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Background. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer whose incidence and mortality
rate are increasing. Identifying immune-related lncRNAs and constructing a model would probably provide new insights into
biomarkers and immunotherapy for ccRCC and aid in the prognosis prediction. Methods. The transcription profile and clinical
information were obtained from The Cancer Genome Atlas (TCGA). Immune-related gene sets and transcription factor genes
were downloaded from GSEA website and Cistrome database, respectively. Tumor samples were divided into the training set
and the testing set. Immune-related differentially expressed lncRNAs (IDElncRNAs) were identified from the whole set.
Univariate Cox regression, LASSO, and stepwise multivariate Cox regression were performed to screen out ideal prognostic
IDElncRNAs (PIDElncRNAs) from the training set and develop a multi-lncRNA signature. Results. Consequently, AC012236.1,
AC078778.1, AC078950.1, AC087318.1, and AC092535.4 were screened to be significantly related to the prognosis of ccRCC
patients, which were used to establish the five-lncRNA signature. Its wide diagnostic capacity was revealed in different
subgroups of clinical parameters. Then AJCC-stage, Fuhrman-grade, pharmaceutical, age, and risk score regarded as
independent prognostic factors were integrated to construct a nomogram, whose good performance in predicting 3-, 5-, and 7-
year overall survival of ccRCC patients was revealed by time-dependent ROC curves and verified by the testing sets and ICGC
dataset. The calibration plots showed great agreement of the nomogram between predicted and observed outcomes. Functional
enrichment analysis showed the signature and each lncRNA were mainly enriched in pathways associated with regulation of
immune response. Several kinds of tumor-infiltrating immune cells like regulatory T cells, T follicular helper cells, CD8+ T cells,
resting mast cells, and naïve B cells were significantly correlated with the signature. Conclusion. Therefore, we constructed a
five-lncRNA model integrating clinical parameters to help predict the prognosis of ccRCC patients. The five immune-related
lncRNAs could potentially be therapeutic targets for immunotherapy in ccRCC in the future.

1. Introduction

Clear cell renal cell carcinoma (ccRCC) accounting for more
than 75% of all kidney cancers has increasing incidence and
mortality rate in the worldwide [1] and tends to be diagnosed

in advanced stage [2]. However, the Tumor-Node-Metastasis
(TNM) staging system, the widely used measure to estimate
ccRCC outcomes, is revealed to be insufficient in its predic-
tive value [3]. This would be probably as the result of the
heterogeneity of the tumor itself and the complicacy of the
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pathogenesis [4]. Prognostic models combining TNM stage
with additional values, including pathological factors, clinical
factors, and molecular markers, have aroused lots of interest
and have been approved to possess better prognostic value,
which results in demand of identifying ideal and novel epige-
netic factors [5].

lncRNAs (long noncoding RNAs) are a type of RNA with
length exceeding 200 nucleotides, which do not have the
protein-coding capacity [6]. Normally, they are involved in
the regulation of gene transcription [7], posttranscriptional
regulation [8], and epigenetic regulation [9]. Recently, mount-
ing evidences have suggested that lncRNAs play critical roles
in oncogenesis and tumor prognosis [10], some of which
called immune-related lncRNAs fulfill their carcinogenic
effect through affecting immune response, such as influencing
immune activation, tumor-infiltrating immune cells, immune
cells’ development, differentiation, and migration, and killing
cancer cells [11–13]. With the contribution of advanced
genome-sequencing technologies, it has been revealed to be
associated with multiple levels of gene expression in human
cancers [14]. Tumor-infiltrating immune cells, as a tumor
prognostic value being investigated recently, were revealed to
be associated with prognosis of ccRCC patients [15]. Immuno-
therapy has been regarded as a promising therapeutic strategy
to enhance the outcome of survival in ccRCC patients [16, 17].
However, the sensitive for immunotherapy is not the same for
all patients, and the full potential of immunotherapy has not
been reached [18, 19]. It needs more acquirement to assess
the host antitumor immune response and explore the possible
mechanism behind that. Therefore, identifying ideal immune-
related lncRNAs as biomarkers for prognosis prediction of
ccRCC patients and providing clues to develop individual
immunological treatment strategies for improving the out-
come of ccRCC patients are crucial and bright.

In our study, a model comprised of five immune-related
prognostic lncRNAs and clinical parameters was constructed
to predict outcomes of ccRCC patients. High-throughput
sequencing data of ccRCC from The Cancer Genome Atlas
(TCGA) were analyzed to identify immune-related differen-
tially expressed lncRNAs. Then, the prognostic value of
lncRNAs for ccRCC was explored by means of univariate Cox
proportional hazards regression analysis, least absolute shrink-
age and selection operator (LASSO) method, and multivariate
Cox proportional hazards regression analysis after classifying
the continuous expression of lncRNAs into categorical values.
Next, the risk score was calculated by multiplying the categori-
cal values of the expression of five genes and Cox coefficients,
which was used to construct a nomogram together with clinical
parameters. Thereafter, we utilized time-dependent receiver
operating characteristic (tROC) curve analysis and calibration
plot to assess the nomogram. The internal and external valida-
tions were performed to enhance conclusive force of prediction.
Finally, functional enrichment analysis and coexpressed tumor-
infiltrating immune cells were explored to further enrich the
immune-related characteristics of the ideal lncRNAs. A regula-
tory relationship network comprised of coexpressed TF genes
and the ideal lncRNAs was constructed to provide the global
view of possible transcriptional interactions and reveal the
possible regulating mechanism of the lncRNA expression.

2. Materials and Methods

2.1. Dataset Acquisition and Processing. National Cancer
Institute and National Human Genome Research Institute
cooperatively constructed a public database called The Cancer
Genome Atlas (TCGA) containing genomic, epigenomic,
transcriptomic, and proteomic data of 33 cancer types. The
transcriptome profiling data including raw counts of lncRNA-
and mRNA-sequencing data and corresponding clinical infor-
mation of KIRC patients were obtained from TCGA dataset
(https://portal.gdc.cancer.gov/) in October 2019, in which the
methods of acquisition are in line with the guidelines and
policies. Relevant samples were excluded according to the
following criteria: (1) without clinical information or insuffi-
cient information of AJCC-stage, Fuhrman-grade, age, and
pharmaceutical; (2) survival time of patients less than 30 days;
(3) duplicate samples. Finally, 512 tumor samples with clinico-
pathological data and 72 normal samples were used for subse-
quent analysis. The cohort of 512 tumor samples (the whole
set) was then randomly divided into two sets by a ratio of 6
to 4, the training set (n = 309) and the testing set (n = 203)
using “sample” function of the R software. The related raw
counts of RNA-sequencing data and clinical information were
acquired from ICGC (International Cancer Genome Consor-
tium, https://icgc.org/), which is a platform for collaboration
of worldwide genomic research across 50 cancer types. After
screened with the same excluding criteria as TCGA, the cohort
consists of 91 tumor samples (n = 91) with survival time infor-
mation and was used for external validation. The details of clin-
ical characteristics were shown in Table S1 (Supplementary
material 1).

The 42 gene sets related to immune response were selected
from C5:biological process in Molecular Signatures Database
(MSigDB) V7.0 of Gene Set Enrichment Analysis (GSEA,
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp),
which covered 2593 immune-related genes (Supplementary
material 2 Table S2) and were used to screen immune-related
lncRNA. Besides, 318 transcription factor (TF) genes were
obtained from Cistrome Cancer database (http://cistrome.org/
), whose prediction of TF targeted genes is based on TCGA
database and public ChiP-seq profiles. Moreover, a signature
matrix of the collated 547 gene expression datasets associated
with 22 immune cell types were downloaded from
CIBERSORT web portal (Cell type Identification By Estimating
Relative Subsets of RNA Transcripts, https://cibersort.stanford
.edu/) [20], which encompasses T cells, B cells, macrophages,
natural killer cells, dendritic cells, eosinophils, neutrophils, etc.

2.2. Differentially Expression of Immune-Related lncRNAs
and TF Genes. The expression profiles of lncRNA andmRNA
were divided on the basis of GENCODE version 30
(GRCh38, https://www.gencodegenes.org/) by converting
Entrez IDs to gene IDs. Then, the gene was excluded if the
sum of gene expression level for each sample is less than 1
or it is an unrecognized gene. Finally, 12679 mRNAs and
9063 lncRNAs were obtained. Immune-related gene selected
fromGSEA and TF gene expression data were extracted from
the mRNA profile.
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The raw count data of lncRNA and mRNA profiles from
TCGA including tumor and normal samples were normal-
ized by TMM normalization using CalcNormFactors func-
tion in the “edgeR” package of the R software, which was
further used to screen differentially expressed lncRNAs
(DElncRNA) and differentially expressed TF genes (DETFs)
by comparing expression differences of genes between nor-
mal and tumor samples based on the following cutoff values:
FDR < 0:01 and absolute log2 fold change ðFCÞ > 1. The raw
count data of lncRNA and mRNA profiles from ICGA were
normalized by TMM normalization as well for the following
validation analysis.

Then, a cohort of immune-related DElncRNAs (IDElncR-
NAs) was identified according to Pearson correlation analysis
between immune-related gene expression level and DElncRNA
expression level in all tumor samples (∣R ∣ >0:7, P < 0:01).

2.3. Selection of Prognostic IDElncRNAs. The normalized con-
tinuous values of expression data (TMM) were classified into
categorical variables (low and high expression, written as “1”
and “2,” respectively) according to the median expression
value of each IDElncRNA. Then, these categorical values of
IDELncRNA and corresponding clinical information from
the training set (n = 309) were used to identify the prognostic
DElncRNAs using univariate Cox proportional hazards
regression analysis (hazard ratio ðHRÞ ≠ 1 and P < 0:05).
Then, the risky prognostic IDElncRNAs (HR > 1) were inter-
sected with the upregulated IDElncRNAs, while the protective
prognostic IDElncRNAs (HR < 1) were intersected with the
downregulated IDElncRNAs, whose purpose was to filter out
the controversial genes, the upregulated IDElncRNAs with
HR < 1, and the downregulated IDElncRNAs with HR > 1.
Subsequently, these intersected prognosis-related IDElncR-
NAs were used for further screening analysis.

LASSO (least absolute shrinkage and selection operator)
regression was performed to select the more significant prog-
nostic IDElncRNAs and eliminate genes that would overfit
the model using “glmnet” package of the R software [21].
Tenfold cross validation was also performed to identify the
optimal lambda value from the minimum partial likelihood
deviance in order to improve the objectivity and reliability
of analysis result. Afterward, the patients from the training
set were divided into two groups, high- and low-expression
groups by the median cutpoint of expression level of each
IDElncRNA, which was determined by “survminer” package
of the R software [22]. Then, “survival” package of the R soft-
ware [23] was performed to implement a log-rank test and
draw Kaplan-Meier curves to compare overall survival (OS)
between the high- and low-expression levels of IDElncRNAs.

2.4. Establishment and Assessment of Multi-lncRNA Signature.
The prognostic IDElncRNAs screened from LASSO regres-
sion were enrolled in stepwise multivariate Cox proportional
hazards regression method, which selected the preferred
model with the minimum AIC value and provided the regres-
sion coefficients of final prognostic IDElncRNAs. Subse-
quently, the risk score of each patient was calculated by
multiplying categorical value (1 or 2) of expression level
(TMM) and coefficient of each PIDElncRNA and summing,

which is as follows:

Risk score = 〠
n

i=1
βi ∗ CVi, ð1Þ

where n is the number of the IDElncRNAs in the best model,
CV is the categorical value (1 or 2) of TMM value of each
prognostic gene, and β is the regression coefficient of it.

The optimal cutoff point of risk score determined by using
the “survminer” R package stratified the patients in the train-
ing set into high-risk and low-risk groups. Then, the Kaplan-
Meier (KM) survival analysis was used to compare the OS
between these two groups. Besides, the time-dependent
receiver operating characteristic (tROC) curve was performed
to evaluate the sensitivity and specificity of the OS prediction
using the R package “survivalROC” [24]. In addition, the
KM curves were drawn to reveal the diagnostic capacity of
the risk score in different subgroups of clinical parameters
such as AJCC-stage, Fuhrman-grade, metastasis (yes or no),
pharmaceutical (yes or no), gender, and age.

In order to determine whether the risk score could be an
independent prognostic marker for prognosis prediction of
ccRCC patients, univariate and multivariate Cox propor-
tional hazards regression methods were performed. Other
clinical parameters such as age, gender, race, smoking, radio-
therapy, pharmaceutical, Fuhrman-grade, AJCC-stage, and
TNM were also incorporated in the analysis.

To assess the prediction value of the signature, the testing
set (n = 203), the whole set (n = 512), and the independent
external set (n = 91) were used to validate the findings. The
risk score of each ccRCC patient was obtained by the above
formula with the same coefficients used in the training set.
Then, the patients in the validation sets were stratified into
high-risk and low-risk groups by the same cutoff point in
the training set. The KM survival analysis with log-rank test
and tROC analysis were performed to validate the signature.
In addition, principal component analysis (PCA) was per-
formed using “scatterplot3d” R package [25] to contour the
expression pattern of the samples in the training set, the test-
ing set, and the whole set, which visualized whether the high-
risk samples and low-risk samples could demonstrate
distinctly different immune phenotypes based on the expres-
sion of final immune-related lncRNAs via dimensionality
reduction. The expression pattern of the high-risk and low-
risk samples based on the expression of whole immune-
related lncRNA in three sets was plotted as well to compare.

2.5. Construction and Evaluation of lncRNA-Based Nomogram.
A nomogram based on our lncRNA signature was constructed
using “rms” R package [26] to predict the probability of 3-, 5-,
and 7-year OS. Other independent prognostic clinical parame-
ters identified by univariate and multivariate Cox proportional
hazards regression analyses were also incorporated into the
model. To further assess the predictive performance of the
prognostic nomogram, the tROC analysis was accomplished
and the area under the tROC curve of 3-, 5-, and 7-year OS
was calculated, which was also performed in the validation sets.
Besides, calibration curve was plotted to visualize the
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performance of the model with the observed rates of the train-
ing set at corresponding time points by a bootstrap method
with 1000 resamples.

2.6. Immune-Related Functional Enrichment Analysis of
Multi-lncRNA Signature. For identifying the biological path-
ways of the multi-lncRNA signature, Gene Set Enrichment
Analysis (GSEA) was performed by the GSEA software
(v4.0.3, http://software.broadinstitute.org/gsea/) on JAVA
8.0 platform. The annotated gene set “c2.cp.kegg.v7.0.sym-
bols” and “c5.all.v7.0.symbols” obtained from the Molecular
Signatures Database (MSigDB) were conducted as the refer-
ence sets to calculate Enrichment Score (ES). The relevant
enrichment pathways with normalized P value <0.05 and
FDR score < 0:25 were considered as significant [27].

For better understanding of infiltrating immune cells in
ccRCC microenvironment related to the multi-lncRNA
signature, the relative proportion of tumor-infiltrating
immune cells was calculated using the CIBERSORT algo-
rithm. Then, the composition fraction of infiltrating immune
cells between high-risk group and low-risk group was com-
pared using Wilcoxon test, which considered P value <0.05
as significant. Besides, the ICGC dataset was used for validat-
ing the relationship above. Moreover, Pearson correlation
analysis was performed to figure out the relationship between
each ideal lncRNA and significantly infiltration immune cell.

The immune-related biological roles of the final prognos-
tic IDElncRNAs were also investigated through exploring the
functional enrichment analysis of coexpressed immune-
related mRNA with prognostic IDElncRNAs, in which Gene
Ontology (GO) enrichment analysis was performed by
online-tool Metascape (http://metascape.org/gp/index.html#/
main/step1) [28]. A P value of <0.05 was considered to be
statistically significant.

As for the important role of transcriptional regulation in
gene expression, it is meaningful to explore the relationship
between prognostic IDElncRNAs and DETFs. Pearson corre-
lation analysis was performed, and the regulatory relation-
ship was considered as significant when ∣R ∣ >0:3 and P
value<0.01. The visualization of the regulatory network was
constructed using Cytoscape V3.7.2. Then, GO analysis was
carried out for these coexpressed DETFs by online-tool
Metascape. These relationships were validated with ICGC
dataset as well.

2.7. Statistical Analysis. The R software version 3.6.1 (The R
Foundation for Statistical Computing, 2019) was applied to
perform all statistical analysis. Volcano plot of DEGs was plot-
ted using “ggrepel” R package [29], while heatmap of DEGs
was plotted using “pheatmap” R package [30] with zero-
mean normalization. The boxplot between normal and tumor
groups was analyzed using Wilcoxon test. For Kaplan-Meier
curves, P values and hazard ratio (HR) with 95% confidence
interval (CI) were generated by log-rank tests and Cox regres-
sion methods. The plots of correlation between the expression
of lncRNAs and the composition fraction of infiltrating
immune cells were drawn by Graphpad Prims 8. All statistical
tests were two-sided. P value<0.05 was considered as statisti-
cally significant.

3. Results

3.1. Identification of IDElncRNAs and DETFs.The flowchart of
the whole study is presented in Figure 1. After processing the
data, a total of 4356 DElncRNAs and 60 DETFs were identi-
fied with the criteria of FDR < 0:01 and ∣log 2FC ∣ >1
(Figures 2(a) and 2(b)). The heatmaps of top 50 DElncRNAs
and 60 DETFs were shown as well (Figures 2(c) and 2(d)).
Then, 280 immune-related DElncRNAs (IDElncRNAs) which
included 254 upregulated and 26 downregulated genes were
screened by the correlation analysis with 2593 immune-
related genes from GSEA with the criteria of ∣R ∣ >0:7 and P
value<0.05. The 280 IDElncRNAs were recorded in Table S3
(Supplementary material 3).

3.2. Screening of Prognostic IDElncRNA. The processed survival
data of each tumor sample in the training set were subjected to
univariate Cox proportional hazards regression analysis, in
which the significant threshold was set at P value<0.05. There-
fore, 166 prognosis-related IDElncRNAs (PIDElncRNAs) con-
taining 136 risky PIDElncRNAs (HR > 1) and 30 protective
PIDElncRNAs (HR < 1) were identified in total, which were
used to intersect with 254 upregulated IDElncRNAs and 26
downregulated IDElncRNAs, respectively. Finally, 49 contro-
versial PIDElncRNAs were filtered out, and 116 risky prognos-
tic with upregulated IDElncRNAs and 1 protective prognostic
with downregulated IDElncRNAs were discovered.

LASSO regression with tenfold cross validation was per-
formed to further screen the IDElncRNAs that significantly
correlated with the prognosis of ccRCC patients. The optimal
lambda value was obtained from the minimum partial likeli-
hood deviance (λmin = 0:00031) (Figures 2(e) and 2(f)). There-
fore, 14 PIDElncRNAs derived from this regression method
were used in subsequent stepwise multivariate Cox propor-
tional hazards regression analysis, and finally, the optimal 5-
PIDElncRNA model was obtained with the lowest AIC value
(Figure 2(g)), which contained AC012236.1, AC078778.1,
AC078950.1, AC087318.1, and AC092535.4.

3.3. Expression Profiles and Survival Analysis of the Optimal 5
IDElncRNAs. The expression profiles of the optimal 5
PIDElncRNAs between 512 carcinoma and 72 normal tissues
were shown in Figure 3(a), which indicated that the 5
PIDElncRNAs all significantly upregulated in the ccRCC
(P < 0:05).Besides, the expression levels of the five genes
between paired 72 normal tissues and 72 carcinoma tissues
from the same patient were also illustrated in Figures 3(b)–
3(f). Furthermore, the relationship between the expression
levels and histopathological information including AJCC-
stage and tumor grade was shown in Figure S1A-J
(Supplementary material 4). Among the 5 PIDElncRNAs in
ccRCC, the expression of AC012236.1, AC078778.1,
AC087318.1, and AC092535.4 was significantly associated
with AJCC-stage (P < 0:001) and tumor grade (P < 0:001).

The prognostic value of the final 5 IDElncRNAs was
reflected by KM survival curves in Figures 3(g)–3(k), where
the median expression value of each IDElncRNA was
regarded as a cutoff to partition the training set samples into
high- and low-expression groups. Overexpression of the 5
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IDElncRNAs was associated with the poor prognosis of
ccRCC patients, which meant that they were all risky
prognosis-related IDElncRNAs. The KM survival curves of
other 9 prognostic IDElncRNAs screened from LASSO regres-
sion method were shown in Figure S3 (Supplementary
material 6).

3.4. Establishment, Estimation, and Validation of the 5-
PIDElncRNA Signature. The Cox coefficients of the 5
PIDElncRNAs were obtained from the multivariate Cox pro-
portional hazards regression analysis. Then, the risk score
was constructed based on the coefficients and categorical
values of expression level as the following: risk score =
0:615626 ∗ CVðAC012236:1Þ + 0:641071 ∗ CVðAC078778:1Þ +
0:455388 ∗ CVðAC078950:1Þ + 0:421934 ∗ CVðAC087318:1Þ +
0:599496 ∗ CVðAC092535:4Þ. The median expression values of
AC012236.1, AC078778.1, AC078950.1, AC087318.1, and
AC092535.4 were as cutoff points, and they were 14.17589,
13.3747, 0.071091, 0.103646, and 49.81774, respectively
(expression values are TMM). The risk score of each tumor
patient in the training set was calculated. Next, the patients
in the training set were divided into high-risk group and

low-risk group based on the cutoff of the risk score deter-
mined by “survminer” R package (Figure 4(a)). The corre-
lated survival status of the patients in the training set was
shown in Figure 4(d), which suggested that more patients
got dead in the high-risk group. The boxplot of the expres-
sion of 5 PIDElncRNAs in the training set was shown in
Figure 4(g), which showed that the expression levels of these
five lncRNAs were higher in the high-risk group when
compared with that of the low-risk group. The high-risk
group patients had worse OS than that of low-risk group
patients plotted in Figure 4(j) by KM survival analysis. In
order to validate the 5-PIDElncRNA signature, the testing
set (Figures 4(b), 4(e), 4(h), and 4(k)) and the whole set
(Figures 4(c), 4(f), 4(i), and 4(l)) were used to do the above
analysis, whose results were consistent with that of the train-
ing set. Besides, the independent external dataset, ICGC, was
used for verifying the signature as well in Figure S2A
(Supplementary material 5). Moreover, the tROC analysis
was performed, and the AUC values of 3-, 5-, and 7-year
OS in the training set were 0.755, 0.772, and 0.751,
respectively (Figure 4(m)), in the meanwhile, the AUC
values of 3-, 5-, and 7-year OS in the internal validation set,
the whole set, and the external validation set also suggested

TCGA-KIRC
(512 tumor samples and 72 normal samples a�er screened)

Clinical information Transcription profiles

9063 lncRNAs 12679 mRNAs 318 TF genes

60 DETFs2593 immune-related
mRNAs (from GSEA)

4356 DElncRNAs

280 immune-related DElncRNAs (IDElncRNAs)

117 prognostic IDElncRNAs (PIDElncRNAs)

TF-lncRNA regulatory network

Gene set enrichment analysis

Tumor-infiltration immune cells

Construction and validation of lncRNA-based nomogram

GO

CIBERSORT

Optimal 5-PIDElncRNA signature

ICGC
(n = 91)

Testing set
(n = 203)

Training set
(n = 309)

Whole set
(n = 512)

Differentially
expression analysis

Differentially
expression analysis

Pearson correlation analysis

Univariate Cox regression

LASSO regression with
10-fold cross-validation

Multivariate Cox regression

Validation

Cistrome

Figure 1: Flowchart of the whole study.
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good performance of the signature (Figures 4(n) and 4(o);
Supplementary material 5: Figure S2B). Besides, PCA of the
training testing and whole set showed that the high-risk and
low-risk samples clustered separately in three-dimensional
space based on the 5-PIDElncRNA expression (Figures 5(a)–
5(c)). However, there was no observable separation between
high-risk and low-risk samples on the basis of the whole
immune-related lncRNA expression profiles (Figures 5(d)–
5(f)). The result demonstrated a distinguishing distribution
pattern of the high-risk and low-risk groups grounded on
the immune-related signature, reflecting that our constructed
signature had more discriminatory ability to identify the
difference in immune phenotype among the samples when
compared to the whole immune-related lncRNA expression
profiles.

We performed risk stratification in patients with different
subgroups of AJCC-stage, Fuhrman-grade, gender, age,
metastasis, and pharmaceutical and did the KM survival
analysis (Figures 5(g)–5(l)). The patients with high-risk
scores had worse OS than the patients with low-risk scores
in stages I and II, stages III and IV, grades 1 and 2, grades 3
and 4, metastasis yes or no, no pharmaceutical, male, female,
younger, and elder subgroup (P < 0:05), while there was no

difference in pharmaceutical subgroup (Supplementary
material 6: Figure S3A-J). The comparisons of risk score in
different AJCC-stage and grade were also shown in
Figure S3K-L (Supplementary material 6), which indicates that
the higher risk score, the more advanced of the carcinoma is.

3.5. Construction and Validation of the lncRNA-Based
Nomogram. In order to build a more individualized and appli-
cable predictive model, a good performance of prediction
nomogram was constructed based on the 5-PIDElncRNA
signature. The 5-PIDElncRNA signature and other clinical
parameters such as AJCC-stage, age, pharmaceutical, and
Fuhrman-grade could be an independent prognostic factor,
respectively, for OS prediction of ccRCC patients in the training
set after the univariate and multivariate Cox proportional haz-
ards regression analyses (Figures 6(a) and 6(b)). Then, these
independent prognostic factors were integrated together into
this nomogram to predict 3-, 5-, and 7-year OS of ccRCC
patients (Figure 6(c)).

The calibration plot for predicting 3-, 5-, and 7-year OS
showed that the lncRNA-based nomogram exhibited excel-
lent performance with high agreement between model pre-
dicted outcome and actual outcome (Figure 6(d)). Besides,

# Global P value (Log-Rank): 3.351e–11
AlC: 1052.91; Concordance index: 0.72

0.0047⁎⁎

0.0462⁎

0.0215⁎

0.0021⁎⁎

0.0069⁎⁎

HR (95% CI)

Hazard ratio (HR)

AC012236.1 (N = 309) 1.85
(1.18 – 2.89)

1.90
(1.26 – 2.86)

1.58
(1.07 – 2.32)

1.52
(1.01 – 2.31)

1.82
(1.20 – 2.76)

(N = 309)

(N = 309)

(N = 309)

(N = 309)

AC078778.1

AC078950.1

AC087318.1

AC092535.4

1 1.5 2 32.5

(g)

Figure 2: Screening of the DElncRNAs, DETFs (FDR < 0:01 and absolute log2 fold change ðFCÞ > 1), and PIDElncRNAs. (a) Volcano plot of
DElncRNAs in ccRCC compared with normal tissues. (b) Volcano plot of DETFs in ccRCC compared with normal tissues. (c) Heatmap of top
50 DElncRNAs in ccRCC. (d) Heatmap of 60 DETFs in ccRCC. (e) LASSO coefficient profiles of 117 PIDElncRNAs. (f) LASSO regression
with tenfold cross validation obtained 14 PIDElncRNAs using minimum lambda value. (g) Multivariate Cox regression analysis of 5
PIDElncRNAs. DElncRNAs: differentially expressed lncRNAs; DETFs: differentially expressed transcription factor genes; PIDElncRNAs:
prognostic immune-related differentially expressed lncRNAs; FDR: false discovery rate; ccRCC: clear cell renal cell carcinoma; LASSO:
least absolute shrinkage and selection operator. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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the tROC curves were drawn, and the AUC values of the
nomogram at 3-, 5-, and 7-year were 0.845, 0.829, and
0.821, respectively (Figure 6(e)).

To further validate the predictive value of the 5-
PIDElncRNA prognostic nomogram, the testing set and the
whole set were used to perform the tROC analysis and test
the results which were from the training set. The AUC values
of the testing and whole set at 3-, 5-, and 7-year OS were
0.803, 0.833, 0.770, 0.826, 0.825, and 0.796, respectively
(Figures 6(f) and 6(g)).

3.6. Functional Enrichment Analysis and Associated Immune
Cell Infiltration of the 5-PIDElncRNA Signature. The biological
function of the 5-PIDElncRNA signature was identified by GO
and KEGG enrichment analyses using GSEA. In GO biological
analysis, the signature was enriched in some immune-related
biological function, such as immune response to tumor cell,
natural killer cell activation involved in immune response, reg-
ulation of humoral and adaptive immune response, and T cell
activation and differentiation involved in immune response
(Figure 7(a)). In KEGG pathway analysis, intestinal immune
networks for IgA production, primary immunodeficiency,
ERBB signaling pathway,MTOR signaling pathway,WNT sig-
naling pathway, etc. were identified for the 5-PIDElncRNA
signature (Figure 7(b)). Furthermore, the GO andKEGG func-
tional enrichment analyses of each lncRNA of the ideal five
lncRNAs were explored by GSEA and shown in Figure S4
(Supplementary material 7). The potential function of
AC012236.1 was enriched in “regulation of humoral immune
response” biological process and involved in “JAK-STAT

signaling pathway” in ccRCC (Supplementary material 7:
Figure S4A, F). AC078778.1 was related to “negative
regulation of production of molecular mediated of immune
response” and revealed to be associated with “homologous
recombination pathway” (Supplementary material 7:
Figure S4B, G). For AC078950.1, “pre-mRNA 5 splice site
binding” was enriched by GO analysis and the pathway,
“Nod-like receptor signaling pathway,” was disclosed by
KEGG analysis (Supplementary material 7: Figure S4C, H).
Highly expressed AC087318.1 was linked to the biological
process “regulation of T cell differentiation” while its involved
KEGG pathway was “Toll-like receptor signaling pathway”
(Supplementary material 7: Figure S4D, I). AC092535.4 was
suggested to be associated with “DNA polymerase complex”
biological characteristic, and high expression of it probably
played a critical role in “p53 signaling pathway” according to
what we found (Supplementary material 7: Figure S4E, J).

In order to determine whether the 5-PIDElncRNA signa-
ture was associated with immune cell infiltration in tumor
immune microenvironment, the infiltrating immune cell
composition fraction between the high-risk group and low-
risk group was compared in TCGA and ICGC cohorts
(Figures 7(c) and 7(d)). As shown in the figure, the fraction
of CD8+ T cells, regulatory T cells, T follicular helper cells,
resting mast cells, and naïve B cells was significantly different
between the high-risk and low-risk groups in both datasets.
The proportion of CD8+ T cells, regulatory T cells, and T
follicular helper cells was significantly higher in the high-
risk group compared with that of the low-risk group, while
the proportion of naïve B cells and resting mast cells was

AC092535.4

0

0.00

0.25

0.50
Su

rv
iv

al
 p

ro
ba

bi
lit

y

0.75

1.00

1 2 3 4 5 6
Time (years)

Log-rank test P = 4.072e – 06

Hazard ratio = 2.46

95% CI: 1.68 – 3.61

7 8 9 10 11 12

High risk

Low risk

(k)

Figure 3: Expression pattern and Kaplan-Meier survival analysis of the five PIDElncRNAs. (a) Expression pattern of the five PIDElncRNAs
between 72 normal samples and 512 tumor samples. (b–f) Paired expression pattern of the five PIDElncRNAs between 72 normal samples
and 72 tumor samples. (g–k) Survival analysis of the five PIDElncRNAs. PIDElncRNAs: prognostic immune-related differentially
expressed lncRNAs; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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significantly lower in the high-risk group. Because the compo-
sition fraction of naïve CD4+ T cells calculated in 22 immune
cell types from TCGA and ICGA datasets was zero, it was dis-
lodged in the figure. In order to specify the correlation between
the signature and infiltrating immune cells, Pearson correlation
analysis was performed between each one of the five lncRNAs
and significantly infiltrating immune cells (Supplementary
material 8: Figure S5). AC012236.1 was correlated positively
with the infiltration of regulatory T cells (R = 0:2547, P <
0:0001) and T follicular helper cells (R = 0:1733, P = 0:0007),
while it was correlated negatively with the infiltration of
resting mast cells (R = −0:3050, P < 0:0001). AC078778.1 was
positively correlated with the infiltration of regulatory T cells
(R = 0:2556, P < 0:0001), T follicular helper cells (R = 0:3336,
P < 0:0001), and CD8+ T cells (R = 0:2346, P < 0:0001), but
negatively correlated with resting mast cells (R = −0:1822, P
= 0:0003) and naïve B cells (R = 0:1479, P = 0:0037). As for
AC087318.1, it was negatively associated with naïve B cells
(R = −0:2442, P < 0:0001) and resting mast cells (R = −0:3083
, P < 0:0001) and positively associated with CD8+ T cells
(R = 0:6696, P < 0:0001) and T follicular helper cells

(R = 0:4489, P < 0:0001). Besides, AC092535.4 was found to
be related positively with regulatory T cells (R = 0:2448, P <
0:0001) and negatively with resting mast cells (R = −0:1604, P
= 0:0016). However, the relationship between AC078950.1
and the infiltration immune cells could not be disclosed
significantly.

3.7. Construction and Functional Annotations of Immune-
Related TF-lncRNA Regulatory Relationship Network. Tran-
scription factor plays a critical role in controlling gene
expression including lncRNAs. Therefore, it is significative
to explore possible mechanisms that cause dysregulation of
the 5 PIDElncRNAs. The coexpression analysis was per-
formed to identify the TF-lncRNA pairs (Supplementary
material 9: Table S4). ICGC dataset was also used to
validate the correlation relationship between the DETF and
PIDElncRNAs (Supplementary material 10: Table S5). The
common TF-lncRNA pairs between TCGA and ICGC
datasets were screened for constructing the DETFs-
PIDElncRNA regulatory network (Figure 8(a)). From this
regulatory relationship network, the expression of BATF

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6
False positive rate

0.8 1.0

AUC of 7-year survival (AUC = 0.723)

AUC of 3-year survival (AUC = 0.687)
AUC of 5-year survival (AUC = 0.735)

Tr
ue

 p
os

iti
ve

 ra
te

(o)

Figure 4: Prognostic analysis of the five-lncRNA signature in three sets. (a–c) The curves of risk score in the training set, the testing set, and
the whole set. The dotted line represents the cutoff score and divides the patients into the low-risk and high-risk groups. (d–e) Survival status
of the patients in the training set, the testing set, and the whole set. The orange dots represent dead patients while the green dots represent
alive patients. More dead patients correspond to the higher risk score. (g–i) Boxplots of the expression profiles of the five PIDElncRNAs
in the training set, the testing set, and the whole set. (j–l) Kaplan-Meier survival analysis of the five-lncRNA signature in the training set,
the testing set, and the whole set. (m–o) Time-dependent ROC curves of the five-lncRNA signature in the training set, the testing set, and
the whole set. PIDElncRNAs: prognostic immune-related differentially expressed lncRNAs; ROC: receiver operating characteristic.
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(r = 0:209), EOMES (r = 0:207), EZH2 (0.246), FOXM1
(r = 0:297), IRF4 (r = 0:391), LEF1 (r = 0:284), LMNB1
(r = 0:347), RUNX1 (0.225), and STAT4 (0.325) was
correlated positively with the expression of AC012236.1,
while the expression of HEY1 (r = −0:429) was correlated
negatively with that of AC012236.1, which speculates that

the expression of AC012236.1 is probably regulated by
these TFs. The expression of EZH2 (r = 0:332), POU5F1
(r = 0:446), and STAT4 (r = 0:318) was correlated positively
with that of AC078778; the expression of ETS1 (r = −0:071)
and PBX1 (r = −0:245) was correlated negatively with that
of AC078778.1. FLI1 (r = −0:269), PML (r = −0:169), and
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Figure 5: Principal component analysis of three sets and Kaplan-Meier survival analysis of the five-lncRNA signature in different subgroups
of clinical parameters. (a–c) Principal component analysis of the training set, the testing set, and the whole set based on the 5-lncRNA
expression. (d–f) Principal component analysis of the training set, the testing set, and the whole set based on the whole immune-related
lncRNA expression. The red dots represent the high-risk patients, while the blue dots represent the low-risk patients. (g–l) Survival
analysis of the five-lncRNA signature in stages I and II, stages III and IV, grades 1 and 2, grades 3 and 4, metastasis, without metastasis,
pharmaceutical, without pharmaceutical, male, female, elder, and younger.
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Figure 6: Continued.
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Figure 6: Identifying independent prognostic parameters and constructing a lncRNA-based nomogram. (a) Forrest plot of univariate Cox
regression analysis in ccRCC. (b) Forrest plot of multivariate Cox regression analysis in ccRCC. (c) A lncRNA-based nomogram
integrating AJCC-stage, Fuhrman-grade, age, pharmaceutical, and risk score to predict 3-, 5-, and 7-year OS of ccRCC patients. (d) The
calibration plot of the nomogram for predicting 3-, 5- and 7-year OS of ccRCC patients. E-G, Time-dependent ROC curves of the
nomogram for 3-, 5-, and 7-year OS prediction in the training set, the testing set, and the whole set. AJCC: American Joint Committee on
Cancer; OS: overall survival; ccRCC: clear cell renal cell carcinoma; ROC: receiver operating characteristic.
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Figure 7: GSEA and the relation of the tumor-infiltrating immune cells to the five-lncRNA signature. (a) Immune-related GO terms enriched
in the high-risk group. (b) Associated KEGG terms enriched in the high-risk and low-risk groups. (c) Comparison of tumor-infiltrating
immune cell proportion between the high-risk group and low-risk group in TCGA dataset. (d) Comparison of tumor-infiltrating immune
cell proportion between the high-risk group and low-risk group in ICGC dataset. GSEA: Gene Set Enrichment Analysis; GO: Gene
Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.

31Journal of Immunology Research



Upregulated DETF

Downregulated DETF

PIDElncRNA
BATF

FLI1

EOMES

PML

EZH2

RARA

FOXM1

FOXP3
CEBPA

HEY1

IRF4
LEF1

IKZF1

LMNB1

IRF1

NCAPG

PRDM1
PBX1

CEBPB
POU5F1

AC092535.4

AC078778.1 AC012236.1

AC078950.1AC087318.1

ETS1

STAT4

RUNX1

CIITA

(a)

0 2 4 6 8
–log10 (P)

10 12 14 16

GO:0032609: interferon-gamma production

GO:0048872: homeostasis of number of cells

GO:0021761: limbic system development
GO:0048514: blood vessel morphogenesis
GO:0060333: interferon-gamma-mediated signaling pathway

GO:0048732: gland development

GO:0002287: alpha-beta T cell activation involved in immune response

GO:0046632: alpha-beta T cell differentiation
GO:0030099: myeloid cell differentiation
GO:0045165: cell fate commitment

GO:0001892: embryonic placenta development

GO:0043374: CD8-positive, alpha-beta T cell differentiation

GO:0045596: negative regulation of cell differentiation
GO:0048384: retinoic acid receptor signaling pathway

GO:0030330: DNA damage response, signal transduction by p53 class mediator

(b)

Myeloid cell differentiation Alpha-beta T cell differentiation

Interferon-gamma-mediated signaling pathway

DNA damage response, signal transduction by p53 class mediator

(c)

Figure 8: Regulatory relationship network of DETFs and five PIDElncRNAs and GO enrichment analysis. (a) The network of DETFs and five
PIDElncRNAs based on TCGA and ICGC datasets. The orange triangles represent PIDElncRNAs; the orange nodes represent upregulated
DETFs, while the blue nodes represent downregulated DETFs; the blue lines indicate positive regulatory relationships, while the red lines
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regulatory relationship network. (c) The network of enriched GO terms for the coexpressed DETFs. DETFs: differentially expressed
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RARA (r = −0:313) expression was negatively associated with
AC078950.1. Besides, the expression of BATF (r = 0:474),
CEBPA (r = 0:183), CIITA (r = 0:276), EOMES (r = 0:534),
EZH2 (r = 0:259), IKZF1 (r = 0:257), IRF1 (r = 0:297), IRF4
(r = 0:452), LMNB1 (r = 0:273), NCAPG (r = 0:299), PML
(r = 0:231), PRDM1 (r = 0:192), and STAT4 (r = 0:242) was
positively related to the expression of AC087318.1, and in
the meanwhile, the expression of CEBPB (r = 0:191) was
positively related to that of AC092535.4. The regulatory
order between these DETFs and PIDElncRNAs is not
certain, and we just surmise that these TFs probably play a
role in regulating the expression of the five lncRNAs based
on the correlation analysis.

Moreover, GO enrichment analysis of the DETFs identified
transcriptional and immune-related processes such as alpha-
beta T cell differentiation, myeloid cell differentiation, and
interferon-gamma-mediated signaling pathway (Figure 8(b)).
The corresponding network of biological process was also
shown (Figure 8(c)).

4. Discussion

ccRCC is the most common type of renal cancer accounting
for 2% of the global cancer burden, while its incidence is on
the rise [31]. Immunotherapy such as anti-CTLA-4 antibody
and anti-PD-1 antibody has been identified as promising
strategy for ccRCC [18, 32]. However, only a fraction of
patients shows durable responses, which indicates that alter-
native mechanism restricts the immune response and helps
cancer escape the immunosurveillance. lncRNAs have been
considered as a critical part in cancer immunotherapy as they
could mediate innate and adaptive immunity by regulating
immune response genes [33]. Rising evidence has shown that
aberrant expression of lncRNAs would affect the prognosis of
cancer patients. Dysregulated expression of lncRNAs would
contribute to oncogenesis through giving impact on many
biological processes [34]. However, the character of lncRNAs
in immune response for ccRCC stays at a preliminary stage.
Therefore, it is meaningful to screen ideal immune-related
lncRNAs as biomarkers and construct a prognostic model
to predict the prognosis of ccRCC patients, which could
provide more hints for further exploring the novel immuno-
therapy of ccRCC.

In this study, novel prognostic immune-related lncRNAs
were identified through differentially expressed analysis, uni-
variate Cox proportional hazards regression, LASSO with ten-
fold cross validation, and multivariate Cox proportional
hazards regression. Finally, 5 ideal novel risky PIDElncRNAs,
AC012236.1, AC078778.1, AC078950.1, AC087318.1, and
AC092535.4, were selected, whose biological function and spe-
cific roles in cancer have not been investigated widely and
deeply (Supplementary material 11: Table S6). AC078778.1 is
a novel transcript and sense overlapping to COPZ1 and
HNRNPA1 [35]. It was found to be differentially expressed in
bladder urothelial cancer (BUC) and positively related to its
OS, which could be an independent prognostic factor for OS
of BUC [36]. Hu et al. reported that AC078778.1 was
upregulated in lung squamous cell carcinoma (LUSC), and
they identified a three-lncRNA signature containing

AC078778.1 as a potentially prognostic biomarker for LUSC
[37]. Liu and Ye also discovered that it was differentially
expressed in laryngeal squamous cell carcinoma [38]. But the
specific mechanism that how dysregulated AC078778.1 gives
rise to oncogenesis, especially in ccRCC, remains unclear, and
it is necessary to be explored further. Our study provides
some evidence that it was an immune-related risky
prognostic lncRNA for ccRCC patients, and it would be
related to negative regulation of production of molecular
mediator of immune response and probably plays an
important role in homologous recombination signaling
pathway in ccRCC carcinogenesis and promotion according
to GSEA (Supplementary material 7: Figure S4A,F Besides,
the correlation analysis also suggested that the expression of
AC078778.1 was correlated positively or negatively with
regulatory T cells, T follicular helper cells, resting mast cells,
CD8+ T cells, and naïve B cells. AC092535.4, an alias for
LOC105374344 [35], was found to be one of top 10
upregulated lncRNAs in endometrial cancer [39]. As far as
we know, no more research related to AC092535.4 was
reported. Based on our findings, AC092535.4 was
upregulated in ccRCC and its high expression level was
associated with the poor survival of ccRCC patients
(Figure 3), which was probably due to its facilitating role in
tumorigenesis and tumor promotion (Supplementary
material 4: Figure S1I-J). Besides, it was revealed that it
probably exerts its role in DNA polymerase complex from
GO biological analysis and P53 signaling pathway from
KEGG pathway analysis (Supplementary material 7:
Figure S4E, J). Moreover, its expression was correlated
positively and negatively with regulatory T cells and resting
mast cells, respectively. As for AC012236.1, AC078950.1,
and AC087318.1, the relative information could not be
available because of the little research on these three novel
lncRNAs. What we found was that they were all immune-
related risky prognostic lncRNAs in ccRCC. They were
related to the advance of ccRCC except AC078950.1
(Supplementary material 5: Figure S2 Moreover, based on
our discovery, AC012236.1 would probably make a
difference in regulation of humoral immune response and
also involve in JAK-STAT signaling pathway in ccRCC
(Supplementary material 7: Figure S4A, F); AC078950.1
played an important role in the biological process about pre-
mRNA 5 splice site binding and Nod-like receptor signaling
pathway in ccRCC development (Supplementary material 7:
Figure S4C, H); AC087318.1 potentially emitted its effect in
regulation of T cell differentiation process and Toll-like
receptor signaling pathway (Supplementary material 7:
Figure S4D, I). In addition to this, Pearson correlation
analysis revealed that their expression was correlated
positively or negatively with some infiltration immune cells
in ccRCC microenvironment except AC078950.1, such as
regulatory T cells, T follicular helper cells, resting mast cells,
CD8+ T cells, and naïve B cells (Supplementary material 8:
Figure S5). Because of their significant prognostic value for
ccRCC patients, immune-related biological function and
correlation with infiltrating immune cells and their specific
mechanism inducing oncogenesis are deserved to be
explored in the future.
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Transcription factors (TFs) play a critical role in regulat-
ing gene expression including lncRNA. The dysregulated
expression of TFs and their downstream targets have been
demonstrated to be associated with carcinogenesis [40]. For
instance, as reported by Fan et al., Octamer-binding TF4 pro-
tein exerts a promoting effect in osteosarcoma through regu-
lating lncRNA AK055347 expression [41]. Besides, lncRNAs
are also able to interact with TF and affect their regulatory
function [42]. Hung et al. proved that PANDA, a lncRNA
transcribed from CDKN1A promoter, can interact with the
transcription factor NF-YA to limit expression of proapopto-
tic genes [43]; Willingham et al. suggested that the noncoding
repressor of NFAT (nuclear factor of activated T cell)
lncRNA can form a complex with some other proteins to
repress the transcription factor NFAT [44]. Although the
roles of lncRNAs in regulating TF activities have been
inferred by these studies, the direct physical interaction has
not been reported [45]. Therefore, in our study, we simply
analyzed the correlation relationship between the five
lncRNAs and DETFs to construct the TF-lncRNA regulatory
network, which probably reveals the underlying interactions
between them and transcriptional mechanism of the five
lncRNAs. This would potentially provide the foundation for
the future research on the mechanism of ccRCC develop-
ment. Moreover, the GO analysis of DETF revealed the
possible transcriptional mechanisms and immune-related
biological function which further proved the immune-
related properties of 5 lncRNAs.

Then, these 5 ideal PIDElncRNAs were used to establish an
immune-related multi-lncRNA signature to evaluate the prog-
nosis of ccRCCpatients through risk stratification. The patients
in high-risk group showed poorer prognosis compared with
the patients in low-risk groups, and the internal validation set
verified the prognostic value. The tROC curves of the signature
in three sets suggested the good prognostic value of the
immune-related signature, especially in 5- and 7-year OS of
ccRCC patients. Then, in order to investigate the wide applica-
bility of the immune-related signature, the associations
between the risk score and different clinicopathological param-
eters were evaluated. It was observed that the signature could
accurately stratify the patients into the high-risk group with
shorter OS and the low-risk group with longer OS in different
subgroups such as AJCC-stage, Fuhrman-grade, metastasis,
pharmaceutical, gender, and age. Meanwhile, the high-risk
group could show advanced stage and malignant grade (Sup-
plementary material 4: Figure S1k-l). These findings suggest
that the signature is tightly associated with progression and
poor outcome of ccRCC. In order to improve the ability of
prognosis prediction, the signature and other independent
prognostic factors (age, pharmaceutical, Fuhrman-grade,
AJCC-stage, and risk level) screened from univariate and
multivariate Cox regression analyses were integrated together
to construct a highly accurate predictive nomogram. The 3-,
5-, and 7-year OS of individual ccRCC patients could be
predicted by the nomogram. Then, tROC analysis of the
nomogram in three sets showed great power to predict the
OS of ccRCC patients. Perfect agreement was also observed
in the calibration plot between the predicted and observed
outcomes. Therefore, the immune-related five-lncRNA-based

nomogram may help clinicians predict the 3-, 5-, and 7-year
OS of ccRCC patient personally and accurately.

Our 5-PIDElncRNA signature was shown to have robust
connection to immune response by GO terms of GSEA. The
high-risk group was more related to immune response to
tumor cells, T cell activation and differentiation involved in
immune response, regulation of humoral and adaptive
immune response, and natural killer cell activation involved
in immune response. These findings suggest that the patients
in the high-risk group based on this immune-related signa-
ture would easily get ccRCC formation and progression as
the result of the affected immune system. Therefore, it is
necessary to further study the specific immune-related mech-
anism behind carcinogenesis.

Recently, emerging studies have corroborated that genetic
aberrations in tumor cells can affect the immune landscape of
tumor [46, 47]. Some research has demonstrated that tumor-
infiltrating immune cells were critical for the therapeutic
responsiveness and prognosis of cancer including ccRCC
[48, 49]. Liu et al. stated that tumor-infiltrating immune cells
would activate the immune response and promote cancer pro-
gression in ccRCC [50]. It is believed that CD8+ T cells play an
important role in tumor control [51]. However, Nakano et al.
found that the overall and disease-free survival rates were
shorter in RCC patients with abundant intratumoral CD8+ T
cells than in those having a small number of intratumoral
CD8+ T cells [52], while Nicolas et al. revealed that only with
the presence of functional mature dendritic cells recruited
CD8+ T cells correlated with favorable prognosis in RCC
[53]. In our study, we analyzed the relationship between the
risk score and tumor-infiltrating immune cells and found that
the high-risk group had higher proportion of CD8+ T cells, T
follicular helper cells, and regulatory T cells and lower propor-
tion of naïve B cells and resting mast cells in ccRCC microen-
vironment compared with the low-risk group, which revealed
the immunological environment of ccRCC is associated with
our immune-related signature. Besides, the correlation
between each lncRNA and these significantly infiltrated
immune cells was analyzed and discussed above, which further
specifies the relationship between the signature and immune
microenvironment. These results suggested that on the basis
of our risk score model, the tumor immune microenviron-
ment in ccRCC could be conjectured that which kind of
immune cells would be more likely to infiltrate, which may
offer important insights into tumor-immune interactions of
ccRCC and provide the basis and evidence for future novel
immunotherapy in ccRCC.

Although we have identified several ideal novel immune-
related lncRNAs which could be biomarkers for ccRCC and
constructed an integrated nomogram with good performance
in prognosis prediction of ccRCC patients, several limitations
of our study should be acknowledged as follows. Firstly, to
our best of knowledge, the expression data and clinical infor-
mation of 5 novel lncRNAs are not available from other
databases such as Gene Expression Omnibus (GEO) or cBio-
Portal. Therefore, the validation of our model was only veri-
fied by the internal testing set and one independent external
validation set. Secondly, our study was based on the publicly
databases. With these two concerning, we intended to collect
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samples from ccRCC patients in our hospital for experimen-
tal analysis like RNA-sequencing analysis and flow cytometry
analysis to explore the concrete mechanism of the five
lncRNAs in immune system and to discover the potential
immune-related mechanisms of our signature, which might
provide evidence for clinical application in the future.

5. Conclusion

In summary, we identified five novel prognostic immune-
related lncRNAs through mining publicly databases and con-
structed a powerful five-lncRNA based nomogram to predict
3-, 5-, and 7-year OS of ccRCC patients, which was probably
used to guide clinicians in decisions of clinical diagnosis, prog-
nosis, and treatment. Functional enrichment analysis and rela-
tion to tumor-infiltrating immune cells reveal immune-related
characteristics of each lncRNA and the multi-lncRNA signa-
ture, which may provide new insights into immunotherapy
for ccRCC.
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