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Abstract

As powerful computational tools and ‘big data’ transform the biological sciences, bioinformat-

ics training is becoming necessary to prepare the next generation of life scientists. Further-

more, because the tools and resources employed in bioinformatics are constantly evolving,

bioinformatics learning materials must be continuously improved. In addition, these learning

materials need to move beyond today’s typical step-by-step guides to promote deeper con-

ceptual understanding by students. One of the goals of the Network for Integrating Bioinfor-

matics into Life Sciences Education (NIBSLE) is to create, curate, disseminate, and assess

appropriate open-access bioinformatics learning resources. Here we describe the evolution,

integration, and assessment of a learning resource that explores essential concepts of bio-

logical sequence similarity. Pre/post student assessment data from diverse life science

courses show significant learning gains. These results indicate that the learning resource is a

beneficial educational product for the integration of bioinformatics across curricula.

Introduction

Integrating bioinformatics into the life science classroom

Life science research is in the midst of a paradigm shift, focusing more on interdisciplinary

efforts that use streamlined high-throughput automation to generate ‘big data.’ Analysis of
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these data sets requires bioinformatics knowledge and techniques [1–3]. In addition, the

importance of core competencies central to bioinformatics, including quantitative reasoning

and the ability to tap into the interdisciplinary nature of science, is highlighted in the AAAS

2011 Vision and Change Report [4]. Thus, bioinformatics is becoming a critical part of the life

scientist’s toolkit.

Efforts to establish bioinformatics core competencies and/or curriculum recommendations

for undergraduate programs are described in the literature [5–8]. However, the pace of intro-

ducing bioinformatics concepts and tools into the undergraduate biology curriculum lags far

behind what is needed for students to gain the skills required for advanced study and careers

within the life sciences [9–11]. A commonly cited barrier to integrating bioinformatics into

life sciences instruction is the lack of accessible ‘plug-and-play’ or easily adaptable materials

that provide an intriguing ’hook’ to engage students [12]. In addition, biology instructors often

lack training in bioinformatics and are thus not comfortable teaching it [13–15]. Thus, if they

do implement an activity that uses a bioinformatics tool, little explanation is provided as to

how the underlying algorithm works or what its assumptions are [11], knowledge that is criti-

cal for appropriately applying and using the tool. A central goal of The Network for Integrating

Bioinformatics into Life Science Education (NIBLSE) is to address these barriers by develop-

ing, assessing, curating, and disseminating up-to-date and user-friendly open-access bioinfor-

matics resources [16].

The sequence similarity learning resource

Here we review the development, implementation, and assessment of an introductory bioin-

formatics learning resource [17,18] that explores the concept of sequence similarity and its bio-

logical implications. The resource is designed to capture students’ interest by enabling them to

work on a short independent project. In addition, the resource provides learners with a clear

explanation of the function and limitations of three alignment and phylogenetic tree-building

algorithms (i.e., BLAST, Multiple Sequence Alignment, Neighbor Joining). This ‘under-the-

hood’ knowledge is essential for properly interpreting the output of the programs that imple-

ment the algorithms. Several adaptations of the learning resource are available that allow its

easy insertion into a variety of different classes (e.g., plant physiology, developmental biology,

virology; [17,19–21]).

The sequence similarity learning resource is composed of four modules (Table 1) that can

be used independently or together depending on course learning goals [17]. The first three

modules explore how biologists quantify nucleotide and protein sequence similarity, compare

a sequence to those in a public database (e.g., GenBank), and create phylograms that convey

evolutionary relationships. In the fourth module, students apply the skills and conceptual

knowledge gained in the first three to investigate a biological question of their own choosing.

An initial version of the learning resource was refined in a NIBLSE Resource Incubator

[12]. Incubators are low-cost, short-term, online communities that develop open educational

resources (OERs). Once refined, it was included in the NIBLSE Learning Resource Collection

[17], an online collection of bioinformatics learning materials, and described in a recent publi-

cation [18]. Subsequently, a Quantitative Undergraduate Biology Education and Synthesis

(QUBES) Faculty Mentoring Network (FMN) [22,23] supported implementation and assess-

ment of the learning resource across multiple institutions. Here we report our assessment

results, which demonstrate that the learning modules yield measurable objective learning

gains and positive changes in student perceptions of bioinformatics knowledge and skills

across diverse classrooms.
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Materials and methods

The study was approved by the Adams State University and University of Dubuque Institu-

tional Review Board. Written consent was obtained from all human research subjects in the

study.

Learning resource development and implementation

As previously stated, the focus of the resource is sequence similarity and its biological implica-

tions. It addresses Competencies 2, 4, 5, and 8 (S1 Table) of the NIBLSE Bioinformatics Core

Competencies [7]. The resource was first used during the fall 2016 semester by a small group

of faculty at a single institution aiming to integrate bioinformatics learning objectives in a gen-

eral biology course (Fig 1). After piloting the resource at this institution, it was identified as a

candidate for an Incubator [12], with the goal of providing a widely adaptable learning

resource to integrate bioinformatics principles at the introductory level. The Incubator process

generated a version of the resource with Creative Commons licensing and the QUBES Project

[22] provided immediate public access within the NIBLSE Learning Resource Collection [17]

for other educators, while acquiring input from diverse faculty within NIBLSE to validate the

resource. The Incubator process further developed and enriched the content and facilitated

the generation of supporting materials (e.g., teaching notes). In addition, the resource was con-

verted into a modular format and expanded for a wider audience. After multiple pilot rounds

Table 1. Sequence similarity learning resource module descriptions.

Sequence Similarity Module Title Module Description

Module 1: Similarity and Sequence

Alignment

Students explore the meaning of sequence similarity and then investigate

how similarity can be quantitatively compared between two similar length

proteins using a Blocks Substitution Matrix (BLOSUM) scoring matrix.

This core concept and competency has utility for biologists seeking to

identify conserved blocks of sequence in homologous proteins that may

have structural and functional importance and hint at evolutionary

relationships between two sequences.

Module 2: Sequence Alignment to a

Database of Sequences

Students find local regions of similarity between a query sequence and a

database of subject sequences using the Basic Local Alignment Search

Tool (BLAST) algorithm and develop a basic understanding of the

algorithm through a manual scoring exercise. This core concept and

competency has utility for biologists seeking to identify conserved blocks

of nucleotide or protein sequence that may or may not necessarily be

homologous, but share common domains (often reused by similar

families of proteins) that may hint at structure and function of a protein

and hint at evolutionary relationships between two sequences.

Module 3: Phylogenetic Analysis of

Homologous Sequences

Students practice accessing text-based FASTA-formatted sequence

information via the National Center for Biotechnology Information

(NCBI) databases as they collect protein sequence data for a multiple

sequence alignment for the generation of a phylogenetic tree. Students

construct a small tree manually using the Neighbor Joining algorithm.

This core concept and competency has utility for biologists seeking to

identify conserved protein domains and key conserved amino acid

residues associated with structure and function within a domain in

addition to allowing for visual depiction of evolutionary relationships

between three or more sequences.

Module 4: Inquiry-Based Investigation Students apply concepts and competencies from Modules 1–3 to address

an authentic biological question. Instructors or students may choose

between three investigations involving (1) the evolution of alcohol

metabolism in hominids, (2) the evolution of Zika virus, or (3)

determining the likely causative agent of an equine corneal ulcer.

https://doi.org/10.1371/journal.pone.0257404.t001
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of classroom implementation and refinement, a polished version of the resource was published

in the journal CourseSource in 2019 [18].

The resource was further disseminated using a FMN in 2019 (Fig 1). In addition to imple-

menting the resource in classrooms across the nation, a subset of FMN participants produced

course- and learning goal-specific adaptations of the original resource, which are included in

the Resource Collection [19–21]. The ability to update a resource and adapt it for multiple

applications enables it to remain relevant in a rapidly changing field.

Learning resource assessment

To test the effectiveness of the learning resource, a subset of FMN participants and NIBLSE

network faculty administered a pre-/post-assessment instrument developed and refined during

both the NIBLSE Incubator and FMN (Fig 1).

Student pre-/post-assessment instrument development. A goal of the Incubator was to

design an assessment instrument to probe the effectiveness of the learning resource. Specifi-

cally, the goal was to measure both objective learning gains and individual student perceptions

of learning, as the latter has been demonstrated to be important for persistence in STEM [24].

A community-based co-design process [25] was used to generate an initial version of the

instrument, which used Likert-scale and rubric-scored open-response items (S1 Appendix) to

measure the proportion of student participants who felt they had met, and objectively had met,

the learning outcomes of the resource.

Based on the experience of administering the assessment and the resulting assessment data

(S1 Text and S2 and S3 Tables), a second version (S2 Appendix), version 2, was iteratively

developed as part of the QUBES FMN. To better quantify participants’ objective learning

gains, version 2 converted post-instrument objective knowledge-based open-response to

closed-response items, which were then featured in both the pre- and post-instrument. These

replacement questions allowed for measurement of pre-/post-learning gains and, since they

could be scored automatically, for the assessment instrument to be used with large numbers of

participants. To reduce survey fatigue, the pre-assessment attitudes and perceptions questions

were not included in the second version. Rather, this version incorporated retrospective per-

ceptual items next to current perception statements to control for response-shift bias [26,27].

In its final form, version 2 of the instrument was a pre/post fifteen-item assessment consist-

ing of a combination of multiple-choice and multiple-select questions. In addition, the post-

assessment portion had a cluster of eight retrospective student perception questions based on

Fig 1. Development, implementation, and assessment of a NIBLSE OER learning resource. The original learning resource was

conceived by a pair of institutional colleagues and implemented with course-specific student learning objectives. The resource was

later expanded and targeted to a wider audience by a community of faculty through a NIBLSE Incubator. Following development of

an assessment instrument, a NIBLSE Faculty Mentoring Network (FMN) recruited implementers and refined the assessment while

collecting pilot assessment data. Data were collected from multiple institution and classroom settings concurrently during the FMN

and after its conclusion. Vertically overlapping boxes indicate concurrent activities.

https://doi.org/10.1371/journal.pone.0257404.g001
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learning outcomes. The perception questions were designed to measure perceptions of learn-

ing and used a 4-point Likert scale. Additionally, the instrument collected participant name,

institution, and classroom instructor to facilitate matching pre- and post-assessments after

final grades for the course were submitted. Version 2 of the assessment instrument was used

for collecting all of the data reported in the results.

Instrument validity was established with respect to content validity [28,29], which was col-

laboratively established and affirmed by carefully mapping assessment questions to the content

domain (S1 Table) and through systematic review by a panel of bioinformatics education

experts associated with the Incubator, the FMN, and the wider NIBLSE Research Coordination

Network [30,31].

Instrument reliability was examined by evaluating the internal consistency of individual

items relative to the total post-assessment score (S4 Table). The procedure used was similar to

the Kuder–Richardson Formula 20 (KR-20) and other reliability procedures [32], but was per-

formed at the level of individual questions. This was done to investigate the contribution of

each instrument item to the overall test score and to examine internal consistency more

closely. Additional item analysis statistics included item difficulty, item discrimination, and

point-biserial correlation index [33] to ensure that the test was well balanced and useful across

the multiple classrooms taking the assessment. All of the questions were positively correlated

with participant performance within a broad spectrum of item difficulty. That said, item #6

exhibited low point-biserial and discrimination indices suggesting a slight correlation based

on holistic assessment performance and limited ability to discriminate (S4 Table). However, it

was kept in the instrument so that the entire content domain is covered, with a suggestion to

future users to modify the question for their own classroom contexts and curriculum [34,35].

In order to further explore reliability as related to internal consistency, Cronbach’s Alpha

Reliability Analysis was performed on the scores of the post-assessment across institutions

(n = 373 students). Cronbach’s Alpha is commonly used in reliability testing and compares the

mean covariance between all test item pairs with the overall variance of test items, while adjust-

ing for sample size. The statistic represents the interrelatedness of test items which should be

high in an assessment that reliably represents a particular trait of interest. It is considered to be

a relatively conservative test that often underestimates reliability [36,37]. The overall Cron-

bach’s Alpha level (ɑ) was computed at ɑ = 0.576, which would suggest slightly less than opti-

mal reliability when using the instrument across the diverse set of institutions and courses.

Further analysis showed that ɑ could be increased above the generally accepted 0.6 threshold

by removal of two items that exhibited problematic discrimination (S1 Text and S5 Table),

thus identifying items that instructors can further tailor to their classroom instruction.

Student pre-/post-assessment data collection. Administration of the pre-/post-assess-

ment instrument with a diverse cohort of students (Table 2) undertaking the sequence similar-

ity modules was completed during the spring 2019, fall 2019, and spring 2020 semesters. The

assessment instrument was administered before and after completion of the modules. Assess-

ment participant incentivization was at the instructor’s discretion and varied from presenting

participation as a way to help improve future life science curricula to offering a nominal extra-

credit opportunity. Data were collected electronically using a secure web-based platform either

inside (Primarily Undergraduate Institution (PUI) General Biology, Developmental Biology,

Molecular Biotechnology [spring 2019], Bioinformatics and Computational Biology) or out-

side (Research Intensive (RI) institution General Biology, Virology, Molecular Biology, Genet-

ics, Molecular Biotechnology [spring 2020]) of class, based on the instructor’s discretion. With

the exception of the spring 2020 cohort of Molecular Biotechnology students, all modules were

done in the physical classroom. Due to a low response rate, assessment data from the Genetics

course was not included in further analysis. When possible, the answers of the multiple-choice
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and multiple-select items were randomized. Matched pre-/post-assessment records (n = 373)

were used for subsequent analysis. Assessment data were not accessed by the instructor of

record until final grades were posted. All protocols were approved by the Adams State Univer-

sity (IRB #232017, #1122018, #3262019) and University of Dubuque (IRB#1031) Institutional

Review Board (IRB) using a cross-institutional IRB application.

Student pre-/post-assessment and perceptions data analysis. Pre-/post-assessment rec-

ords were matched, with non-matching pre- or post-records removed prior to analysis. Of the

373 matched records, 11 records lacked complete Likert-scale student perceptions data and

thus did not contribute to the student perceptual data analysis (n = 362). Multiple-select objec-

tive knowledge-based questions had two correct statements, which led to a scoring system that

awarded 0.5 point for each correct selection and penalized -0.5 point for each distractor

selected. The scores for each multiple-select question response item were summed to provide a

single score for the question, which could be negative. The Cronbach’s Alpha instrument reli-

ability metric was calculated using Statistical Package for the Social Sciences (SPSS), while item

analysis was performed in Microsoft Excel. All other statistical analyses were performed using

R (v. 3.5.1) [38]. Average learning gains per class were analyzed using one-sample t-tests with

Benjamini-Hochberg correction [39]. A generalized linear model (GLM) was used to compare

score difference (post—pre) among two factors: institution type (PUI vs. RI) and course type.

A second model was used with the same factors but comparing only pre- scores to examine dif-

ferences among groups prior to administration of the learning materials.

Results

Assessment of the sequence similarity learning resource

Learning gains were observed across the aggregate dataset. We investigated whether the

set of fundamental sequence similarity learning modules could produce objective quantifiable

student learning gains in diverse classrooms, from PUI to RI institutions, in varied life science

subjects, and from introductory to advanced classes (Table 2). Participants were undergradu-

ate students enrolled in life science courses taught by NIBLSE and FMN-participating faculty

(Table 2). Our findings show that implementation of the modules led to objective student

Table 2. The bioinformatics sequence similarity learning resource was implemented in a diverse set of courses across program-level and institution classification.

Course Content Focus� Undergraduate Course Level† Institution Classification‡

Bioinformatics and Computational Biology 100 RI

General Biology 100 RI

General Biology 200 PUI

Genetics 300 RI

Molecular Biotechnology 300 PUI

Molecular Biology of the Cell 300 RI

Developmental Biology 400 PUI

Virology 400 RI

�The General Biology course offered at the primarily undergraduate institution covered topics focused within the areas of cellular and molecular biology, while the

General Biology course offered at the research-intensive institution focused on biological diversity and ecology.
†Within a 4-year undergraduate degree plan, 100–200 level courses are typically introductory in nature and require less prerequisite knowledge (OR fewer prerequisite

courses). 300–400 level courses are typically advanced in nature and specialized in course content and typically reserved for upper-level students.
‡Research Intensive (RI) Institutions are doctoral degree granting universities with moderate to very high research activity. Primarily Undergraduate Institutions (PUIs)

typically focus on conferring bachelor’s degrees, where the primary expectation for faculty is teaching, with research being a secondary focus.

https://doi.org/10.1371/journal.pone.0257404.t002
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learning gains (Fig 2). Aggregate pre-/post-assessment scores exhibited a significant difference

from 0 with an estimated mean increase of 2.31 (from 4.47 to 6.78 out of fifteen items, n = 373

subjects, p < 0.00001, GLM).

Learning gains were observed across diverse life science courses. The versatility of the

learning resource and its ability to be integrated across biology curricula is illustrated by the

variety of courses in which it was implemented (Table 2). As shown in Fig 3, average learning

gains were significantly above zero (0) for all courses (S6 Table, adj. p-value<0.001, one-sam-

ple t-tests with Benjamini-Hochberg correction).

We wanted to determine if quantifiable learning gains were independent of the course and

institution type. In initial GLM testing, we included course type, institution type, and course

levels as factors in the model to investigate whether objective quantifiable learning gains were

present independent of these factors. As our design was not orthogonal, we found an expected

high collinearity between course level and course type. Therefore, the final model used was a

two-factor model with course type and institution type as factors.

This analysis found that there were significantly higher learning gains in courses taught at

PUIs than those taught at RIs (S7 Table; p = 0.004, GLM), although the RI group included the

Fig 2. Aggregate pre-/post-assessment quiz scores indicate significant participant learning gains. The fifteen-item assessment

consisting of a combination of multiple-choice and multiple-select questions was administered pre- and post-completion of the

learning modules. Nine cohorts of student participants (n = 373) at independent institutions completed the assessment instrument

with 7–28 days between pre- and post-assessment. Pre- (4.47) and post- (6.78) means are represented by a narrow black crossbar.

The difference between the pre- and post-means has statistical significance (p< 0.00001, GLM). Black error bars represent the 95%

confidence interval of the mean and the number of matched student assessment records is indicated below each swarm plot.

https://doi.org/10.1371/journal.pone.0257404.g002
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largest class (RI General Biology), which showed the smallest learning gains. Similarly, the

only significant difference in learning gains due to course type after accounting for institution

type was found between RI General Biology and other RI classes. Thus, the observed difference

in learning gains between institution types may have been confounded by class size, and in any

case are small (Fig 3).

In analyzing pre-assessment scores we found no significant difference by institution type.

However, there were several significant differences among the course types, with General Biol-

ogy (RI) showing the lowest pre-scores (S7 Table). The other three courses taught at RI univer-

sities began at significantly higher pre-score levels than General Biology, while pre-scores in

courses taught at PUIs were not significantly different from RI General Biology. Our general

conclusion is that regardless of institution, course type, and initial knowledge level, all groups

of students made significant learning gains through the use of the Sequence Similarity learning

resource.

We noticed that the time spent completing the assessment was quite short (<4 minutes) for

a significant percentage of tests, possibly indicative of students who were not fully engaged.

When the student assessment dataset was filtered to remove these records (about 18% of over-

all scores), we observed an upward shift in average learning gains, as well as both pre- and

post-scores, across the board (n = 306, a mean increase of 2.56 from 4.77 [pre] to 7.33 [post]).

Interestingly, students from the General Biology (RI) cohort were notably a high percentage

(>80%) of these short-duration submissions. Analysis of the filtered data indicated no statisti-

cally significant differences in learning gains between General Biology (RI) and the other

courses, with the exception of the Bioinformatics course (S8 Table). In summary, we conclude

that regardless of institution, class type, and initial knowledge level, all groups of students

exhibited significant learning gains.

Fig 3. Learning gains from matched pre-/post-assessment quiz scores disaggregated by course type. Courses at PUIs in which

the modules were implemented included General Biology, Molecular Biotechnology, and Developmental Biology. All others,

including an additional General Biology course were at RI institutions. Means are represented by a narrow black crossbar. Black

error bars represent the 95% confidence interval of the mean. The black dashed line indicates a pre-/post- difference of zero,

indicating neither a learning gain nor loss. Learning gains significantly greater than 0 were observed in all classes (adj. p< 0.001,

one-sample t-test). Sample size (n) for each course is shown above course name.

https://doi.org/10.1371/journal.pone.0257404.g003
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Student participants self-report perceived learning gains. We evaluated whether self-

reported student perceptions of their competence in targeted bioinformatics skills shifted after

completing the sequence similarity learning modules. The items in the assessment instrument

that probed perceived competence were used to answer this question. We looked at aggregate

retrospective pre-/post-student perception of statements based on the module learning objectives

(Fig 4). Aggregate data suggested that student participants (n = 362) retrospectively perceived

they were not competent in module-associated concepts and skills before the intervention (a

majority of responses were either ‘strongly disagree’ or ‘disagree’). However, after the interven-

tion, a majority of students either ‘agreed’ or ‘strongly agreed’ that they were competent in the

module-associated concepts and skills. This drastic shift in participant perceptions for each of

the eight survey items was statistically significant (p<0.0001, Wilcoxon signed-rank test).

Discussion

A widely adaptable NIBLSE sequence similarity learning resource leads to

measurable student learning gains

In this paper, we demonstrate that a bioinformatics resource that focuses on sequence similar-

ity results in student learning gains. Collectively, assessment data showed objective student

learning gains in both understanding and utilizing computational tools. Learning gains were

found across classrooms, institutions, and student educational levels. That there were signifi-

cant learning gains detected in upper-level classes suggests that bioinformatics integration

across curricula is an ongoing process and reinforces the importance of producing and dissem-

inating high-quality learning resources for life science educators.

Given the ad hoc recruitment of courses into the study, minimal consideration should be

given to the differences among groups (e.g., course, institution type). While we observed a sta-

tistically significant increase in learning gains in courses taught at PUIs compared with RIs

Fig 4. Student participants self-reported perceived learning gains. Retrospective pre- and post-survey aggregate data utilizing a

four-point Likert-type scale is depicted as a divergent stacked bar graph. Nine cohorts of student participants (n = 362) at a diversity

of institutions completed the survey instrument. All questions were statistically significant (p<0.0001) when comparing median

Likert-type scale response between retrospective pre- and post-ratings using the Wilcoxon signed-rank test.

https://doi.org/10.1371/journal.pone.0257404.g004

PLOS ONE Assessment of a bioinformatics learning resource

PLOS ONE | https://doi.org/10.1371/journal.pone.0257404 September 10, 2021 9 / 15

https://doi.org/10.1371/journal.pone.0257404.g004
https://doi.org/10.1371/journal.pone.0257404


when considered as a group, the actual differences in learning gains among individual courses

were small, and were reduced even further when we filtered the data to remove students whose

time spent on the assessments indicated minimal effort. We expect that a multitude of diffi-

cult-to-control variables likely influenced the observed differences. These variables may

include adaptations of the modules to fit specific course pedagogical goals or logistical con-

straints (e.g., in some cases streamlining the module to fit within the classroom period),

instructional modality (e.g., face-to-face, distance instruction), amount of classroom time

spent on the modules, variations in student/instructor interactions (e.g., frequency of interac-

tions associated with class size, use of laboratory teaching assistants in some cases, rapport),

and level of student (e.g., first-year, senior). These variables likely influenced the dataset and

the resulting statistical analysis, but were difficult to isolate as having a notable effect. Although

the collection of data from diverse courses complicated the analysis, the fact that significant

learning gains were observed across the board is indicative that the learning modules are versa-

tile, have utility in many types of courses, and at different academic levels. These results are

consistent with other efforts to integrate an adaptable bioinformatics curriculum across diverse

institutions [40].

A retrospective attitudinal survey indicated that students’ self-reported post-perception of

competence in learning outcomes was significantly higher than their pre-perception, with

medians on all questions shifting from negative to positive responses after module completion.

The fact that students in a range of courses overwhelmingly indicated negative responses on

the pre-survey perceptional items is further evidence of the need for a more concentrated

effort to integrate bioinformatics into the life sciences; in particular, students taking upper-

level courses did not report initial competence, suggesting that integration of bioinformatics

into the first 1–2 years of undergraduate curricula is lacking. The perception by students of

personal learning gains has been demonstrated to promote motivation and persistence within

STEM fields, as self-efficacy is a requirement for persistence [24,41]. Helping students perse-

vere is important across STEM fields and is critical to meet the increasing demand for biolo-

gists to have foundational knowledge of bioinformatics concepts and competencies as well as

competent trainees going into emerging fields like bioinformatics [42].

The sequence similarity modules provide students with practice developing key data analysis

skills, which are increasing in importance in contemporary research with an increased emphasis

on computational data wrangling and analysis of big datasets resulting from wet-lab experi-

ments [43]. Additionally, the modules allow students to experience the interdisciplinary nature

of science, an AAAS Vision and Change core competency, by integrating concepts from molec-

ular biology, evolution, computer science, statistics, and mathematics into a single exercise

[4,44]. The modules, which rely on web-based computational tools, are easily adaptable

resources independent of course modality (e.g., face-to-face, online instruction); indeed, two of

our cohorts successfully implemented the modules in an asynchronous distance-learning envi-

ronment. FMN members implemented the bioinformatics learning modules in a diverse array

of courses, including AP Biology, Introductory Biology, Introductory Genetics, Conservation

Genetics, Developmental Biology, Disease Ecology, Plant and Fungal Biology, Virology, and

Bioinformatics. The modules were also readily adapted to fit specific course content with some

of them shared publicly (e.g., botany, developmental biology, virology; [19–21]) in the NIBLSE

resource collection available through QUBES. Additionally, the QUBES infrastructure provides

a platform with a documented versioning process for iteratively updating the OER resource.

The ability to update a resource serves to keep it up to date in a rapidly changing field. Addi-

tionally, others within the educational community can further adapt and share these modified

module versions on QUBES along with detailed revision annotations. The set of modules with

implementation instructions is also friendly to instructors with minimal bioinformatics
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experience looking to integrate bioinformatics principles into their introductory life science

course for the first time. A majority of educators in our study with varied experience in bioin-

formatics successfully used these modules to introduce bioinformatics concepts for the first

time in a diversity of courses, with support from the FMN for bioinformatics novices.

The originally published OER learning resource and its FMN adaptations continue to posi-

tively impact undergraduate life sciences education. Since the initial Incubator, the sequence

similarity learning resource and its FMN adaptations have been accessed through the web

>5,000 times and directly downloaded >1,500 times (S9 Table).

Here we harnessed a community-centered process to develop, implement, and assess a

sequence similarity learning resource. This collaborative process allowed for the iterative

development and validation of an assessment instrument coupled with the simultaneous col-

lection of assessment data from varied classrooms. Assessment data were indicative of signifi-

cant learning gains across diverse classrooms and implementation contexts. These data

substantiate the value of this resource as a tool for the broad integration of bioinformatics

competencies across undergraduate curricula.
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