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Abstract
Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells

(hESC) and can be used as a growth matrix to culture these cells under pluripotent condi-

tions. However, the expression of these laminins during the induction of hESC differentia-

tion has not been studied in detail. Furthermore, the data regarding the expression pattern

of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this

gap and investigated the potential changes in laminin expression during early hESC differ-

entiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates

in the committed cells during early steps of hESC differentiation. We also performed a com-

prehensive analysis of the laminin chain repertoire and found that pluripotent hESC express

a more diverse range of laminin chains than shown previously. In particular, we provide the

evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and

γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain—145

kDa—accumulated in RA-treated hESC showing that these cells produce prevalently spe-

cifically modified version of α3 chain in early phase of differentiation.

Introduction
Human embryonic stem cells (hESC) are derived from the inner cell mass of blastocyst. They
have the capacity to self-renew and differentiate into cells of all three embryonic germ layers
[1]. Transcription factors OCT4, NANOG and SOX2 are important regulators for hESC to
retain their pluripotency and self-renewing characteristics [2]. Both down and up regulation of
the expression levels of these transcription factors can induce differentiation of hESC [3–6]. In
a murine embryonic carcinoma cell line, retinoic acid (RA) has been shown to repress the
expression of OCT4 via RAREs (retinoic acid response elements) present in the OCT4 pro-
moter [7]. In monolayer hESC cell cultures, this chemical can induce neuronal [8,9] and endo-
dermal differentiation [9] but can be used also to direct hESC towards extraembryonic lineages

PLOSONE | DOI:10.1371/journal.pone.0138346 September 17, 2015 1 / 16

OPEN ACCESS

Citation: Pook M, Teino I, Kallas A, Maimets T,
Ingerpuu S, Jaks V (2015) Changes in Laminin
Expression Pattern during Early Differentiation of
Human Embryonic Stem Cells. PLoS ONE 10(9):
e0138346. doi:10.1371/journal.pone.0138346

Editor: Elias T. Zambidis, Johns Hopkins School of
Medicine, UNITED STATES

Received: December 29, 2014

Accepted: August 29, 2015

Published: September 17, 2015

Copyright: © 2015 Pook et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by the EMBO
Installation Grant No1819 and grants no. ETF8932
and PUT4 from the Estonian Research Council (to V.
J.), and research grants PUT374 from Estonian
Research Council and SF0180100s08 from Estonian
Ministry of Higher Education and Research (to T.M.).
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0138346&domain=pdf
http://creativecommons.org/licenses/by/4.0/


when specific conditions are provided [10]. If applied to differentiating cells from embryoid
bodies, it can induce also differentiation towards mesodermal lineage [11].

The extracellular matrix (ECM), which surrounds cells both in vivo and in culture condi-
tions, is essential in regulating stem cell differentiation and survival [12–14]. Laminins are inte-
gral components of the basement membrane—a specific form of ECM—and play a critical role
in early development by coordinating the differentiation process [15]. Laminins are hetero-tri-
meric proteins composed of α, β and γ chains, which form at least 16 different isoforms that
are named according to their chain composition (e.g. laminin-111 contains one α1, one β1 and
one γ1 chain) [16].

The crosstalk between ECM and embryonic stem cells is complex by nature and is pivotal
for regulating the balance between their differentiation and stemness [14]. The expression of
single laminin β and γ chains can be detected already at 2-4-cell embryo stage [17,18] suggest-
ing the importance of laminin in guiding the earliest steps of embryonic development. The ear-
liest trimeric laminins expressed during mammalian embryogenesis are laminin-111 and -511
[15] and embryos lacking α1 [19] or α5 [20] chains die at an early developmental stage. It is
now known that the pluripotent hESC cultured in vitro express laminin α1, α5, β1, β2 and γ1
chains [21,22] although some studies failed to detect the presence of β2 chain [23,24]. The
importance of these laminin chains in the maintenance of hESC is further reinforced with the
data that the cultivation of hESC on recombinant laminin-511 or -521 efficiently preserves the
pluripotency of these cells [22,25].

The changes in the expression of different laminin chains at different developmental stages
have been described in detail [26]. Less is known about the changes in laminin expression pat-
tern during early steps of embryonic stem cell differentiation. Furthermore, despite of the fact
that laminins 511 and 521 have distinct functions during mammalian development [27,28] the
potential interplay between these laminin isoforms has not been addressed during the initiation
of hESC differentiation.

In the current study we aimed to characterize the changes in laminin composition of the
ECM produced by hESC during early differentiation induced by RA. We uncovered an intri-
cate interplay between laminin-511 and -521 during early differentiation. Using immunopre-
cipitation of α5-laminins we found that the relative amount of laminin-511 is increased when
compared to laminin-521 suggesting that the changes in the proportion of these two laminin
isoforms contribute to the coordination of the early steps of hESC differentiation. Furthermore,
we found that the laminin chain repertoire present in cultured hESC is more diverse than pre-
viously described. In addition to laminin α1, α5, β1, β2 and γ1 chains, we were able to detect
the expression of α2, α3, β3, γ2 and γ3 chains at the mRNA and protein level.

Materials and Methods

Ethics statement
The permit to isolate mouse embryonic fibroblasts from the embryos of CD-1 mice (Animal
Facility, Institute of Molecular and Cell Biology, Tartu, Estonia) was obtained from the Com-
mittee for Experiments on Laboratory Animals, Estonian Ministry of Agriculture. Mice were
sacrificed by cervical dislocation.

Cell culture
To maintain the human embryonic stem cells (WA09, National Stem Cell Bank) in pluripotent
state the cells were cultured on 6-well tissue culture plates (BD Biosciences) coated with Matri-
gel (BD Biosciences) in mTeSR1 media (STEMCELL Technologies) according to the manufac-
turer’s specifications. Cells were passaged mechanically after 3–4 days. For cell passage, hESC
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colonies were detached with a micropipette tip and dissociated by gentle pipetting using sero-
logical pipette. Cells were cultured in 5% CO2 at 37° C in humid conditions. The culture
medium was changed daily. The normal karyotype of the cells was confirmed by G-banding.

Induction of hESC differentiation
Mouse embryonic fibroblast (MEF) feeder cells were derived from 12.5-day embryos (CD1)
followed by irradiation with 7000 rad (x-ray irradiator RX-650, Faxitron Bioptics). The irradi-
ated MEFs were cultured at density 4.24 x 104 cells/cm2 in Dulbecco’s modified Eagle’s medium
supplemented with 20% knockout serum replacement, 0.1 mM nonessential amino acids, 1
mM L-glutamine, and 4 ng/ml human basic fibroblast growth factor (all from Invitrogen);
0.0007% 2-mercaptoethanol (Sigma-Aldrich) for 24 hours to produce conditioned media
termed hereafter "differentiation media". One day after passaging, the hESC differentiation was
induced by replacing the mTeSR1 growth media with the differentiation media containing
10 μM retinoic acid (RA, Sigma-Aldrich) in DMSO. The final concentration of DMSO in the
differentiation media was 0.1%. Subsequently, hESC were cultured for 5 days and differentia-
tion media containing RA was replaced daily.

Immunofluorescence microscopy
For immunofluorescence (IF) analysis, cells were cultured on glass coverslips (Marienfeld)
coated with Matrigel. Cells were fixed with 4% paraformaldehyde in PBS for 15 min at room
temperature. After 3x5 min washing with PBS, cells were permeabilized with 0.2% Triton X-
100 in PBS at room temperature for 10 min. Subsequently, cells were washed with PBS for 3
times and blocked with 4% normal goat serum in PBS for 60 min at room temperature. Pri-
mary and secondary antibodies were diluted in 4% normal goat serum in PBS and all incuba-
tions were carried out in a humid chamber. Each staining was followed by washing the cells
with PBS for 3x5 minutes. Cell nuclei were visualized by staining with DAPI (1 μg/mL, Sigma-
Aldrich) for 15 min at room temperature. Slides were mounted in Dako Fluorescent Mounting
Medium (Dako). The images were obtained with fluorescence microscope IX81 or confocal
microscope FV1000 (both from Olympus Corporation) and analyzed with Imaris software
(Bitplane AG). The antibodies used in the study are described in Supporting Information
(Table A in S1 File). Three independent IF analyses were performed.

Western blot analysis
Samples were collected by scraping the cells with rubber policeman in radioimmunoprecipita-
tion assay (RIPA) buffer containing 10 mM Tris-HCl (pH 7.2), 150 mMNaCl, 0.1% SDS, 1.0%
Triton X-100, 1% sodium deoxycholate, 5 mM EDTA and Complete protease inhibitor cocktail
(Roche Diagnostics). The concentration of total protein was measured by using BCA Protein
Assay Kit (Thermo Fisher Scientific) and equal protein amounts for each sample were loaded
to SDS-PAGE gels for electrophoresis (Mini-Protean system, Bio-Rad Laboratories). For detec-
tion of laminin chains, 5% and for all other proteins of interest 10% gels were used. Transfer to
polyvinylidene difluoride membrane was carried out using Mini Trans-Blot Cell system (Bio-
Rad Laboratories). The membrane was washed with TBS-T (Tris-Buffered Saline, 0.1% Tween
20) and blocked with 5% skimmed milk solution in TBS-T (blocking solution) for 1 h followed
by incubation with primary antibodies in blocking solution overnight at 4°C. After washings
with TBS-T, the membrane was incubated with the respective secondary antibody conjugated
with horseradish peroxidase (HRP) for 1 h at room temperature. Subsequently, the membrane
was rinsed three times with TBS-T for 15 min followed by incubation with Immobilon Western
Chemiluminescent HRP Substrate solution (Millipore Corporation). Chemiluminescent signal
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was detected and quantified using Biospectrum 510 Imaging System with VisionWorks LS soft-
ware (both UVP, LLC) or by exposing to x-ray film (Agfa HealthCare NV). The antibodies
used in the study are described in Supporting Information (Table A in S1 File).

As positive controls for laminin chain expression a selection of human cells and cell lines
were used. JEG-3 cells were used to identify laminin α1 chain, A431 cells for detecting α2 and
α3 chains while α4 chain was validated using lysate prepared from human platelets. The lami-
nin α5 chain was identified using lysates prepared from A549, A431, JAR and JEG-3 cells. All
other chains (β1-β3, γ1- γ3) were identified using the lysate prepared from A431 cells. Two
independent Western blot analyses were performed.

Immunoprecipitation assay
To immunoprecipitate the laminin isoforms, which contain α5 chain the cells were lysed by
scraping the cells with rubber policeman in RIPA buffer and Complete protease inhibitor cock-
tail (Roche Diagnostics). First, 400 μL of magnetic beads, (Dynabeads M-280 coated with
Sheep anti-Mouse IgG, 2.68 x 108 beads, Thermo Fisher Scientific) and 24 μg (9.8 μL) of lami-
nin α5 chain mouse monoclonal antibody 4B5 (Table A in S1 File) were mixed and incubated
in a rotating tube for 3.5 h at 4°C. Next, 200 μL of the antibody-coupled bead suspension and
150 μL of cell lysate containing 128.2 μg of total protein were mixed and incubated in a rotating
tube for 12h at 4°C. Beads were rinsed before and after incubations 3 times for 2 minutes using
Ca 2+/ Mg 2+ −free PBS supplemented with 0.1% bovine serum albumin and 2 mM EDTA. To
extract the bound proteins, the beads were suspended in electrophoresis sample buffer contain-
ing SDS, dithiothreitol (DTT) and incubated at 100°C for 5 min. The supernatant was used to
perform the Western blot analysis as described in the previous section. Antibodies recognizing
laminin chains β1-β3 and γ1- γ3 (Table A in S1 File) were used to detect the α5-bound laminin
subunits in a subsequent Western blot analysis. The beads were extracted from the suspension
after each incubation or washing step using a dedicated magnetic rack (Dynal). The summa-
rized results of quantification are included in the Supporting Information (Table B in S1 File).
To evaluate the gross amount of laminin α5 chain, the corresponding signal values were nor-
malized to the actin signal values of the corresponding input (Table B in S1 File). The amount
of each laminin chain bound to the α5 chain was calculated by normalization of the signal val-
ues corresponding to β1, β2 and γ1 chains to the corresponding α5 chain signal intensity values
(Table B in S1 File). Two independent immunoprecipitation experiments were conducted.

Reverse transcription PCR (RT-PCR)
RNA samples were collected from hESC treated with RA using Trizol Reagent (Invitrogen).
RNA was isolated with miRNeasy kit (Qiagen) followed by treatment with DNase I (Thermo
Fisher Scientific). RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific) with
random hexamer primers was used to synthesize cDNA. RT-PCR was performed using FirePol
Master Mix (Solis BioDyne) and specific primers as described in Supporting Information
(Table C in S1 File). PCR products were separated using 2% agarose gel electrophoresis and
images were obtained using Biospectrum 510 Imaging System (UVP, LLC). Two independent
RT-PCR analyses were conducted.

Multivariate permeabilized-cell flow cytometry
Cells treated with RA or DMSO were harvested with 0.05% trypsin-EDTA solution (PAA Labora-
tories) and washed with PBS. The single cell suspensions were fixed using 1.6% paraformaldehyde
(PFA, Sigma-Aldrich) for 10 min at room temperature (RT). Cells were washed with permeabili-
zation buffer (Permeabilization buffer, e-Biosciences), blocked using 2% goat serum (PAA
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Laboratories) in permeabilization buffer (10 min at RT) and stained with appropriate antibodies
or their isotype controls (Table A in S1 File) for 30 min at RT. For cell cycle analysis cells were fur-
ther stained with DAPI (Sigma-Aldrich). Compensation controls were prepared by using Comp-
Bead Plus compensation particles (BD Biosciences) incubated with appropriate antibodies. Flow
cytometry data were acquired with FACSAria using FACSDiva software (BD Biosciences) and
analyzed with FACSDiva (BD Biosciences) or FlowJo software (FlowJo, LLC). At least three inde-
pendent flow cytometry experiments were conducted for each antibody combination except for
detection of α1, α2 and α3 laminin chains where two independent experiments were performed.

Statistical analysis
To analyze the data from flow cytometric analysis fold change between the Median Fluorescence
Intensity (MFI) values was calculated by dividing the MFI values of RA-treated treated samples
with the MFI values of respective controls. In case where the MFI of treated sample was less than
the MFI of control sample, we calculated the fold decrease instead of calculating the fractional
fold increase. Fold increase and decrease were labeled with “+”and “-”respectively. Statistical vali-
dation of the results was performed using two-tailed paired t-test on log-transformed (log-base
2) values of fold changes. P-values 0.05 and less were considered significant.

Results

RA treatment induces concomitant expression of meso- and endodermal
lineage markers in hESC
The aim of this study was to analyze the potential changes in laminin expression in hESC dur-
ing early steps of differentiation. To induce the differentiation of hESC, we replaced the normal
growth medium (mTeSR1) with the differentiation medium containing 10 μM RA dissolved in
DMSO (see Materials and Methods).

Cells grown under the different culture conditions showed distinctive morphology of colo-
nies (S1A Fig). Although spontaneous differentiation of some cells was detected under normal
culture conditions and in DMSO-containing media on day 5, the substantial changes were
detected in RA-treated hESC colony morphology, which were characteristic to differentiating
hESC (S1A Fig). The decrease in the expression of the pluripotency marker OCT4 in the cen-
ters of large colonies became apparent by day 2 and spread towards the edges of the colonies
during the course of the experiment (Fig 1A). In addition to OCT4 we noted concomitant
gradual down-regulation of pluripotency markers SOX2, NANOG, SSEA3 during the RA treat-
ment of hESC as detected by flow cytometric analysis (Fig 1B). These results were confirmed
by Western blot analysis of the RA-treated cells, which showed that overall expression of
OCT4 remained high on day 3 but was decreased notably on day 5 (S1B Fig).

To characterize the RA-treated hESC in respect of their lineage commitment the cells were
stained with antibodies specific to markers of ectoderm (SOX-1, OTX2), mesoderm (Brachy-
ury, HAND1), endoderm (GATA-4, SOX-17), and extraembryonic tissues (CDX-2). At day 3
of RA treatment significant changes in several differentiation markers (OTX2, SOX-1, Brachy-
ury, SOX-17 and CDX-2) were seen (S2 Fig). Since no significant changes in the expression
of pluripotency markers could be detected at this time point the induction of expression of
markers of all three germ layers and extraembryonic tissue can be considered nondefinitive.
By day 5 of RA treatment drastic downregulation in the expression of pluripotency markers
OCT4, NANOG, SOX-2 and SSEA-3 could be seen. Concomitantly, a significant increase in
the expression of endodermal markers GATA-4 and SOX-17 and the mesodermal marker
HAND1 were present in RA-treated hESC (Fig 1B, S2 Fig). GATA-4 and HAND1, which were
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present at the highest level in RA-treated hESC were preferentially expressed in hESC with low
OCT4 content (Fig 1C). Furthermore, co-staining of RA-treated and control hESC with anti-
bodies recognizing GATA-4 and HAND1 showed the shift of the whole RA-treated hESC cell
population towards GATA-4 and HAND1 co-expression (Fig 1D). This shows that, in our
hands, the 5-day treatment with RA induced downregulation of pluripotency markers and co-
induction of mesodermal and endodermal lineage markers suggesting the commitment of
hESC towards mesendodermal differentiation program [29].

Quantitative and qualitative changes in laminin-511 and -521 expression
during early hESC differentiation induced by RA
It has been shown previously that hESC express laminin α5, β1, β2 and γ1 chains, which are the
components of laminin-511 and -521 trimers [22]. To compare the expression pattern of these
laminin chains in undifferentiated (day 0) and in RA-treated hESC (from day 1 to day 5), we per-
formed stainings with antibodies recognizing laminin α5, β1, β2 and γ1 chains. To distinguish
between pluripotent and differentiated cells, the samples were co-stained with an antibody recog-
nizing the pluripotency marker OCT4. Gradual changes in the expression pattern of studied lam-
inin chains were recognized during the early hESC differentiation (Fig 2). From day 0 to day 2
the colonies consisted mainly of OCT4-expressing undifferentiated cells and showed low and
homogenous expression of laminin chains (Fig 2A). As an exception, high level of laminin β1
chain was detected already on day 0. Laminin α5 chain was detected in the center of larger colo-
nies on day 1. From day 3 until day 5 of differentiation small areas with enhanced expression of
laminin chains appeared in colony centers, were OCT4 was not detectable pointing at the differ-
entiated cells (Fig 2A). To study the laminin expression pattern in detail, we analyzed laminin β1
chain expression by confocal microscopy in the hESC colonies treated with RA for 5 days. The
staining with anti-laminin β1 chain antibody revealed a network of large fibers, which was
located on top of the cells (Fig 2B). We confirmed that the laminin-rich ECM network coincided
with differentiating hESC with downregulated OCT4 expression. At the same time the ECM in
the vicinity of undifferentiated cells expressing high level of OCT4 contained less laminin β1.

To study the relative expression levels of trimeric laminin isoforms, we prepared protein
extracts from RA-treated cells collected on day 3 and day 5 and immunoprecipitated (IP) lami-
nin-511 and -521 using the laminin α5 chain specific antibody. The results showed an
increased expression of laminin α5 in differentiating hESC (Fig 2C, Table B in S1 File). Fur-
thermore, an increase in the amounts of β1 and γ1 chains bound to the α5 chain on day 5 of
RA treatment when compared to that of day 3 could be detected while the amount of
α5-bound β2 chain was not increased (Fig 2C, Table B in S1 File). This suggests that the relative
amount of laminin-511 was increased during early steps of RA-induced differentiation and the
relative amount of laminin-521 represented by laminin β2 chain was decreased.

To exclude the possibility that laminin α5 chain was associated with other laminin chains
than β1, β2 and γ1 we incubated the IP blots with antibodies recognizing laminin β3, γ2 and γ3
chains (S3 Fig). No additional laminin isoforms containing laminin α5 chain were found.

Fig 1. RA induces hESC differentiation and concomitant upregulation of HAND1 and GATA-4 expression. (A) Immunofluorescence analysis of OCT4
(green) in RA-treated hESC. Cell nuclei were labeled with DAPI (blue). Scale bar: 100 μm. (B) Flow cytometric analysis of OCT4, SSEA-3, NANOG, SOX-2,
GATA-4 and HAND1 expression in RA-treated hESC on day 3 and 5. Untreated hESC (grown in mTeSR1) harvested at the identical time-points were used
as controls. Average Fold Change based on Median Fluorescence Intensity (MFI) values was calculated in relation to corresponding control (mTeSR1)
samples. Statistical significance with P-values less than 0.05 are labeled with “*” (C) Flow cytometric analysis of RA-treated and control (mTeSR1) hESC
cells co-stained with antibodies recognizing OCT4 and GATA-4 or HAND1. Overlays of RA-treated (red) and control (mTeSR1, blue) hESC populations are
presented. (D) Flow cytometric analysis of RA-treated and control (mTeSR1) hESC co-stained with GATA-4 and HAND1-specific antibodies. The
percentages of cell populations in each quadrant are indicated on the density plots.

doi:10.1371/journal.pone.0138346.g001
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Laminin α5 chain expression is increased in the differentiating hESC
Since our previous experiments showed an increased level of laminin α5 chain-containing lam-
inins in RA-treated hESC culture lysates, we asked whether laminin α5 chain expression was
specifically increased in differentiating hESC at the single cell level. First, we used antibodies

Fig 2. The expression of laminin α5, β1, β2 and γ1 chains in differentiating RA-treated hESC. (A) Immunofluorescence analysis of laminin (LM) chains
α5, β1, β2 and γ1 and OCT4 in RA-treated hESC. Laminin chains (red) and OCT4 (green) were detected with appropriate antibodies. Cell nuclei were labeled
with DAPI (blue). Scale bar: 100 μm. (B) Multilayer confocal microscopy was used to visualize the LM β1 chain (red) localization and OCT4 (green)
expression in RA-treated hESC. Cell nuclei were labeled with DAPI (blue). Scale bar: 20 μm. (C) Immunoprecipitation of laminin-511 and -521 from RA-
treated hESC. The protein complexes were immunoprecipitated using laminin α5 chain-specific antibody. The laminin α5, β1, β2 and γ1 chains were
detected byWestern blot analysis using corresponding antibodies.

doi:10.1371/journal.pone.0138346.g002
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specific to the pluripotency marker SSEA3 and laminin α5 chain to co-stain the hESC treated
with RA for 5 days. Flow cytometric analysis showed that cells expressing SSEA-3 at low level
contained more α5 laminin chain than those, which expressed high level of SSEA3 (Fig 3A).
This finding led us to hypothesize that the committed hESC have a higher laminin α5 chain
expression level. Indeed, when we co-stained the RA-treated hESC with antibodies recognizing
HAND1 and α5 laminin chain we found that the cells with higher HAND1 expression showed
also a higher expression of α5 laminin chain (Fig 3B).

The expression pattern of laminin chains in undifferentiated and
differentiating hESC
Several groups have studied laminin expression pattern of undifferentiated hESC culture [21–
24]. However, the researchers have focused on the laminin chain mRNA expression and the
data regarding the expression of corresponding proteins is scarce. Furthermore, to our knowl-
edge, there exist no published data describing the changes in laminin expression during early
differentiation of hESC. Therefore, we aimed to describe the changes in laminin chain expres-
sion pattern at protein and mRNA level in qualitative terms during early differentiation of
hESC induced by RA. We performed a comprehensive Western blot and RT-PCR analysis of
RA-treated hESC samples collected at day 0, 3 and 5 using antibodies and PCR primers, which
recognized laminin α1-α5, β1-β3 and γ1- γ3 chains. The hESC grown in mTeSR1 medium and
in differentiation medium without RA (but including RA solvent DMSO) were used as controls
(Fig 4, S4 Fig). The lysates from a selection of human tumor cell lines (A431, A549, JAR and
JEG-3) and normal human platelets were used as positive controls for laminin chain expression
[30–33] (see Materials and Methods).

We detected the presence of protein and mRNA of α1, α5, β1, β2 and γ1 chains in undiffer-
entiated hESC as previously reported by others [21,22] as well as in in differentiating hESC
(Fig 4A, S4 Fig). Additionally the presence of laminin α2, α3, β3, γ2, and γ3 chains in the hESC
lysates was detected (Fig 4A), which have not been reported in hESC before at protein level.
RT-PCR analysis showed the presence of all mRNAs corresponding to the detected laminin
chains confirming the hESC as the origin of these proteins (S4 Fig).

Interestingly, specific variants of laminin α3, β3 and γ2 chains were detected in hESC (Fig
4A). Two variants of the laminin α3 chains (165 kDa and 145 kDa) [34] were detected in the

Fig 3. Laminin α5 chain expression increases in differentiating hESC. Flow cytometric analysis of RA-
treated (red population) and control (mTeSR1, blue population) hESC stained with antibodies recognizing
laminin (LM) α5 chain and SSEA-3 (A) or HAND1 (B).

doi:10.1371/journal.pone.0138346.g003
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hESC lysates. Although we aimed to show the expression of different laminin chains only at
qualitative level, we noted that the 165 kDa variant was almost equally present in all the studied
samples, while the 145 kDa variant was upregulated in the RA-treated hESC (Fig 4A). These
laminin α3 chain variants were also present in the A431 cell line, which has been shown to
express laminin-332 [31]. Furthermore, in accordance with the published data, two variants of
laminin β3 chain with dissimilar electrophoretic mobility were detected in A431 cell lysate
[31]. In hESC only the β3 chain variant with higher molecular mass was detected (Fig 4A).
Since we were able to detect the presence of laminin β3 chain mRNA, albeit at a very low level
(S4 Fig), we concluded that this laminin chain is expressed in hESC. Only the 105 kDa variant
of the laminin γ2 chain was present in all hESC samples regardless of the hESC differentiation
status (Fig 4A) while the reference cell line A431 expressed both known variants of this laminin
chain (105 kDa and 155 kDa) [34].

Laminin α4 chain was not detected in hESC in Western blot assay, although it was detected
in the positive control sample prepared from human platelets (Fig 4A). Since the mRNA of this
laminin chain was barely detectable (S4 Fig) we concluded that the laminin α4 chain protein is
absent in hESC.

To study the changes in the expression level of detected laminin α chains we performed a
flow cytometric analysis of undifferentiated and RA-treated hESC cells stained with the anti-
bodies recognizing α1, α2, α3 and α5 chains. On day 3 we detected increased expression of α3
and α5 laminins chain expression in RA-treated cells (Fig 4B). Although the expression of lam-
inin α1 chain was also increased in RA-treated hESC, this increase was insignificant. Further
increase in laminin α5 chain was detected on day 5 during the hESC differentiation (Fig 4B).
The increased levels of α3 and α1 laminin chains were also detected on day 5 but variation
from one experiment to another rendered these measurements insignificant.

Discussion
The fact that hESC interact actively with their surrounding ECM has attracted a fair amount of
attention recently. In particular, the research conducted in this field has shown that both lami-
nin-511 and -521, which are expressed by hESC, support their undifferentiated growth in long-
term cultures [22,25]. In concordance with this a recent study suggests that the α5-containing
laminins produced by the hESC are necessary for their self-renewal [35]. The studies conducted
so far have, however, focused on the pluripotent hESC cultures, but the potential changes in
laminin repertoire during the early steps of hESC differentiation have not been studied yet.

In this study we characterized the changes in the expression of laminin α5, β1, β2 and γ1
chains during early differentiation of hESC in closer detail. To induce hESC differentiation, we
utilized a RA-mediated protocol. Since our aim was to study the changes in laminin expression,
which accompany the exit of hESC from pluripotent state we followed the cells only until the
expression of pluripotency markers was substantially decreased. Consequently, by the end of
the experiments (day 5) the RA treatment induced modest upregulation of mesodermal lineage
marker HAND1 and endodermal lineage markers SOX-17 and GATA-4 in hESCs suggesting
the induction of differentiation towards mesendodermal lineage [29]. The induction of

Fig 4. hESC express a diverse range of laminin chains. (A) Western blot analysis of indicated laminin
(LM) chains in hESC. The lysates of JEG-3 (α1 chain), A431 (α2, α3, β1-β3, γ1- γ3), A549 and JAR (α5) cells
and human platelets (α4) were used as controls. See the text for a detailed explanation. (B) Flow cytometric
analysis of laminin (LM) chains α1, α2, α3 and α5 in hESC on day 3 and 5 of RA treatment. Untreated hESC
(mTeSR1) were used as controls. Average Fold Change based on Median Fluorescence Intensity (MFI)
values was calculated in relation to corresponding control (mTeSR1) samples. Statistical significance with P-
values less than 0.05 are labeled with “*”.

doi:10.1371/journal.pone.0138346.g004
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mesendodermal markers is somewhat surprising since RA-treatment has been shown to induce
neuronal differentiation in hESC [8]. There may be several reasons behind this unexpected
observation. In general the changes in the expression pattern of differentiation markers at such
early differentiation stages are poorly described and thus the final lineage commitment may
differ from the early marker expression. Furthermore, there are studies where RA induced
hESC differentiation towards ectodermal and endodermal lineages [9] or ectodermal and
mesodermal lineages [36] suggesting that hESC responses to RA treatment are context depen-
dent. In concordance with the latter, RA has also been described as a factor that promotes mul-
tilineage differentiation and needs to be combined with other inductive signals in order to
induce hESC differentiation towards neuronal lineages [37].

We noted that the accumulation of the studied laminin chains was accompanied with the
differentiation status of the hESC. The increased expression of laminin chains was first noted
in the centers of RA-treated hESC colonies, which coincided with the decrease in the expres-
sion of the pluripotency marker OCT4 in the hESC nuclei. Furthermore, in the centers of dif-
ferentiating colonies laminin accumulated into a network-like structure that may indicate
formation of higher-order laminin complexes since the formation of polymeric networks is a
well-known property of laminins [38]. Such laminin-containing structure could be needed for
proper differentiation of hESC. For example, in early embryonic differentiation specific lami-
nin-containing structure—the Reichert's and embryonic basement membranes—are formed,
which guide further differentiation of the embryo [19].

Since laminin-511 and -521 differ in their ability to support the hESC clonal survival [25],
we were interested to find out, whether their relative amounts in hESC colonies change during
early differentiation. Our finding that laminin-511 but not -521 preferentially accumulates dur-
ing early differentiation induced by RA suggests that laminin-511 is an important factor for the
initiation or coordination of differentiation, while laminin-521 could be more associated with
the hESC pluripotent state. To verify this hypothesis we used a laminin α5 chain-specific anti-
body (8G9), which preferentially blocks the binding of laminin-511 to cellular integrins [39].
However, the blocking experiments did reveal ambiguous effect of the blocking antibody on
differentiation of hESC in the presence of RA (data not shown). Recently, α5-containing lami-
nins were shown to be necessary for hESC self-renewal [35]. However, the potential functional
differences between laminins 511 and 521 were not studied. Studies with mouse embryonic
stem cells (mESC) have also suggested an important role for laminin-511 in the differentiation
and showed that this particular laminin isoform promotes the mESC differentiation towards
endodermal lineage [40,41]. Nevertheless, given the clear link between the induction of hESC
differentiation and the increase in laminin-511 presented in current paper, its exact role in reg-
ulation of hESC differentiation status is yet to be elucidated in upcoming studies

Various groups have analyzed the expression pattern of laminin chains in hESC at mRNA
level [21–24], while only a few publications have addressed this question at protein level
[21,23]. The latter agree that the laminin α5, β1 and γ1 chains are expressed at detectable levels
in hESC at protein level [21,23], which is in good concordance with our findings. Still, discrep-
ancies exist in literature concerning the expression of other chains. Two studies show the pres-
ence of laminin α1 chain mRNA [21,22] and one study has demonstrated the presence of
laminin α1 chain protein in hESC [23]. To our knowledge there exists only one study, which
describes the presence of laminin α2 chain mRNA in hESC, however, the expression of α2
chain protein was not shown [22]. Two studies have detected the mRNA of laminin β2 chain
in the hESC [21,22], while only one of them has additionally demonstrated the presence of the
corresponding protein by immunofluorescence microscopy [21]. There exist other reports,
however, which claim that laminin β2 chain mRNA [24] or corresponding protein [23] were
not found in hESC. Furthermore, the researchers have detected the expression of γ2, γ3 and β3
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chain mRNAs in hESC, nevertheless, the presence of corresponding proteins was not detected
[21]. The expression of laminin chain γ3 was also detected by another group, however, the
authors claim that the expression of α1, α2, β3, γ2 chain was not present in hESC [24].

In order to shed light on these discrepancies and to study the changes in laminin expression
pattern at protein level during the induction of hESC differentiation, we conducted a compre-
hensive analysis of different laminin chains. Surprisingly, we were able to detect a number of
laminin chains in cultured hESC. We confirmed the expression of previously identified laminin
α1, α5, β1, β2 and γ1 chains at protein as well as at mRNA level in hESC. We showed for the
first time the presence of laminin α2, α3, β3, γ2 and γ3 chains in hESC at protein levels. As the
mRNA expression of laminin α2, β3, γ2 and γ3 chains has been shown before [21,22,24], the
detection of relevant proteins in our study was not completely unexpected. In contrast, the
presence of laminin α3 chain has not been previously detected in hESC [21–24]. Furthermore,
we found that a specific variant of laminin α3 chain − 145 kDa − was upregulated in the RA-
treated hESC. In concordance with previous studies, the laminin α4 chain was not detected in
hESC [21–24]. According to our data, no major qualitative changes in the gross laminin chain
expression pattern during the early steps of hESC differentiation were detected. Concomitantly,
the mRNA analysis showed the presence of similar laminin chain pattern in every sample stud-
ied, confirming this conclusion.

One has to note that the differences between our and previously published data may arise
from the use of specific hESC cell line and culture conditions. Furthermore, the findings of this
study suggest that hESC may produce different laminins depending on their immediate sur-
roundings. This adds an additional dimension to our understanding about the ability of hESC
to modify and organize their microenvironment.

Our findings suggest that intricate alterations in laminin isoform balance rather than major
qualitative changes take place during the early steps of hESC differentiation. As an example we
demonstrate that laminin-511 but not -521 preferentially accumulates during early differentia-
tion of hESC. Given that α5-containing laminin isoforms produced by hESC also contribute to
the maintenance of their pluripotency [22,25], this suggests that changes in the balance of lami-
nin-511 and laminin-521 isoform expression might guide hESC early differentiation. Further
cell culture experiments utilizing different laminin-511 and -521 ratios in growth matrix could
clarify the potential use of our findings in ex vivo hESC culture and differentiation protocols.

One has to keep in mind, however, that ECM is a complex network of proteins and the
changes in ECM composition during hESC differentiation are likely to involve many other
ECM components apart from laminins. The elucidation of these changes is a compelling topic
for further investigations.

Supporting Information
S1 Fig. Cultivation in the presence of 10 μMRA induces differentiation of hESC. For the
initiation of hESC differentiation, one day after passage (day 0) the mTeSR1 media was
replaced with the differentiation media, which contained 10 μMRA or DMSO (control). (A)
Changes in colony appearance during RA treatment of hESC. When compared with the cells
grown in mTeSR1 media, the RA- or DMSO-treated hESC colonies are less homogeneous. The
irregular shape of RA-treated hESC is a hallmark of differentiation. Scale bar: 100 μm. (B)
Western blot analysis of OCT4 expression in undifferentiated (mTeSR1), mock-treated
(DMSO) and RA-treated hESC harvested at indicated timepoints.
(TIF)

S2 Fig. Expression of lineage-specific differentiation markers in RA-treated hESC. Flow
cytometric analysis of OTX2, SOX-1 (ectodermal markers), Brachyury (mesodermal marker),
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SOX-17 (endodermal marker) and CDX-2 (extra-embryonal lineage marker) expression in
hESC on day 3 and 5 of RA treatment. Untreated hESC (mTeSR1) harvested at the same time-
points were used as controls. Average Fold Change based on Median Fluorescence Intensity
(MFI) values was calculated in relation to corresponding control (mTeSR1) samples. Statistical
significance with P-values less than 0.05 are marked with “�”.
(TIF)

S3 Fig. Laminin α5 chain is not associated with the β3, γ2 and γ3 chains in RA-treated
hESC. Immunoprecipitation was performed with laminin α5 chain-specific monoclonal anti-
body. The laminin (LM) β3, γ2 and γ3 chains were detected by Western blot analysis using
chain-specific antibodies.
(TIF)

S4 Fig. The expression pattern of laminin chain mRNAs in hESC. RT-PCR analysis of total
RNA isolated from hESC grown in differentiating media with or without RA and in mTeSR1
(control cells). Primer sets used for the detection of different laminin chains are described in
Supporting Information (Table C in S1 File).
(TIF)

S1 File. The list of antibodies and primers used in the study and summarized results of
quantification of immunoprecipitated material.
(DOC)
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