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Abstract 

The immune system protects the body against a wide range of infectious diseases and cancer by 
leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune 
cell/organ therapies based on the manipulation, infusion, and implantation of autologous or 
allogeneic immune cells/organs into patients have been widely tested and have made great 
progress in clinical applications. Despite these advances, therapy with natural immune cells or 
lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials 
and strategies have been applied to develop artificial immune cells and lymphoid organs, which 
have attracted considerable attentions. In this review, we survey the latest studies on engineering 
biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial 
antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also 
discussed. 
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Introduction 
The immune system is made up of lymphoid 

organs (such as the thymus, bone marrow, spleen, and 
lymph nodes), specialized cells (such as T cells and B 
cells), and secreted proteins (such as cytokines).[1] 
This network collaborates to protect the body against 
many diseases.[1] However, immune surveillance can 
be evaded by a variety of mechanisms.[2-5] For 
example, cancer cells can produce a variety of ligands, 
such as programmed death ligand 1 (PD-L1) to inhibit 
T cell attacking, resulting in PD-L1-mediated T cell 
apoptosis.[6, 7] Immunotherapy aims to re-boost 
effective immune responses to destroy harmful 
cells[8-12] or to protect normal tissues from immune 
attack in autoimmune disease and rejection of 
transplanted organs.[11-14] Among them, 
immunotherapy based on the manipulation and 
transfusion of engineered immune cells or tissues has 
recently made great progresses in clinical 

applications.[15, 16] However, therapy with natural 
immune cells or lymphoid organs is often costly, 
time-consuming, and may have a limited effectiveness 
in clinical trials.[17, 18] The development of artificial 
immune cells and artificial lymphoid organs using 
biomimetic strategies has become an emerging field as 
an alternative.[19-21] Bioengineering technologies, 
especially immune engineering technologies 
leveraging biomaterials, such as micro- or 
nanoparticles and scaffolds, have attracted 
tremendous attentions.[22-34] Among them, artificial 
biomimetic materials, inspired by nature, have 
frequently been studied as immunotherapeutics to 
treat infectious diseases and cancer.[18-20, 35-39] Here 
we survey the latest studies using 
biomaterials-incorporated strategies to mimic 
immune cells, with a focus on artificial antigen 
presenting cells (aAPCs) and lymphoid organs. 
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Emerging trends and clinical challenges in this field 
are also discussed. 

Artificial antigen presenting cell system 
Antigen-presenting cells (APCs) act as a link 

between the innate and adaptive immune 
responses.[40] Upon internalization of an antigen, the 
APCs can display antigen-class I and II major 
histocompatibility complex (MHC) on the membrane 
together with co-stimulatory signals to activate 
antigen-specific T cells, which play a key role in the 
adaptive immune response.[41] Generally, 
antigen-specific T cells can be primed and amplified 
ex vivo before they are transferred back to the patient. 
For example, in adoptive cell transfer (ACT), 
tumor-specific T cells are isolated then expanded ex 
vivo to obtain a large number of cells for 
transfusion.[16] As one of the APCs, dendritic cells 
(DCs) are usually used to maximize T cell stimulation 
ex vivo.[42] Particularly, the initiation of 
MHC-I-restricted CD8 cytotoxic lymphocytes (CTL) is 
primarily carried out by cross-presentation of specific 
DC subsets.[43] However, the preparation of DCs for 
clinical use is challenging.[20] In addition to the need 
for autologous cells, the preparation of appropriately 
differentiated and activated DCs is a delicate task 
requiring high level of skills. Moreover, the isolation 
and culture of DCs is a time-consuming process that 
obstructs the translation of T cell based therapy.[44] 
Therefore, technologies for efficient expansion of the 

therapeutic lymphocytes are highly desired. [13, 25, 
32, 34, 35, 45]  

Artificial APCs (aAPCs) are engineered 
platforms for T cell activation and expansion that aim 
to bypass the aforementioned obstacles by mimicking 
the interaction between DCs and T cells.[20, 35-38, 46] 
They include multiple systems that utilize engineered 
cells or synthesized biomaterials. Since these aAPCs 
are ready-to-use to the patients, this strategy is 
becoming a common tool in immunology and clinical 
applications.[47, 48] Synthetic aAPCs based on 
biomaterials have shown great success in generating 
anti-tumor immune responses in vitro and in vivo.[20, 
36, 37, 44, 49] They are often conjugated or 
encapsulated with three signals required for T cell 
activation (Figure 1). Signal 1 is the binding of 
peptide-MHC complexes to provide T cell receptor 
(TCR) specificity. TCR agonists, such as recombinant 
peptide-MHC complexes or antibodies directed 
towards CD3, lead to ligation of the TCR, which 
triggers the activation of the T cell. Signal 2 is 
provided by co-stimulatory molecules, which are 
upregulated on APCs; this leads to the complete 
activation of T cell. Co-stimulatory agonists, such as 
the anti-CD28 monoclonal antibody (mAb), are 
known to provide the necessary co-stimulatory 
signals to T cells. Lastly, signal 3 involves cytokines 
produced by either APCs or T cells, which are 
essential for T cell expansion and 
differentiation.[50-53] IL-2 is one of the most known 

cytokines for CD8+ T cell 
survival. Other cytokines 
such as IL-7, IL-15 and IL-21 
have been investigated and 
may promote better 
expansion or differentiation 
into more optimal T cell 
phenotypes.[50-53] In 
addition to the activation of T 
cells by aAPC, tolerogenic 
aAPCs coupling with 
negative signals, such as 
apoptosis-inducing 
molecules, deplete targeted 
antigen-specific T cells. It is 
another strategy to treat 
autoimmune diseases and 
allograft rejection.[54-56] 
Here, we summarize recent 
advances in aAPC systems 
with an emphasis on 
synthetic and biomimetic 
biomaterials for both ex vivo 
and in vivo applications in 
immunotherapy. 

 
Figure 1. The major interactions between T cells and DCs and the three signals leading to activation and expansion 
of T cells. Signal 1 is antigen presentation by interaction between the peptide-MHC complex and TCR; Signal 2 is 
co-stimulation by co-stimulatory molecule interaction. The binding of CD80/CD86 on DCs and CD28 on T cells is 
one of the co-stimulatory signals. Negative co-stimulatory interactions such as PD-L1/PD-1 and CD80/CTLA-4 are 
also shown in this figure. Signal 3 is release of cytokines, which are essential for T cell expansion and 
differentiation.[153]  
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Lipid based aAPC 
The dynamic lipid bilayer is essential for the 

molecular interactions in the natural systems.[57] To 
mimic natural interactions between natural APCs and 
T cells, lipid bilayer-based particles with a fluid 
membrane have been developed as aAPCs.[58-62] For 
instance, MHC-containing liposomes developed by 
Prakken et al. [58] have been reported to activate 
CD4+ T cells in vitro, leading to T cell proliferation as 
well as IL-2 secretion. It indicated the role of the lipid 
membrane as a scaffold supporting MHC-restricted 
antigen presentation. In addition, preclustering of 
MHC-peptide complexes on the APC membrane 
microdomains enhanced the efficiency of T cell 
activation.[63] In fact, natural APCs have been shown 
to precluster antigens even in the absence of T cells. 
Therefore, Ding et al. [59] designed reconstituted 
liposomes with membrane microdomains containing 
enriched epitope/MHC complexes, also known as 
RAFTsomes, to stimulate CD4+ T cell proliferation. 
Similarly, Giannoni et al. [60] described an aAPC 
system for ex vivo stimulation of human polyclonal T 
cells. The described aAPCs were based on artificial 
membrane bilayers containing T cell ligands 
membrane microdomains. They showed that 
preclustering of MHC molecules triggered a higher 
degree of T cell activation than soluble tetramers and 
aAPCs with MHC molecules uniformly distributed in 
artificial bilayer membranes. In a subsequent study by 
the same group, anti-LFA-1 (an adhesion molecule to 
allow for an efficient aAPC-T-cell interaction) together 
with anti-CD3 and anti-CD28 were preclustered in 

microdomains as before which resulted in an 
increased expansion of polyclonal T cells or 
antigen-specific T cells (lymphocytes from 
tumor-invaded lymph nodes cultured with the 
cognate antigen before) compared to commercially 
available systems (Dynabeads® CD3/CD28 T Cell 
Expander).[61] 

To enhance the stability of the liposomes, 
researchers also used solid particles as a scaffold or 
core for the lipid bilayer, also called supported lipid 
bilayers (SLBs).[64] Different SLB systems have been 
developed recently,[65-68] which offered improved 
stability to standard liposomal formulations.[69] For 
example, Ashley et al. [70] developed a protocell that 
consists of a nanoporous silica core and a SLB, which 
enabled increased stability and drug loading capacity. 
The authors found that the nanoporous silica particles 
showed increased membrane fluidity compared to the 
protocells formed from nonporous solid silica 
nanoparticles or unsupported liposomes. In another 
example, using silica beads coated with a lipid bilayer 
was shown to be more efficient than liposomes to 
boost CTL responses.[71] In addition, various types of 
natural cell membranes were extracted for particle 
coating.[65, 68, 72-75] For example, plasma membrane 
of tumor cells vesicles have been coated on poly 
(lactic-co-glycolic acid) (PLGA) particles[65], silica 
microbeads, or latex microbeads[76] for immune 
stimulation, leading to increased immune activity 
(Figure 2). This technology presents the potential to 
synthesize particles that are coated with natural DC 
membranes for aAPCs preparation. 

 
 

 
Figure 2. Cancer Cell Membrane-Coated Nanoparticles. (A) Schematic of CCNP synthesis. The cancer cell membrane along with its associated antigens were 
coated onto PLGA polymeric nanoparticle cores. The resulting CCNPs was used to deliver tumor-associated antigens to antigen presenting cells or to homotypically 
target the source cancer cells. (B) Transmission electron micrographs (TEM) of cancer cell membrane-coated nanoparticles. Reprinted with permission from ref. [65]. 
Copyright 2014 American Chemical Society. 
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Polymeric aAPC 
Various polymers, such as biodegradable 

PLGA[77-83] and non-biodegradable sepharose or 
polystyrene beads[84-95], have been incorporated into 
aAPC systems. Immunomodulatory compounds, such 
as anti-CD3, pMHC and anti-CD28 mAbs can be 
anchored on the surface of polymeric particles, while 
IL-2 or other soluble molecules can be gradually 
released from within the aAPC.  

Non-biodegradable sepharose or polystyrene 
beads were the first synthetic bead-based platforms 
used to activate T cells.[96, 97] It was reported that the 
optimal size of microbeads was between 4 to 5 μm, 
which is one important parameter for T cell 
activation.[84] The polymer bead-based aAPCs have 
been used as a tool to study T cell biology.[98, 99] 
Additionally, aAPC systems can be synthesized from 
a variety of biodegradable polymers, such as PLGA. 
Steenblock and Fahmy developed a PLGA-based 
biodegradable aAPC that presented both recognition 
ligands and co-stimulatory ligands (anti-CD3, 

anti-CD28 mAbs and peptide-MHC complexes) on its 
surface and slowly released the encapsulated 
cytokines (IL-2) from particles (Figure 3).[79] Surface 
ligand presentation was stable about 20 days, leading 
to a significantly secretion of interferon gamma (IFNγ) 
by the murine and human T cells ex vivo. The PLGA 
particles of 6–10 μm in size were found to be the most 
effective for T cell activation and expansion ex 
vivo.[79] In another study, Kosmides et al. [81] 
combined an antigen-specific PLGA-based aAPC and 
a checkpoint blockade molecule, anti-PD-1 
monoclonal antibody, for cancer immunotherapy. The 
PLGA particle was functionalized by antigen specific 
MHC-I and anti-CD28 mAbs. Combinatorial 
treatment with aAPCs and anti-PD-1 enhanced CD8+ 
T cells in vitro, significantly delayed tumor growth in 
vivo, and increased median survival time in mice after 
systemic administration. It was associated with 
reduced PD-1 expression and enhanced 
antigen-specific proliferation of CD8+ T cells within 
the tumor microenvironment and spleen. 

 
 

 
Figure 3. Biodegradable polymeric artificial antigen-presenting cells. (A) Schematic of a biodegradable PLGA aAPC. Anti-CD3, anti-CD28 mAbs, and pMHC 
complexes were loaded onto aAPCs through biotin-avidin conjugation. Encapsulated cytokines were released from particles in a time-dependent manner. (B) SEM 
imaging of the microparticle. (C) Fluorescence imaging of aAPC–T-cell binding. (D) Expansion of T cells after various treatment as indicated. Reprinted with 
permission from ref. [79]. Copyright 2008 American Society of Gene & Cell Therapy. 
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It is known that shape of aAPC appears to be an 
important factor for T cell activation as the natural 
APCs are not spherical.[80, 100] Therefore, 
non-spherical PLGA-based microparticles have been 
designed to mimic the natural situation by increasing 
the contact area of particles. The film-stretching 
method was used for controlling the shape of PLGA 
microparticles to generate ellipsoidal aAPCs with 
varying long axis lengths and aspect ratios.[101] It 
was reported that elongated PLGA particles with a 
more ellipsoidal shape were more efficient as aAPCs 
compared to spherical particles, leading to a higher T 
cell proliferation in vitro.[80] In a subsequent study by 
the same group, Meyer et al. [102] synthesized 
nanoellipsoidal PLGA aAPCs as before and they 
activated T cells in vivo following systemic 
administration. After systemic administration, these 
nanoellipsoidal aAPCs stimulated stronger in vivo 
immune cell responses comparable to previously 
reported spherical aAPCs at a reduced overall protein 
dose. Moreover, the authors found that these 
nanoellipsoidal aAPCs had enhanced 
pharmacokinetic properties, properly due to their 
resistance to hepatic and splenic elimination. 

In addition to PLGA, a new class of semi-flexible 
and filamentous polymers comprising of poly 
(isocyano dipeptide) and oligo (ethylene oxide) side 
chains were developed by Rowan and 
coworkers.[103] Anti-CD3 mAbs were decorated to 
these highly controlled, semi-stiff polymers to mimic 
dendritic cells. These anti-CD3 polymers induced a 
more robust T cell response than PLGA 
microparticles. This enhanced activity can be 
attributed to the structural flexibility and 
multivalency of these polymers, assisting in the 
formation of TCR nanoclusters on the T cell surface. In 
addition, these semi-flexible and filamentous 
polymers were biocompatible and non-toxic, 
highlighting their promise for the induction of both ex 
vivo and in vivo T cell responses. 

Inorganic aAPCS 
Synthetic aAPCs may also contain 

superparamagnetic parts for further separation from 
cells by the magnetic field before transfusion into 
patients. Magnetic particles are of particular interest 
for ex vivo T cell expansion.[86, 104-108] Levine et 
al.[106] used magnetic beads covalently linked to 
anti-CD3 and anti-CD28 mAbs to first demonstrate 
expansion of purified CD4+ T cells in vitro. Today, T 
cell expansion ex vivo using 
anti-CD3/anti-CD28-coated magnetic beads has been 
applied in clinical trials of ACT to treat various types 
of cancer[109-113]. In addition to magnetic beads, 
magnetic nano-aAPCs were recently developed. 

Perica et al. [107] developed a strategy using magnetic 
nano-aAPCs and an externally applied magnetic field 
to enhance the T cell receptor clustering. After 
binding to the TCR, the magnetic field was used to 
drive aggregation of these magnetic nano-aAPCs, 
resulting in TCR clustering and increased T cell 
expansion in vitro and after adoptive transfer in vivo. 
Magnetic field-enhanced nano-aAPC stimulation is a 
novel approach to drive receptor clustering. In 
another example, a magnetic field was used for the 
enrichment of rare tumor-specific T cells and activate 
them to induce proliferation.[108] This enrichment 
and expansion strategy using paramagnetic 
nano-aAPC could effectively expand tumor-specific T 
cells, resulting in a greater than 1000-fold expansion 
of tumor-specific T cells in one week.[108] 

Janus particles, named in reference to the Roman 
god, Janus, who had two faces, are particles that have 
two distinct faces.[114] Double-sided Janus particles 
could prove useful in the development of aAPCs. Yu 
and co-workers[115] designed a magnetic Janus 
microparticle to control T cell activation remotely. 
One side of these particles was decorated with a thin 
film of magnetically responsive materials, and on the 
other side coated with stimulatory ligand (anti CD3) 
for T cell activation. By simultaneously controlling the 
rotation and locomotion of the Janus particles, the 
authors demonstrated the initiation of T cell activation 
in single-cell precision. 

The high-surface-area carbon nanotubes have 
been widely used as in aAPCs for ex vivo T cell 
expansion[116-119]. Fadel et al. [116] demonstrated 
that anti-CD3-coated tubes induced a higher specific T 
cell activation and IL-2 production than other high 
surface area materials (activated carbon, polystyrene, 
and C60 nanoparticles). A potential mechanism for 
the enhanced stimulation response with treated 
single-walled nanotubes (SWNTs) surface may be due 
to the local clustering of the antibody stimuli in defect 
regions combined with the chemical nature of the 
environment surrounding these clusters. In the 
following work, a carbon nanotube–polymer 
composite (CNP) was developed to expand T cells ex 
vivo (Figure 4).[118] The CNP was made of carbon 
nanotubes with magnetite and PLG 
(polylactate-co-glycolate) nanoparticles loaded with 
IL-2. The release of IL-2 from the PLG nanoparticles 
facilitated antigen presentation to T cells and 
proliferative capacity of T cells. These CNPs could 
remarkably activate the T cells ex vivo. Meanwhile, the 
magnetic properties of the PLG nanoparticles allowed 
for separation of CNPs from the expanded T cells after 
activation ex vivo. After adoptively transferred into 
the tumor bearing mice, the expanded T cells induced 
a significant delay in tumor growth in a murine 
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melanoma model and increased T cell infiltration in 
tumor sites.  

Artificial Lymphoid Organs 
Lymphoid organs such as the thymus, spleen, 

and lymph nodes are essential for the immune 
response.[1] Bioengineering artificial lymphoid 
tissues aims to use these organs for treatment of 
various diseases is an emerging field.[19] Successfully 
bioengineered artificial lymphoid organs are able to 
mimic the natural organs by recruiting and 
organizing lymphocytes into such structures and 

ensuring their survival, interaction, activation and 
function.[18, 19, 39, 120, 121] Biomaterial-based 
three-dimensional (3D) scaffolds have been widely 
studied for engineering of lymphoid organs. Various 
scaffold materials, including natural proteins such as 
fibroin[122], spidroin[123], alginate[124] and 
collagen[125], synthetic polymers including PLG 
(polylactate-co-glycolate), PLA (polylactate), and 
PGA (polyglycolate),[126] and inorganic mesoporous 
silica rods[127] have been applied for constructing 
scaffolds.  

 

 
Figure 4. A carbon nanotube–polymer composite for T-cell therapy. (A) Schematic of bundled CNTs as aAPCs to activate T cells. (B) SEM images of a CNP at low 
(top) and high (bottom) magnifications. Right: TEM images of PLGA nanoparticles (top) and CNT (bottom). (C) Expansion ability of OT-1 CD8+ T cells by CNTs 
aAPCs. (D) Level of IFN-γ release from CD8+ T cells after various treatment as indicated. Reprinted with permission from ref. [118]. Copyright 2014 Nature 
Publishing Group. 
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Lymph node  
The artificial lymph nodes that imitate the 

structure of a lymph node organ have been 
developed. First, several in vitro models of lymph 
node were created. In one approach, the researchers 
developed a bioreactor that imitated human cell 
microenvironment and homeostasis of primary 
follicles.[120] It was developed using macroporous 
matrix sheets with dendritic cells or a suspension of 
lymphocytes wherein the soluble factors and cells 
could communicate with each other. Both the T and B 
lymphocytes and dendritic cells formed clusters 
within the matrix, indicating their potential 
functionality. Additionally, this system represented 
some of the processes in a lymph node, for example, 
the migration and interaction of lymphocytes with 
dendritic cells. In another example, Matloubian et al. 
constructed an in vitro lymph node model to study the 
local inflammation in lymph nodes.[128] The model 
consisted of a matrix populated with fibroblast 
reticular cells under the controlled flow of lymphatic 
fluid. It was found that lymph flow affected not only 
the expression of the chemokines but also the rate of 
cell division, indicating that increased lymph flow 
may act as an early inflammatory cue to enhance 
efficient immune response. Recently, Purwada et al. 
examined the ex vivo generation of artificial lymphoid 
follicles with active germinal center (GC) 
reactions.[129] Here, the authors developed an 
artificial B cell follicle organoid made of a 
RGD-loaded hydrogel scaffold which reinforced with 
silicate nanoparticles (SiNP). The scaffold mimicked 
the anatomical microenvironment of a lymphoid 
tissue and could accelerate development and 
differentiation of primary naïve B cells into the GC 
phenotype ex vivo by providing extracellular matrix 
and signals to co-cultured naïve B cells. The described 
approach is promising for artificial production of 
antigen specific antibodies. 

Furthermore, in vivo models of artificial lymph 
nodes have been demonstrated. Irvine and 
co-workers[130] designed injectable DCs-carrying 
alginate gels. An in vivo self-gelling formulation of 
alginate was designed, which was obtained by mixing 
calcium-loaded alginate microspheres with soluble 
alginate solution and dendritic cells. When 
subcutaneously injected into mice, these DCs’ alginate 
‘nodes’ attracted both host DCs and T cells to the 
injection sites over a week in vivo. Meanwhile, some of 
the inoculated DCs moved to the draining lymph 
nodes. This gel/DC system showed great promise in 
mimicking antigen specific lymph nodes to treat 
tumors or infections. Watanabe and co-authors[131, 
132] developed a system based on a collagen matrix. 

The thymus-derived stromal cell line TEL-2 
expressing lymphotoxin β receptor (LTbR) and 
vascular cell adhesion molecule-1 (VCAM-1) were 
embedded in 3D structure sponge-like collagenous 
scaffold (Figure 5). Murine lymphotoxin alpha (LTα) 
was also introduced into TEL-2 cells to establish a 
LTα-expressing TEL-2 cell line (TEL-2-LTα). The 
authors transplanted the collagenous scaffold with 
TEL-2-LTa cells and activated DCs to the renal 
subcapsular space of mice. It has been found that the 
transplants, which were infiltrated frequently, 
contained many T cell and B cell clusters. Moreover, 
these T cells and B cells had similar organization to 
that of the normal lymph node. They also 
demonstrated that several high endothelial venule 
(HEV) markers of secondary lymphoid organs and 
blood vessel–like structures were detected in the 
matrix, suggesting they had become organized tissues 
in mice. After transplantation of the matrix into 
BALB/c mice immunized with alum-precipitated 
NP-OVA, the mice displayed secretion of 
antigen-specific IgG antibodies in the transplants, 
indicating lymphocyte infiltration in the matrix 
organoids. Similar results were also demonstrated in 
immunodeficient (SCID) mice.  

Another therapeutic strategy is the implantation 
of cell-free systems saturated with 
immunomodulators to reprogram the specific 
lymphocytes.[33, 127, 133-138] For example, Mooney 
and coworkers designed a macroporous PLG matrix 
to present granulocyte macrophage 
colony-stimulating factor (GM-CSF), danger signals, 
and tumor antigens for the recruitment and activation 
of DCs, leading to significant anti-tumor 
immunity.[134] Additionally, the same group also 
incorporated the cytokine GM-CSF, autologous tumor 
lysate, and Toll-like receptor 9 (TLR9) agonist CpG 
oligodeoxynucleotides (CpG ODN) into a porous PLG 
scaffold for the local recruitment and activation of 
DCs by subcutaneous implantation.[136] Vaccination 
using this method induced both local and systemic 
CTL responses, leading to regression of established 
local and metastatic tumors. The enhanced efficacy of 
this vaccine could be a result of the promoted local 
activity of DCs induced by danger signals and 
antigens at the vaccination site. The same group 
recently reported cryogel-based whole-cell cancer 
vaccines for cancer immunotherapy.[133] The authors 
similarly encapsulated GM-CSF and CpG ODN into 
sponge-like macroporous cryogels, which were 
formulated using alginate containing covalently 
conjugated Arg-Gly-Asp (RGD) peptides (Figure 6). 
These cryogels were then subcutaneously injected into 
mice, leading to significant anti-tumor T cell 
responses in a melanoma model. In addition, 
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inorganic mesoporous silica rods (MSRs) with a 
high-aspect ratio were found to assemble in vivo after 
subcutaneous injection, forming macroporous 
structures.[127] This macroporous structure could 
create a 3D cellular microenvironment which could 
recruit the host immune cells. The authors found that 
the MSR scaffolds could greatly increase the number 
of recruited cells compared to polymer scaffolds. 
High level of CD8+ T cells were found in the spleens 
of treated mice, indicating that the MSR-vaccine 
induced antigen-specific cellular responses.  

Thymus 
Other artificial lymphoid organs, such as an 

artificial thymus, are also highly attractive targets 
because they also play important roles in immune 
system. For example, thymus evolution with age 
results in a decreased output of naïve T lymphocytes, 
which contributes to weaker immunosurveillance in 
the elderly for various diseases, including cancer[139]. 
Although in vivo models have yet been reported, 
artificial thymic organoids have been developed in 
vitro.[140-142] In a recent study, Blackburn and 
co-workers[142] described a system for producing 
thymic epithelial cells (TECs), a key cell type of the 
thymic stroma, by reprogramming mouse embryonic 
fibroblasts (MEF) that expressed Foxn1 in vitro. It has 
been found that with Foxn1 expression, MEFs 
acquired a normal TECs phenotype, characterized by 
surface markers (EpCAM) and genes for factors that 
are important for their functional activity (Dll4, 

CCL25). Co-cultivation of the Foxn1 transformed MEF 
and T cell progenitors led to the generation of a 
transient population of CD4+ CD8+ thymocytes, as 
well as terminally differentiated CD4+ and CD8+ T 
cells compared to the TECs isolated from embryonic 
mouse thymus. This work provides opportunity of 
applying thymus transplantation to boost immune 
function, which is an essential step towards 
bioengineering of an artificial thymus (Figure 7).[142] 

Spleen and mucosal tissue 
The construction of an engineered spleen has 

been successfully realized in a mouse model. [143] In 
this spleen transplantation technology, spleen units 
from neonatal rats were loaded onto a scaffold made 
of polyglycolic acid coated with collagen and then 
transplanted into the omentum.[143] The transplanted 
spleen resulted in the formation of a normal splenic 
structure. In addition, immunological function of the 
implanted spleen was also demonstrated. Similarly, 
mucosal immune tissue has also been demonstrated 
through neointestine synthesis.[144] In this technique, 
neonatal rat small bowel was seeded onto 
biodegradable polymer tubes made by polyglycolic 
acid fibers coated with collagen. These constructs 
were transplanted into syngeneic adult recipients. 
After 20 weeks, intraepithelial and lamina propria 
immunocyte were detected in transplanted intestines, 
suggesting their capacity to form a mucosal immune 
system.  

 

 
Figure 5. Generation of a synthetic lymphoid tissue–like organoid in mice. (A) Fluorescence imaging of transplant tissues. Red, PNAd (one of the HEV-specific 
adhesion molecules) and green, B220. (B) Immunohistochemical staining of spleen and transplant tissues. Red, PECAM-1 (adhesion molecule expressed on endothelial 
cells of blood vessel) and bluish purple, B220. (C) Schematic of the procedure to study formation of antigen-specific IgG1 antibody under various conditions. (D) 
Specific IgG1 antibody was detected by ELISA in sera from SCID mice after various treatment as indicated. Reprinted with permission from ref. [131]. Copyright 
2004 Nature Publishing Group. 
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Figure 6. Injectable cryogel-based whole-cell cancer vaccines. (A) Schematic of an alginate-derived active vaccine formulation. (B-C) SEM imaging (B) and SEM 
cross-sectional image (C) of the alginate cryogel. (D-E) 2-D confocal micrograph (D) and 3-D reconstructed confocal fluorescence micrograph (E) of the alginate 
cryogel. Irradiated B16-F10 cells on a typical RGD-containing cryogel was showed in the picture. Reprinted with permission from ref. [133]. Copyright 2015 Nature 
Publishing Group. 

 

Conclusion and Outlook 
As an interdisciplinary interface of cancer 

biology, immunology, bioengineering and materials 
science, the development of artificial immune cells 
and artificial lymphoid organs holds great promise in 
enhancing immunotherapy. It can overcome 
limitations of natural immune cells and lymphoid 
organs, creating desired therapy options for patients.  

For the bioengineering of aAPCs (Table 1), ex 
vivo use of these systems for T cell expansion and 

activation have showed advantages and effectiveness 
compared to the use of natural APCs, which have 
been often used in clinical applications for T cell 
transfer therapy. Such biomimetic particles can 
specifically encapsulate and release soluble small 
molecules and present biological proteins to trigger 
cell signaling of T cells. Further development of ex 
vivo used aAPCs optimized for clinical applications 
should be with improved flexibility and efficient 
antigen presentation. Although still limited by current 
knowledge, optimization directions include 
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adjustment of surface ligands, cytokines, material size 
and shape, ligand mobility and orientation, and 
anisotropy. For example, the design of 3D-SLB 
particles could be made by coating natural cell 
membranes with ligands and signals, as lipid bilayers 
to PLGA particles would be a promising strategy to 
mimic the natural DCs. Furthermore, the 
incorporation of magnetic particles can be readily 
applied to separate particles and cells after expansion, 
improving the clinical efficiency for the T cells 
expanded ex vivo.  

The development of safe and biocompatible 
systems should be taken into consideration when 
used for the in vivo aAPC immunotherapy. 
Biodegradable polymer particles have often 
demonstrated excellent biocompatibility and are 
useful for the release of cytokines or other 
immunomodulatory factors. However, how to 
enhance their interaction with T cells in vivo should 
also be further studied. Additionally, developing 
nanosized particles[145, 146] that can accumulate in 
the lymph nodes and organs may boost the efficacy of 
in vivo aAPC therapy. Tumor heterogeneity is another 
major challenge when training T cells for ACT.[12, 
147, 148] Treating a heterogeneous tumor with single 
antigen-specific T cells can lead to limited antitumor 
effects. Particularly, attention has shifted to 
neoantigens, which are an individual’s tumor-specific 
mutations antigens that are new to the immune 
system and are not found in normal tissues.[12, 149] 

Further development of aAPCs that can elicit 
broad-spectrum and neoantigen-specific T cells for 
personalized cancer immunotherapies is one of the 
emerging trend in this field.[150] Additionally, during 
the translation of these therapies to a clinical setting, 
the application of good manufacturing practices 
(GMP) of such biomaterials or biomimetic materials 
may present significant challenges. The concerns of 
compliance within GMP standardization and 
associated costs need to be addressed for further 
translation. 

Moreover, as the natural organs are complex, 
further thorough understanding of lymphoid 
organogenesis and molecular signaling is highly 
important. One strategy considers implantation of 
biomaterial-based cell-free scaffolds containing 
immunotherapy agents as a “node” for immunization, 
while the other strategy is more complex and looks to 
re-program or introduce cells into lymphoid organ 
structures, for long-term function as a lymphoid 
organ after implantation. However, it should be noted 
that while many approaches relying on 
gene-modified mouse cell lines are useful for basic 
research, they could not be applied to patients. These 
problems can be avoided by replacing the cells with 
patient-derived induced pluripotent stem cells (iPSC) 
as a source of stromal cells for generation of artificial 
lymphoid organs.[151, 152] Furthermore, the 
development of high-performance lymphoid organs 
is feasible by combining these two strategies together. 

 
Figure 7. Artificial thymus generated from FOXN1-reprogrammed fibroblasts. (A) Schematic of the procedure to show in vivo grafting assay. (B) Summary of 
recovered grafts after various treatment as indicated. (C) H&E staining (left), and pan-cytokeratin (right) staining of the iTEC-derived kidney graft, indicating that 
FOXN1-induced TECs (iTECs) established a complete, fully organized and functional thymus. Reprinted with permission from ref. [142] Copyright 2014 Nature 
Publishing Group. 
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Table 1. Summary of representative aAPCs used for immunotherapy. 

Types of aAPC Advantage Potential limitation Immunomodulators 
used 

Ref. 

Lipid-based Liposomes Easy preparation Fluid 
membrane 

Unstable Low T cell activation MHC [58] 

Microdomain liposomes Fluid membrane 
Ligand pre-clustering 

Unstable MHC, αCD3, αCD28, 
αLFA-1, 

[59-61] 

SLB particles Stable 
Fluid membrane 

Not extensively applied pMHC [71] 

Polymeric PLGA particles Easy preparation 
Cytokine release 
Shape change 
Biodegradable 

Rigid surface αCD3, αCD28, MHC, 
IL-2 

[77-80, 82, 83] 

Sepharose or 
polystyrene beads 

Easy preparation 
Widely used 

Non-biodegradable 
Rigid surface 

MHC, αCD3, CD80, 
αCD28, CD54, CD83, 
α4-1BB, 4-1BBL 

[84-93] 

Filamentous polymers Flexibility and multivalency 
Biocompatible 

Not extensively applied αCD3 [103] 

Inorganic Magnetic particles Easy preparation, Easy 
enrichment and separation 
Controlled by magnetic field 
Widely used 

Non-biodegradable 
Rigid surface 

αCD3, αCD28, MHC, 
CD80 

[86, 104-108, 
111-113, 115, 
154, 155] 

Carbon nanotubes High surface area 
Ligand pre-clustering 

Non-biodegradable 
Rigid surface 
Large clusters 

αCD3, MHC, αCD28 [116-119] 
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