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Abstract: Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary arterial
pressure and right heart failure. Selective pulmonary vasodilators have improved the prognosis of
PAH; however, they are not able to reverse pulmonary vascular remodeling. Therefore, a search for
new treatment agents is required. H-1337 is an isoquinoline-sulfonamide compound that inhibits
multiple serine/threonine kinases, including Rho-associated protein kinase (ROCK) and mammalian
target of rapamycin (mTOR). Here, we investigated the effects of H-1337 on pulmonary hypertension
and remodeling in the pulmonary vasculature and right ventricle in experimental PAH induced
by SU5416 and hypoxia exposure. H-1337 and H-1337M1 exerted inhibitory effects on ROCK and
Akt. H-1337 inhibited the phosphorylation of myosin light chain and mTOR and suppressed the
proliferation of smooth muscle cells in vitro. H-1337 treatment also suppressed the phosphorylation
of myosin light chain and mTOR in the pulmonary vasculature and decreased right ventricular
systolic pressure and the extent of occlusive pulmonary vascular lesions. Furthermore, H-1337
suppressed aggravation of right ventricle hypertrophy. In conclusion, our data demonstrated that
inhibition of ROCK and mTOR pathways with H-1337 suppressed the progression of pulmonary
vascular remodeling, pulmonary hypertension, and right ventricular remodeling.

Keywords: pulmonary hypertension; Rho-associated protein kinase signaling; mammalian target of
rapamycin signaling; animal model of pulmonary arterial hypertension; right ventricular remodeling

1. Introduction

Pulmonary arterial hypertension (PAH) is characterized by sustained elevation of
pulmonary artery pressure and progressive obstructive changes in the pulmonary arteries,
which leads to subsequent right heart failure and high mortality [1]. Since the 1990s, selec-
tive pulmonary vasodilators targeting endothelin, nitric oxide, and prostacyclin pathways
have been developed [2], and advances in treatments, including combination therapies
with selective pulmonary vasodilators, have contributed to improved survival rates in
patients with PAH [3]. However, PAH is still incurable [1] and patients with PAH who
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exhibit inadequate responses despite medical treatment require lung transplantation [4].
The incurability of PAH results from pulmonary vascular remodeling, which cannot be
reversed by pulmonary selective vasodilators [5,6]. Pulmonary vascular remodeling, which
is a pathological feature of PAH, occludes the pulmonary arteries and induces pulmonary
hypertension [1]. Within the remodeled pulmonary vessels, abnormal proliferation of
pulmonary artery endothelial cells and smooth muscle cells (SMCs) [7] with anti-apoptotic
features has been observed [8,9]. Thus, to identify improved curative treatments for PAH,
other approaches targeting reversal of complex vascular lesions are required [1].

The Rho-associated protein kinase (ROCK) pathway is associated with the develop-
ment of PAH. Activation of ROCK by vascular stimulants, such as hypoxia and endothelin-1
(ET-1), activates myosin light chain (MLC) via direct phosphorylation of MLC and inac-
tivation of myosin light chain phosphatase (MLCP) [10,11]. Sustained vasoconstriction
decreases the vascular bed and increases shear stress and is associated with the develop-
ment of pulmonary vascular remodeling and PAH [1,10,12]. The expression of Rho A and
ROCK is increased and MLCP is inactivated in the lungs of PAH animal models induced
by hypoxia or monocrotaline (MCT) treatment [13–16]. The activated ROCK pathway has
also been reported in patients with PAH [17].

Similarly, the mammalian target of rapamycin (mTOR) pathway has also been shown
to be associated with PAH development. The activated mTOR pathway induces the
proliferation of SMCs [18,19] and is associated with the development of vascular remodeling
in PAH [20]. Moreover, the mTOR pathway is activated in experimental PAH animal
models induced by hypoxia, MCT, and Su5416/hypoxia (Su/Hx) rat models, which are
associated with the development of pulmonary vascular remodeling and right ventricle
(RV) remodeling and dysfunction [21–23] Thus, activation of the ROCK and Akt/mTOR
pathways plays important roles in PAH development, and inhibition of these pathways
may be a new strategy for treating PAH.

H-1337 is an isoquinoline-sulfonamide compound first synthesized by D. Western
Therapeutics Institute, Inc. (Nagoya, Japan) in 2010. We have reported that H-1337 and
H-1337M1 can inhibit ROCK1/2 and other serine/threonine kinases [24,25]. Additionally,
H-1337 and its metabolite H-1337M1 were found to have inhibitory activities on Akt in a
preliminary experiment. Although inhibition of ROCK or Akt pathways has been shown to
suppress the development of PAH [20,26], the effects of inhibition of both ROCK and Akt
pathways on PAH have not been investigated. Thus, we hypothesized that H-1337 may
exert antiproliferative effects on vascular lesion cells and pulmonary vasodilative effects
via inhibition of both ROCK and Akt signaling.

Accordingly, the purpose of this study was to evaluate the effects of H-1337 on hemo-
dynamics and vascular remodeling in Su/Hx rats and assess the mechanism involved.
In this study, H-1337 and H-1337M1 were characterized, and the effects of H-1337 and
H-1337M1 on SMCs and Su/Hx rats were evaluated.

2. Materials and Methods

Details of protocols used in this study are shown in the supplemental methods.

2.1. Reagents and Antibodies

H-1337 was supplied by D. Western Therapeutics Institute, Inc. (Nagoya, Japan).
Details of other reagents and antibodies are provided in the supplemental material.

2.2. Cell Proliferation Analyses

Human pulmonary artery SMCs (hPASMCs) were cultured in Humedia-SG2 (Kurabo,
Osaka, Japan) until stimulation and were plated in 96-well plates at 2.5 × 103 cells/well in
serum-starved medium (Humedia-SB supplemented with 1% fetal bovine serum [FBS] and
antibiotics [Kurabo]). Then, hPASMCs were stimulated with platelet-derived growth factor
(PDGF)-BB and incubated with H-1337, H-1337M1, LY294002, or Fasudil for 72 h. The
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proliferation of hPASMCs was evaluated using a Cell Counting Kit-8 (Dojindo Laboratories,
Kumamoto, Japan).

2.3. Western Blot Analyses

Before stimulation, 2 × 105 hPASMCs were cultured with serum-starved medium
(Humedia-SB containing 1% FBS and antibiotics [Kurabo]), followed by stimulation with
serum-starved medium containing 0.1 µM ET-1 or 10 ng/mL recombinant PDGF and
treatment with different reagents. The isolated proteins were separated and analyzed by
western blotting.

2.4. Design of Animal Experiments

Five-week-old male Sprague-Dawley rats were divided into the following three groups:
(1) Su/Hx + H-1337 group, Su/Hx rats administered H-1337, (2) Su/Hx + Vehicle group,
Su/Hx rats without administration of H-1337, and (3) control group without any treatment.
The Su/Hx model was prepared as described in our previous report [27]. Right heart
catheterization, right ventricular assessment, and histological analysis were performed for
all rats at 5 weeks.

2.5. Preparing Su5416/Hypoxia Model

The Su/Hx model was established as described in our previous report [27]. The rats
were treated with a single injection of SU5416 (20 mg/kg) and a 3-week exposure to hypoxia
(10% O2), which was followed by normoxia exposure for 2 weeks. The Su/Hx + H-1337
group was continuously treated with H-1337 from day 0 to day 35.

2.6. Treatments with H-1337 for Su/Hx Rats

H-1337 was dissolved in drinking water at 0.25 mg/mL for the Su/Hx + H-1337 group.
The Su/Hx + H-1337 group was continuously treated with H-1337 from day 0 to day 35.
H-1337 solution was changed every 2 days. The details of the validation and data from
preliminary experiments are shown in the supplemental methods.

2.7. Histological Assessment of Pulmonary Vascular Remodeling

Lung sections were stained with Elastica van Gieson staining to evaluate the extent of
pulmonary vascular remodeling. The arteries were analyzed under a microscope (Nikon
ECLIPSE 55i; Nikon, Tokyo, Japan) and were scored based on the severity of luminal
occlusion and the distribution of α-smooth muscle actin (α-SMA)-positive cells, as follows:
no evidence of neointimal formation (grade 0), partial (<50%) luminal occlusion (grade 1),
and severe (>50%) luminal occlusion (grade 2) according to a previously described method
with minor modifications [27,28]. RV myocyte hypertrophy and RV fibrosis were evaluated
as previously described, with slight modifications [29,30].

2.8. Immunofluorescence, Immunohistochemistry, Kinase Assays, and Measurement of Serum
Concentrations of H-1337 and H-1337M1

The details of the protocols used are given in the supplemental methods.

2.9. Statistical Analyses

Quantitative data are presented as means ± standard deviations unless otherwise
stated. Comparisons between two or three or more groups were made using Student’s t-test
or analysis of variance (ANOVA) with Bonferroni’s post-hoc test, respectively. Statistical
significance was set at p < 0.05. Statistical analyses were performed using the GraphPad
Prism software program, version 8.0.2 (GraphPad Software, La Jolla, CA, USA).
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3. Results
3.1. Characteristics of H-1337 and the Metabolite H-1337M1

First, H-1337 and its metabolite H-1337M1 were pharmacologically characterized.
H-1337 can be metabolized by liver enzymes to H-1337M1 (Figure 1). Importantly, H-1337
and H-1337M1 exerted inhibitory effects on ROCK and Akt (Table 1).

Cells 2022, 11, x FOR PEER REVIEW 4 of 14 
 

 

3. Results 
3.1. Characteristics of H-1337 and the Metabolite H-1337M1 

First, H-1337 and its metabolite H-1337M1 were pharmacologically characterized. H-
1337 can be metabolized by liver enzymes to H-1337M1 (Figure 1). Importantly, H-1337 
and H-1337M1 exerted inhibitory effects on ROCK and Akt (Table 1). 

 
Figure 1. Analysis of H-1337M1 using high-performance liquid chromatography. H-1337 was incu-
bated with rabbit liver S9 fraction. A peak distinct from that of H-1337 was detected (blue). The 
metabolite was named as H-1337M1 by the authors. 

Table 1. Kinase inhibition profiles of H-1337 and H-1337M1. 

Kinase H-1337 IC50 (µM) H-1337M1 IC50 (µM) 
ROCK1 0.24 0.02 
ROCK2 0.32 0.012 

Akt1 0.279 0.0042 
Akt2 1.662 0.054 
Akt3 0.112 0.0253 

3.2. H-1337 and H-1337M1 Suppressed the Phosphorylation of MLC in Human SMCs 
Next, the effects of H-1337 and H-1337M1 on the phosphorylation of MLC in 

hPASMCs were assessed by western blotting (Figure 2A). H-1337 at 10 µM and H-1337M1 
at 1 µM and 10 µM significantly decreased the phosphorylation of MLC similar to Fasudil 
(a ROCK inhibitor) at 10 µM (Figure 2B,D). Bosentan, a specific endothelin receptor an-
tagonist, decreased the phosphorylation of MLC (Figure 2D), although the difference did 
not reach significant levels. These results suggested that H-1337 and H-1337M1 exert in-
hibitory effects on the phosphorylation of MLC in hPASMCs. Additionally, myosin light 
chain kinase (MLCK) was assessed using the kinase assay. The assay suggested that 0.1 
µM H-1337 M1 suppressed 76% of the kinase activity of MLCK, while the inhibition rates 
of ROCK-1 and -2 were 95 and 87%, respectively (Table S1). The expression and phos-
phorylation of myosin phosphatase targeting subunit 1 (MYPT1) was also analyzed using 
western blotting. However, ET-1 stimulation did not increase the phosphorylation of 
MYPT1 at Thr696, which is involved in the inhibition of MLCP activity in humans [31]. 
Therefore, evaluating the effect of H-1337, H-1337M1, and Fasudil on MYPT-1 was diffi-
cult (Figure S2). 

Figure 1. Analysis of H-1337M1 using high-performance liquid chromatography. H-1337 was
incubated with rabbit liver S9 fraction. A peak distinct from that of H-1337 was detected (blue). The
metabolite was named as H-1337M1 by the authors.

Table 1. Kinase inhibition profiles of H-1337 and H-1337M1.

Kinase H-1337 IC50 (µM) H-1337M1 IC50 (µM)

ROCK1 0.24 0.02
ROCK2 0.32 0.012

Akt1 0.279 0.0042
Akt2 1.662 0.054
Akt3 0.112 0.0253

3.2. H-1337 and H-1337M1 Suppressed the Phosphorylation of MLC in Human SMCs

Next, the effects of H-1337 and H-1337M1 on the phosphorylation of MLC in hPASMCs
were assessed by western blotting (Figure 2A). H-1337 at 10 µM and H-1337M1 at 1 µM
and 10 µM significantly decreased the phosphorylation of MLC similar to Fasudil (a ROCK
inhibitor) at 10 µM (Figure 2B,D). Bosentan, a specific endothelin receptor antagonist,
decreased the phosphorylation of MLC (Figure 2D), although the difference did not reach
significant levels. These results suggested that H-1337 and H-1337M1 exert inhibitory effects
on the phosphorylation of MLC in hPASMCs. Additionally, myosin light chain kinase
(MLCK) was assessed using the kinase assay. The assay suggested that 0.1 µM H-1337
M1 suppressed 76% of the kinase activity of MLCK, while the inhibition rates of ROCK-1
and -2 were 95 and 87%, respectively (Table S1). The expression and phosphorylation
of myosin phosphatase targeting subunit 1 (MYPT1) was also analyzed using western
blotting. However, ET-1 stimulation did not increase the phosphorylation of MYPT1 at
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Thr696, which is involved in the inhibition of MLCP activity in humans [31]. Therefore,
evaluating the effect of H-1337, H-1337M1, and Fasudil on MYPT-1 was difficult (Figure S2).
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Figure 2. H-1337 and H-1337M1 suppressed the phosphorylation of myosin light chain (MLC) in
human pulmonary artery smooth muscle cells (hPASMCs). hPASMCs were treated with H-1337,
H-1337M1, Fasudil (a ROCK inhibitor), or bosentan (a specific endothelin receptor antagonist) for
1 h, followed by stimulation with endothelin-1 (ET-1; 0.1 µM) for 1 h. (A) Representative images of
western blot analysis. (B,C) Quantification of western blots for phosphorylated MLC (p-MLC) and
total MLC. (D) The ratio of band intensity of p-MLC to total MLC. *: analyzed by ANOVA, p < 0.05
versus groups treated with ET-1 without H-1337, H-1337M1, fasudil, or bosentan.

3.3. H-1337 and H-1337M1 Suppressed the Phosphorylation of mTOR in Human SMCs

Next, the effect of H-1337 on mTOR in hPASMCs were assessed (Figure 3). Western
blotting suggested that H-1337 at 1 µM and H-1337M1 at 1 µM and 10 µM significantly
reduced the phosphorylation of mTOR induced by PGDF (Figure 3D) as well as LY294002,
which is an inhibitor of phosphatidylinositol 3-kinase (PI3K) that is known to block mTOR
activation [32]. Conversely, fasudil, a ROCK inhibitor, did not have a suppressive effect
on the phosphorylation of mTOR (Figure 3B,D). These results suggested that H-1337 and
H-1337M1 exert a suppressive effect on the phosphorylation of mTOR in hPASMCs.

3.4. H-1337 and H-1337M1 Suppressed the Proliferation of hPASMCs

To assess the effects of H-1337 on the proliferation of PASMCs, cell proliferation
assays were performed. H-1337, H-1337M1, and LY294002 suppressed the proliferation
of hPASMCs induced by stimulation with PDGF in a concentration-dependent manner
(Figure 4). Conversely, a significant suppressive effect of fasudil was observed only at the
highest concentration (10 µM).
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viability of hPASMCs treated with H-1337, H-1337M1, and LY294002 was assessed using Cell 
Counting Kit-8 assays. hPASMCs were incubated with platelet-derived growth factor (PDGF; 10 
ng/mL) and treated with different concentrations (0.1–10 µM) of H-1337, H-1337M1, LY294002 
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Figure 3. Phosphorylation of the Akt/mammalian target of rapamycin (mTOR) pathway in human
pulmonary artery smooth muscle cells (hPASMCs). hPASMCs were treated with H-1337, H-1337M1,
fasudil (ROCK inhibitor), or LY294002 (phosphatidylinositol 3-kinase inhibitor) for 1 h, followed
by stimulation with platelet-derived growth factor (PDGF; 10 ng/mL) for 1 h. (A) Representative
photographs of western blots. (B–D) Quantification of the data from (A). (B) Mammalian target of
rapamycin (mTOR). (B) Phosphorylated mTOR (p-mTOR). (C) mTOR. (D) The ratio of phospho- to
total mTOR. *: analyzed by ANOVA, p < 0.05 versus groups treated with PDGF without H-1337,
H-1337M1, fasudil, or LY294002.
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Figure 4. Antiproliferative effects in human pulmonary artery smooth muscle cells (hPASMCs). The
viability of hPASMCs treated with H-1337, H-1337M1, and LY294002 was assessed using Cell Count-
ing Kit-8 assays. hPASMCs were incubated with platelet-derived growth factor (PDGF; 10 ng/mL)
and treated with different concentrations (0.1–10 µM) of H-1337, H-1337M1, LY294002 (phosphatidyli-
nositol 3-kinase inhibitor), or fasudil (ROCK inhibitor). *: analyzed by ANOVA, p < 0.05 versus
vehicle; †: p < 0.05 versus vehicle + PDGF.
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3.5. H-1337 Decreased Right Ventricular Pressure and Occlusive Vascular Lesions in Su/Hx Rats

Before evaluating the effect of H-1337 on Su/Hx rats, the experimental condition was
optimized (Table S2 and Figure S1). The details are described in the Supplemental methods.
Based on the optimization, H-1337 was diluted with drinking water to a concentration of
0.25 mg/mL and was continuously administered to Su/Hx rats for 5 weeks.

Next, hemodynamics and vascular remodeling were assessed at 5 weeks. The right
ventricular systolic pressure (RVSP) values of the control, Su/Hx + vehicle, and Su/Hx +
H-1337 groups were 21.7 ± 7.2 mmHg, 108.4 ± 9.9, and 76.4 ± 7.1 mmHg, respectively
(n = 6–8). The RVSP value of the Su/Hx + H-1337 group was significantly lower than
that of the Su/Hx + vehicle group (Figure 5A), whereas no significant differences in mean
blood pressure and heart rate were observed among the three groups (Figure 5B,C). The
extent of pulmonary vascular remodeling was histologically assessed. The percentages of
obstructive lesions (grade 2) in the Su/Hx + H-1337 group were significantly lower than
those in the Su/Hx + vehicle group (Figure 5D,E). These results suggested that the H-1337
treatment suppressed the progression of pulmonary vascular remodeling and the elevation
of RVSP in Su/Hx rats.
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treated rats (n = 8). *: analyzed by ANOVA, p < 0.05 versus the control; †: p < 0.05 versus Su/Hx + 
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Figure 5. Suppressive effects of H-1337 on the aggravation of hemodynamics and vascular remodeling
in SU5416/hypoxia (Su/Hx) rats. Hemodynamic and pathological assessment for rats were conducted
at 5 weeks. (A) Right ventricular systolic pressure (RVSP). (B) Mean blood pressure (mBP). (C) Heart
rate (HR). (D) Representative photomicrographs of pulmonary arteries stained with Elastica van
Gieson (EVG) and immunostained with α-smooth muscle actin (α-SMA) Scale bars indicate 10 µm.
(E) Quantified data from pulmonary vascular remodeling. Su/Hx + H-1337: H-1337-treated Su/Hx
rats (n = 7); Su/Hx + vehicle: vehicle-treated Su/Hx rats (n = 6); and control: untreated rats (n = 8).
*: analyzed by ANOVA, p < 0.05 versus the control; †: p < 0.05 versus Su/Hx + vehicle.
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3.6. H-1337 Suppressed the Phosphorylation of MLC and mTOR in the Pulmonary Vasculature

To evaluate the local effects of H-1337 on the pulmonary arteries, immunofluorescence
was performed (Figure 6). The percentages of phospho-MLC-positive to α-SMA-positive
cells in the control, Su/Hx + vehicle, and Su/Hx + H-1337 groups were 14.7% ± 4.9%, 47.0%
± 10.2%, and 27.6% ± 4.5%, respectively (Figure 6B). The percentages of phospho-mTOR-
positive to α-SMA-positive cells in the control, Su/Hx + vehicle, and Su/Hx + H-1337
groups were 19.5% ± 4.3%, 41.5% ± 10.8%, and 30.6% ± 7.1%, respectively (Figure 6D).
Thus, H-1337 treatment significantly decreased the phosphorylation of MLC and mTOR in
pulmonary vasculature in Su/Hx rats.
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Figure 6. Phosphorylation of MLC and mTOR was suppressed by H-1337 in pulmonary arteries.
(A) Immunofluorescence of α-smooth muscle actin (α-SMA, green) and phospho-myosin light chain
(MLC, red) in pulmonary arteries. Nuclei were counterstained with DAPI (blue). (B) Quantification of
the immunofluorescence of phosphorylated MLC (p-MLC). (C) Representative images of immunoflu-
orescence of α-SMA (green) and phospho-mammalian target of rapamycin (mTOR, red) in pulmonary
arteries. Nuclei were counterstained with DAPI (blue). (D) Quantification of the immunofluores-
cence of phospho-mTOR. Su/Hx + H-1337: H-1337-treated Su/Hx rats (n = 3); Su/Hx + vehicle:
vehicle-treated Su/Hx rats (n = 3); and control: untreated rats (n = 3). All scale bars indicate 10 µm.
*: analyzed by ANOVA, p < 0.05 versus the control; †: p < 0.05 versus the Su/Hx + vehicle group.
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3.7. H-1337 Had a Suppressive Effect on RV Remodeling

Finally, the effects of H-1337 on RV hypertrophy and remodeling were examined.
The RV/LV+S ratios in the control, Su/Hx + vehicle, and Su/Hx + H-1337 groups were
0.20 ± 0.07, 0.68 ± 0.09, and 0.39 ± 0.06, respectively (n = 6–8). The RV/LV+S ratio in the
Su/Hx + H-1337 group was significantly lower than that in the Su/Hx + vehicle group
(Figure 7A). Masson’s trichrome staining (Figure 7B) revealed that the sizes of cardiomy-
ocytes and the fibrotic area of the RV were significantly decreased in the Su/Hx + H-1337
group compared with those in the Su/Hx + vehicle group (Figure 7D). Immunofluorescence
revealed that H-1337 decreased phosphorylation of mTOR in Su/Hx rats (Figure 7E,F).
These results suggested that H-1337 treatment suppressed the phosphorylation of mTOR
in cardiomyocytes and RV remodeling in Su/Hx rats.
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Figure 7. Suppressive effects of H-1337 on right ventricle remodeling in SU5416/hypoxia (Su/Hx)
rats. (A) The weight ratio of the right ventricle to the left ventricle + septum (RV/LV+S) in Su/Hx
rats at 5 weeks. (B) Histological images of right ventricle stained with Masson’s trichrome. Scale
bars indicate 100 µm. (C) Quantification of the size of cardiomyocytes. (D) Quantified data of the
area of cardiac fibrosis. (E) Immunofluorescence of the right ventricle for troponin T and phospho-
mammalian target of rapamycin (mTOR). Scale bars indicate 50 µm. (F) The proportion of phospho-
mTOR (p-mTOR)-positive to troponin T-positive cells (cardiomyocytes) in Su/Hx rats at 5 weeks.
For hemodynamic and histological assessments, control: untreated rats (n = 8); Su/Hx + vehicle:
vehicle-treated Su/Hx rats (n = 6); and Su/Hx + H-1337: H-1337-treated Su/Hx rats (n = 7). For
immunofluorescence, control: (n = 3); Su/Hx + vehicle: (n = 3); and Su/Hx + H-1337 (n = 3). All
scale bars indicate 10 µm. *: analyzed by ANOVA, p < 0.05 versus the control; †: p < 0.05 versus the
Su/Hx + vehicle group.
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4. Discussion

In the current study, the effects of the multiple serine/threonine kinase inhibitor H-
1337 on Su/Hx rats were assessed. H-1337 suppressed the phosphorylation of MLC and
mTOR and the proliferation of hPASMCs. The results of animal experiments with Su/Hx
rats suggested that H-1337 administration suppressed the phosphorylation of MLC and
mTOR in the SMCs of pulmonary arteries and attenuated pulmonary hypertension and
pulmonary vascular remodeling. H-1337 also suppressed RV hypertrophy and fibrotic
changes, accompanied by the suppression of mTOR phosphorylation in cardiomyocytes.

H-1337 and H-1337M1 were characterized in this study. It was demonstrated that that
H-1337 and H-1337M1 exerted inhibitory effects on ROCK and Akt in vitro. Previously, we
demonstrated that H-1337 exerted inhibitory effects on several kinases including ROCK [24].
In the previous report, IC50 values of Fasudil for ROCK-1 and ROCK-2 inhibition were
over 1 and 0.73 µM, respectively, which were higher than those of H-1337 and H-1337M1.
The inhibitory potential of H-1337 and H-1337M1 on ROCK-1 and ROCK-2 appeared to
be potentially higher than fasudil. Akt is a serine/threonine kinase that is involved in the
activation of mTOR via phosphorylation of proline-rich Akt/PKB substrate 40 kDa and
tuberous sclerosis complex 2 [18,19,33,34]. In the present study, inhibition of Akt by H-1337
and H-1337 M1 was newly demonstrated.

It was found that H-1337 can be metabolized by liver enzymes to H-1337M1. There
exists a possibility that H-1337 is metabolized by not only the liver but also the kidney,
although the renal metabolism of H-1337 was not evaluated in this study. It is necessary to
investigate the detailed drug disposition of H-1337 and H-1337M1 in future studies.

H-1337 and H-1337M1 suppressed MLC phosphorylation in cultured PASMCs. Phos-
phorylation of MLC can be induced by three methods: (1) phosphorylation by ROCK;
(2) phosphorylation by MLCK; and (3) inactivation of MYPT1 by ROCK [10]. MYPT1 is a
component of the MLCP complex, and phosphorylation of MYPT1 induces the suppression
of MLCP activity [10,35]. In the present study, western blotting revealed a clear suppressive
effect of H-1337 and H-1337M1 on phosphorylation of MLC. However, the kinase assay
suggested a moderate suppressive effect of H-1337M1 on MLCK. Thus, it was presumed
that H-1337 and H-1337M1 could suppress ROCK and MLCK, which may induce the phos-
phorylation of MLC. Conversely, the effects of H-1337 and H-1337M1 on MYPT-1 could
not be evaluated in this study, as ET-1 did not promote the phosphorylation of MYPT1
at Thr696. Woodsome et al. have reported that ET-1 stimulation did not alter the level of
phosphorylation of MYPT1 at Thr696 in SMCs [36]. Thr696 is considered to maintain a high
ratio of phosphorylation even at resting condition, which may be the cause of the lack of
response to ET-1 [36]. In future studies, to evaluate the effect of H-1337 on MYPT1, it may
be helpful to use other agonists such as calyculin A, which enhance the phosphorylation of
Thr696 [36].

Phosphorylation of mTOR and proliferation of cultured PASMC were suppressed
by H-1337 and H-1337M1. The activated mTOR pathway is related to the proliferation
of SMCs [18,19]. LY294002 suppresses the activation of mTOR pathway via inhibition of
PI3K [32] and the proliferation of SMCs [37]. Houssaini et al. have reported that the prolifer-
ation of PASMCs derived from MCT-induced PAH rats was suppressed by rapamycin [22],
an allosteric inhibitor of mTOR complex 1 [18]. Notably, restoring the mTOR pathway by
upregulating phosphatase and tensin homolog, a regulator of mTOR [20], induces apoptosis
in PASMCs [38]. In the present study, 10 µM H-1337M1 suppressed the activation of mTOR
and the cell viability of hPASMCs at a level similar to that of LY294002, although the effects
of 1 and 10 µM H-1337 and 1 µM H-1337 M1 on mTOR were moderate. It has been known
that activated MLC is also responsible for the proliferation of PASMCs [26]. Therefore,
inhibition of both the MLC pathway with H-1337 and H-1337M1 might be related to the
suppression of hPASMC proliferation.

The phosphorylation of MLC in the pulmonary vasculature was suppressed by the
H-1337 treatment in Su/Hx rats. Increased vascular tone is a major contributor to increased
pulmonary arterial pressure [1,39]. Akt pathway regulates the vascular tone via the activa-
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tion of ROCK and phosphorylation of MLC [10]. Suppression of MLC phosphorylation via
inhibition of Akt can relax the constriction of PASMCs [14]. Several ROCK inhibitors can
suppress the elevation RVSP and the development of vascular remodeling in experimental
PAH models induced by hypoxic exposure or MCT treatment [26,40,41], which supports
our results. Thus, the inhibition of the Akt pathway by H-1337 treatment may be associated
with decreased RVSP in Su/Hx rats.

H-1337 treatment attenuated the activated mTOR pathway in the pulmonary vascu-
lature and pulmonary vascular remodeling in Su/Hx rats. It has been known that the
mTOR pathway is activated in the lungs of Su/Hx rats [23] and MCT [22] and hypoxia-
induced PH rats [21], which supported our results. Suppression of mTOR can attenuate
pulmonary vascular remodeling. mTOR inhibition has been reported to decrease the extent
of pulmonary vascular remodeling in Su/Hx animal models [23,27], and hypoxia-induced
and MCT models [16,22,42,43]. These results support our current findings. Our previous
study revealed that the severity of pulmonary vascular remodeling was closely correlated
with the elevation of RVSP in Su/Hx rats [44]. It could be inferred from these results
that suppression of mTOR using H-1337 may contribute to the attenuation of pulmonary
vascular remodeling and the decrease of pulmonary arterial pressure in Su/Hx rats.

Notably, H-1337 also had a suppressive effect on RV hypertrophy and fibrosis in
Su/Hx rats. Crosstalk occurs between cardiomyocytes and the extracellular matrix via the
mTOR pathway, which cooperatively regulates myocardial hypertrophy and fibrosis [45,46].
Moreover, the Akt/mTOR pathway is activated in RV with PAH, and inhibition of mTOR
suppresses RV hypertrophy and fibrosis and improves RV function [23]. However, it is
still unclear whether the suppression of RV hypertrophy and fibrosis was an indirect effect
associated with improved pulmonary hemodynamics or a direct effect of H-1337 on RV.
Thus, further studies are needed to fully elucidate the effects of H-1337 on RV function.

The current study had several limitations. First, the treatment effects of H-1337 were
demonstrated only in Su/Hx PAH rats, which are thought to mimic human PAH but
not fully recapitulate human PAH. Second, in this study, we focused on prevention of
PAH development; therefore, it is unclear whether H-1337 is effective for the treatment of
PAH. Additionally, signaling pathways other than the ROCK and mTOR pathways were
not investigated in this study. Signals from these other pathways may affect the ROCK
and/or mTOR pathways and therefore the results of our study. Finally, the side effects
of H-1337 were not fully investigated in this study. Fasudil has been reported to cause
renal impairment [47], and H-1337 may cause similar adverse effects. In future studies, the
side effects of H-1337 should be investigated. Despite these limitations, we believe that
dual inhibition of the Rho and Akt pathways with H-1337 could suppress the aggravation
of PAH.

In conclusion, H-1337 and H-1337M1 exert inhibitory effects on the ROCK and mTOR
pathways in hPASMC and the pulmonary vasculature in Su/Hx rats and may contribute to
attenuation of pulmonary hypertension and remodeling of the pulmonary vasculature and
RV in Su/Hx rats.
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//www.mdpi.com/article/10.3390/cells11010066/s1, Table S1: Kinase inhibition rate under the treat-
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of H-1337 treatment in rats, Figure S2: The expression of myosin phosphatase targeting subunit 1
(MYPT1) and the phosphorylated MYPT-1 (p-MYPT1) in human pulmonary artery smooth muscle
cells (hPASMCs), Supplemental methods.
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