. Finally, 100 µL AP substrate solution (10 mg pNPP substrate tablet per
10 mL AP buffer (1 M diethanolamine, 0.5 mM MgCl2, pH 9.8)) was added to all wells. Absorbances
were recorded on a Versamax microplate reader (Molecular Devices, Sunnyvale, CA, USA) using a
wavelength of 405 nm with background subtraction at 650 nm.

The sample absorbance values of non-coated wells were subtracted from coated wells after
averaging the duplicates. A standard curve (1:10, 1:20, 1:40, 1:80, 1:160, 1:320) was included for each
assay using a pool of high-titre sera samples and all absorbance values were normalized relative to this
standard (EBNA1 or EAD).

2.5. Statistics

Each sample was analysed for antibody reactivity in duplicates. Statistical analyses, generation of
receiver operating curves (ROCs) and calculation of area under the curves (AUCs) were performed
using GraphPad Prism software (GraphPad, San Diego, CA, USA). For determination of significance,
Dunnett’s test was performed, which compares all columns to control columns.

3. Results

Determination of Antibody Titers to Early Antigen Diffuse and Epstein–Barr Virus Nuclear Antigen 1 by
Enzyme-Linked Immunosorbent Assay

Sera from SLE, RA and HC individuals were tested for antibody reactivity (IgM, IgA, IgG) to EAD
and EBNA1 by ELISA. Analysis of antibodies to EBNA1 revealed high levels of IgM and IgA in RA
patient sera followed by SLE patient sera and HC sera (Figure 1).

For EBNA1 IgM and IgA, the differences were highly statistically significant between RA and
SLE and RA and HCs (p < 0.0001) (Figure 1a,b). Moreover, ROC curves (Figure 2) revealed high
sensitivities and specificities with AUC values > 0.9 (Table 1). Best discrimination between RA and HC
was achieved by EBNA1 IgM (AUC = 0.995), which also discriminated RA from SLE (AUC = 0.953) and
SLE from HC (AUC = 0.916). The corresponding values for EBNA1 IgA were slightly lower but still
very high (Table 1). In contrast EBNA1 IgG had much lower discriminating power (Figure 1, Figure S1)
with AUC values ranging from 0.5198–0.8356, which also is reflected in the antibody reactivity pattern
(Figure 1c).
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Figure 1. Reactivity of rheumatoid arthritis (RA) (n = 77), systemic lupus erythematosus (SLE) (n = 27
and healthy control (HC) sera (n = 29) to early antigen diffuse (EAD) and Epstein-Barr Virus nuclear
antigen (EBNA) 1 (IgM, IgA and IgG reactivity) analyzed by enzyme-linked immunosorbent assay.
(a) IgM antibody reactivity to EBNA 1; (b) IgA antibody reactivity to EBNA1; (c) IgG antibody reactivity
to EBNA1; (d) IgM antibody reactivity to EAD; (e) IgA antibody reactivity to EAD; (f) IgG antibody
reactivity to EAD. * = p < 0.05, *** = p < 0.0001. EBNA1, Epstein-Barr virus nuclear antigen 1; EAD, early
antigen diffuse; HC, healthy control; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.
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Figure 2. ROC curves for Epstein-Barr nuclear antigen 1 IgM in systemic lupus erythematosus (SLE),
rheumatoid arthritis (RA) and healthy control (HC) sera. (a) SLE vs HC; (b) RA vs HC; (c) SLE vs RA.
Epstein-Barr virus nuclear antigen 1; HC, healthy control; RA, rheumatoid arthritis; SLE, systemic
lupus erythematosus.

Analysis of antibodies to EAD revealed low levels of IgA, whereas antibody titers for EAD IgM
and IgG were increased (Figure 1d–f). No evident reactivity pattern was observed compared to EBNA1.
For EAD IgA and IgG, the difference between RA and SLE and SLE and HC was statistically significant,
whereas for EAD IgM, a statistically significant difference was observed between RA and SLE and RA
and HC. EAD IgM had lower discriminating power compared to EBNA1 IgM, but EAD IgA and IgG
had fairly good ability to discriminate SLE from HC with AUCs of 0.827 and 0.835, respectively (Table 1).
Combinations of EBNA1 and EAD antibodies were also evaluated (e.g., EAD/EBNA1, Figures S2–S3),
but none had better discriminating power than EBNA1 IgM.
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Table 1. IgG, IgA, IgM antibodies to EAD and EBNA1 in SLE (n = 27), RA (n = 77) and HC (n = 29).
Overview of the best discrimination test with AUC > 0.8.

AUC Std. Error 95% Confidence Interval p Value

EBNA1 IgG

SLE vs HC 0.5198 0.7885 0.3653–0.6744 0.8006
RA vs HC 0.8125 0.04936 0.7157–0.9093 <0.0001
SLE vs RA 0.8356 0.04357 0.7503–0.921 <0.0001

EBNA1 IgA

SLE vs HC 0.7037 0.08256 0.5419–0.8655 0.0102
RA vs HC 0.9456 0.0237 0.8992–0.992 <0.0001
SLE vs RA 0.9183 0.03222 0.8551–0.9814 <0.0001

EBNA1 IgM

SLE vs HC 0.9156 0.04432 0.8288–1.003 <0.0001
RA vs HC 0.9954 0.04285 0.987–1.004 <0.0001
SLE vs RA 0.953 0.01944 0.9149–0.9911 <0.0001

EAD IgG

SLE vs HC 0.8347 0.05862 0.7298–0.9496 <0.0001
RA vs HC 0.7377 0.06006 0.62–0.8554 0.0002
SLE vs RA 0.7477 0.0694 0.6117–0.8837 <0.0001

EAD IgA

SLE vs HC 0.8272 0.06039 0.7088–0.9455 <0.0001
RA vs HC 0.7169 0.04997 0.619–0.8248 0.0008
SLE vs RA 0.6544 0.06353 0.5299–0.7789 0.0410

EAD IgM

SLE vs HC 0.6612 0.07527 0.5137–0.8087 0.0421
RA vs HC 0.6306 0.05724 0.5184–0.7427 0.0431
SLE vs RA 0.5417 0.06394 0.4163–0.667 0.8694

4. Discussion

ELISA is one of the most important techniques for antibody-based diagnostics. Polystyrene plates
are commonly used for ELISAs relying on immobilization of antigens by physical adsorption, and
plates with high binding capacity are often used (e.g., Maxisorp plates), however, such plates often
yield excessive non-specific binding, which may overshadow specific signals [26,27]. Less hydrophobic
plates (e.g., Polysorp) have lower binding capacity but in general give fewer problems with non-specific
binding. In previous studies, Maxisorp plates were primarily used without standards, yielding only
absorbances as a measure of antibody reactivity [28,29]. Here, we used Polysorp plates in combination
with a standard to determine relative concentrations of IgM, IgA and IgG to EBNA1 and EAD. The use
of Polysorp plates, however, requires higher amounts of sera and longer development times, which,
nevertheless, is compensated by better results.

IgM and IgA to EBNA1 determined by the ELISA elaborated here showed a very good ability to
discriminate RA from SLE samples and both from HCs. For EAD, IgG and IgA could discriminate
fairly well between SLE samples and RA patients or HCs. This is in good agreement with many other
reports in the literature [23,25,30–34].

The serological diagnostics of RA and SLE rely to a large part on determination of RFs and ACPAs
for RA and dsDNA antibodies and anti-nuclear antibodies (ANA) for SLE [5,7,11–15,35]. ELISA is a
main technique for determination of these autoantibodies, but ANAs are often determined by indirect
immunofluorescence with HEp-2 cells as substrate [36,37]. Based on the results obtained here, it is
tempting to speculate that most of these ELISAs could be improved by using microtiter plates with
low non-specific binding.
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Clinical utility depends on assay sensitivity and specificity [38]. For the RF and ACPA analyses
used in serological RA diagnostics these are typically in the range 70–95%, and the same applies for
ANA and dsDNA antibodies in SLE diagnostics [35,39]. Since EBV infection has been shown to be
an important environmental factor in triggering RA and SLE, antibodies to EBV antigens would be
expected to have diagnostic value, although this would also be expected to be of limited value due to
the infection of a major part of the human population by this virus.

Previous studies have, for a major part, shown elevated levels of EBV antibodies in RA and SLE
patients, however, with different antibody profiles. In RA patients, VCA IgG, EAD IgG, EBNA1 IgG
have been found to be elevated in a few but not all studies, and with low specificities [31,33,38,40–43].

In SLE patients, the following EBV antibodies have generally been found to be elevated: VCA
IgM, IgA, IgG, EAD IgM, IgA, IgG, EBNA1 IgA [17,18,34,42–49]. A basic feature of EBV lifecycle is the
ability of the virus to shift between (memory) B cell and epithelial cell infection. Thus, the findings
described above are in accordance with that in SLE, Igs to EAD, and in particular IgA, primarily are
related to epithelial tissue infection, where disease activity protrudes, whereas in RA, Igs to EBNA-1,
and in particular IgM, primarily are associated with infected B-cells in the inflamed joints.

A major problem in the interpretation and comparison of the results mentioned above is a lack
of correction for non-specific binding, which is a major problem in ELISA with sera from patients
with autoimmune connective tissue disease [39,40]. In this study, an improved ELISA system for
detection and quantification of EBV antibodies was used with systematic correction for non-specific
binding, even if this was very low with the Polysorp plates. In order to do so, Polysorp plates were
applied with a systematic use of an internal standard curve, followed by the subtraction of background
levels determined by serum reactivity in uncoated wells. This is in contrast to many previous studies,
where antibody levels were determined as relative absorbances using the more non-specific binding
Maxisorp microtitre plates [28,29]. The application of Polysorp microtiter plates yielded highly sensitive
and specific assays. Using this ELISA system, it was found that EBNA1 IgM had high sensitivity and
specificity for RA and SLE. This would seem to point to an important etiological role of EBV in these
diseases, a theory which is reinforced by the recent finding that antibodies to a single strain-specific
citrullinated EBNA2 peptide has a diagnostic sensitivity and specificity for RA comparable to or even
better than the currently used commercial assays using pools of citrullinated peptides [29].

As presented, EBNA1 IgM may constitute a supplementary assay to determination of RA.
Nevertheless, it remains to be determined how powerful this setup is to differentiate the remaining
connective tissues diseases from each other, i.e., is this image specific for RA? And what about Sjogren’s
syndrome and systemic sclerosis? This remains to be determined in future studies. Detection of
EBV antibodies is most naturally restricted to diseases, where EBV somehow is involved in the
disease course.

Collectively, these findings describe the power of EBNA1 IgM to discriminate RA-positive
individuals from individuals with SLE and HCs, which ultimately may contribute to the generation of
new and simplified diagnostic assays.
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