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Air traffic controller fatigue has recently received considerable attention from researchers because it is one of the main causes of air
traffic incidents. Numerous research studies have been conducted to extract speech features related to fatigue, and their practical
utilization has achieved some positive detection results. However, there are still challenges associated with the applied speech features
usually being of high dimension, which leads to computational complexity and inefficient fatigue detection. +is situation makes it
meaningful to reduce the dimensionality and select only a few efficient features. +is paper addresses these problems by proposing a
high-efficiency fatigued speech selection method based on improved compressed sensing. For adapting a method to the specific field
of fatigued speech, we propose an improved compressed sensing construction algorithm to decrease the reconstruction error and
achieve superior sparse coding. +e proposed feature selection method is then applied to optimize the high-dimension fatigued
speech features based on the fractal dimension. Finally, a support vector machine classifier is applied to a series of comparative
experiments using the Civil Aviation Administration of China radiotelephony corpus to demonstrate that the proposed method
provides a significant improvement in the precision of fatigue detection compared with current state-of-the-art approaches.

1. Introduction

IATA (the International Air Transport Association) has
predicted that China will become the largest civil aviation
market in the world by around 2025, with China’s civil
aviation involving the flow of 1.6 billion passengers by
around 2037 [1]. +e rapid development of civil aviation
represents the great challenge to air traffic control and
contributes to increasing shortages of air traffic controllers
(ATCs). +e resulting high workloads can increase the fa-
tigue experienced by ATCs, thus increasing the probability
of human error and the associated dangerous consequences
for aviation safety [2]. Research studies have demonstrated
that greater fatigue is closely associated with higher risk [3].
+is situation has resulted in considerable attention being
paid to the accurate detection of fatigue in ATCs among
researchers in the field of civil aviation.

Fatigue in ATCs can be measured using a multitude of
methods and tools, which can be grouped into two cate-
gories: subjective and objective methods [4]. Subjective self-
rating scales and questionnaires have been the most-im-
portant sources of data for assessing both ATC and pilot
fatigue [5, 6]. Two renowned and validated subjective fa-
tigue/sleepiness scales are the Karolinska sleepiness scale [7]
and NASA’s task load index [8]. Although subjective
methods are easy to implement, they perform poorly in
detecting a fatigue state rapidly, including real time.
+erefore, objective methods have received a considerable
amount of research interest. +ere are two categories of
popular objective methods based on their different mani-
festations: (1) methods based on physiological parameters,
including heart rate, blood pressure, breathing rate, elec-
troencephalogram, and skin electricity [9–11], and (2)
methods that directly record observable body actions,
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including voice strength, eye movement, blink times,
yawning, and nodding frequency [12]. +ese objective
methods are more accurate and can be used to formulate a
reliable physiological fatigue index. +e main disadvantage
of these monitoring techniques is that their intrusiveness
usually results in aversion and disturbance to the ATC,
which will reduce their accuracy.

+e rapid developments in speech recognition have
resulted in vocal feature-basedmethods recently emerging as
the preferred avenue for research into fatigue in ATCs [13].
Vocal features are convenient to collect and analyse, given
that the main job of ATCs involves communicating with
pilots via radiotelephony, and regulations specify that all
voice records must be preserved for a certain period of time.
+ere are several analyses in the literature for the connection
between vocal features and fatigue [14, 15]. In 2006, Greeley
et al. demonstrated that voice features show strong corre-
lations with fatigue in the sleep onset latency test [16].
Krajewski introduced a fatigue eigenvector composed of
linear speech features such as the fundamental frequency,
resonance peak, and mel-frequency cepstrum coefficient
(MFCC) [17]. However, the reported average accuracy when
using these features was 76.5%, which is inadequate for the
work performed by ATCs.

It has been demonstrated that the detection accuracy of
fatigued speech is greatly affected by feature extraction and
efficient features’ selection [15]. It has recently become
convenient to extract common speech features such as pitch,
energy, and MFCC using commercial software (e.g.,
Opensmile) [18]. In addition, some state-of-the-art ap-
proaches utilizing nonlinear features based on wavelet de-
composition and the fractal dimension [19] have shown
more efficient results in detecting ATC fatigue. Overflow
features result in a difficult trade-off between computational
complexity and accuracy. Furthermore, the duplicated
features obtained by different methods will confuse the
subsequent recognition network, which consequently leads
to inefficient results in detecting fatigue [20]. +is situation
indicates the need to achieve efficient features’ selection and
reduce the dimensionality of features.

Compressed sensing (CS) is a sub-Nyquist sampling
technique that allows a sparse signal to be reconstructed
reliably from a set of measurements to reduce the signal
redundancy and reconstruction costs [21]. Many researchers
have attempted to utilize this characteristic in exploring the
performance of CS in dimension reduction and feature
selection. For example, Haneche et al. proposed a novel
speech enhancement approach based on the CS framework
in 2019 [22], while Langari et al. extracted the best subset of
features for speech emotion recognition by combining with
CS in 2020 [23]. Although the technique of CS is beneficial
for speech recognition, a considerable challenge is deter-
mining a well-designed measurement matrix that accurately
represents the corresponding specific target speech signal.
For this reason, the goal of this paper is to improve the
conventional framework of CS to achieve the feature se-
lection of speech, which will lead to a higher fatigue de-
tection rate for ATCs using a popular machine learning
training network, such as a support vector machine (SVM).

+e rest of this paper is organized as follows. Section 2
briefly introduces the basic theory of CS, Section 3 proposes
a fatigued speech detection network and describes an im-
proved CS construction algorithm (ICSCA) in detail. Section
4 reports on the series of experiments performed to test our
newmethod and conclusions are drawn in Section 5. And, all
the terminologies used in this paper are illustrated in Table 1.

2. Compressed Sensing

CS was proposed by Candes and Donoho, who constructed the
initial theoretical framework consisting of signal sparse coding,
measurement matrix construction, and a reconstruction al-
gorithm. In brief, CS can achieve complete sampling to the
original signal at a sampling rate that is much lower than the
Nyquist sampling theorem and reconstruct the original signal
using only a small proportion of the sampled data.+e detailed
description is shown in Figure 1.

In Figure 1, XϵRN denotes the original signal and YϵRM

is the final compressed signal, andM is usually smaller than
N. In addition, ΨϵRN∗N and ΦϵRM∗N indicate the sparse
matrix and measurement matrix, respectively.

2.1. Sparse Coding. CS theory is based on the assumption
that the signal is sparse or highly compressible; in other
words, most of the signal values are either zero or small
enough to be ignored. Even though the signals under
consideration often do not satisfy the sparse condition, it
might be possible to find a basic matrix to transform the
original signal linearly and ensure that the coefficient vector
is sparse, in case of which the original signal also exhibits
sparsity. +e formula for sparse coding is as follows:

x � ΨS, (1)

where SϵRN represents the coefficient vector, and only K of
the N signal entries are nonzero (K≪N). +e selection of
the sparse matrix depends on the inherent characteristics of
the signal. +e common methods used in the sparse rep-
resentation include the curvelet transform, wavelet trans-
form, barren transform, discrete cosine transform, and
discrete Fourier transform.

2.2. Selection of Measurement Matrix. Another major
problem in CS is how to choose measurement matrix Φ. For
a sparse one-dimensional signal, a measurement matrixΦ is
constructed to compress the original signal and obtain a
measurement signal, which can be expressed as follows:

y � ΦΨS, (2)

where A � ΦΨεRM∗N is defined as the sensing matrix. Gen-
erally, the restricted isometry property (RIP) defined in Def-
inition 1 is the property that sensing matrix A needs to satisfy.

Definition 1. For any sparse signal x and measurement
matrix Φ, there exists δk ∈ (0, 1), and δk is the minimum
value satisfying equation (3); then, it is called δk, the rip
constant of order k of Φ:
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1 − δk( 􏼁‖x‖
2
2 ≤ ‖Φx‖

2
2 ≤ 1 + δk( 􏼁‖x‖

2
2. (3)

+e purpose of the RIP is to ensure that the “redundant”
information discarded in the process of compression
measurement is controlled within an acceptable range and to
prevent useful information from being discarded. +e RIP
has been proved to be a sufficient condition for the existence
of a single feasible solution of equation (3) [24].

2.3. Reconstruction Algorithm. +e process of signal re-
construction is the reverse solution of equation (1). Since M
is less than N, it is an NP-hard question for which it is
difficult to obtain exact solutions. +e signal reconstruction
process is expressed as follows:

min ,
x

‖x‖0,

s.t., y � Φx,
(4)

where ‖ ‖0 denotes the number of nonzero elements. In
order to reduce the computational complexity, many
scholars have proposed replacing the Lo norm with the L2
norm in order to transform the problem from nonconvex
to convex. Some other algorithms have also been proposed
by researchers to solve this problem, such as orthogonal
matching pursuit (OMP) [25], iterative hard thresholding
[26], basis pursuit [27], and compressed sampling
matching pursuit [28].

In summary, when applying CS, it is necessary to ensure
that the signal is sparse, which has led to some efficient
reconstruction algorithms being proposed by researchers as
CS theory has advanced. However, how to construct an
efficient sensing or measurement dictionary for a particular
type of input signal remains a challenge that needs to be

overcome. +erefore, below, we propose an ICSCA that is
suited to fatigued speech among ATCs.

3. Improved Fatigued Speech Feature
Selection Method

3.1. Architecture of Fatigued Speech Detection. With the
introduction of CS, a high-efficiency speech detection model
based on the Civil Aviation Administration of China ra-
diotelephony corpus is proposed. Some signal preprocessing
methods are first applied to reduce the impact of noise added
during the collection process, such as denoising, filtering,
and emphasis. Wavelet decomposition is then applied to the
speech signal, and the detailed coefficients of each signal
layer are extracted. Inspired by a recently proposed non-
linear feature [29], the detailed fractal dimension coefficients
of each signal layer are calculated to extract the ATC fatigued
speech features. Furthermore, an ICSCA is applied to
remove the redundant information and perform the final
selection of the ATC fatigued speech feature.+e accuracy of
fatigue detection is calculated with the help of an SVM.
Figure 2 shows the detailed architecture of the proposed
model.

3.2. Preprocessing and Feature Extraction

3.2.1. Preprocessing. +e energy of the speech signal is
concentrated in the low frequency, and the high-frequency
parts carry less energy. For solving this problem, the signal
preemphasis is utilized to increase the high-frequency part of
the speech signal, thereby to obtain the signal spectrum in
the entire frequency band. +e preemphasis is generally
implemented by a first-order FIR high-pass digital filter and
original signal xn (the sample value at n time) can be
processed as follows:

yn � xn − μxn−1, (5)

where yn is the new signal and μ represents the preemphasis
coefficient and is set as 0.95.

+e speech signal is a time-varying and unsteady process,
and its characteristic parameters will change randomly over
time, but in the short-term range (generally 10∼30ms), the
speech has relatively stable characteristics, that is, the speech
signal has short-term stability. +erefore, if the speech signal
is divided into short-term segments, then each segment can
be regarded as stable. Taking the 16K sampling frequency as
an example, 256 sampling points are used as a chunk that is
about 16ms. And, the overlapping segmentation method is
usually used to ensure a smooth transition between adjacent
chunks. Finally, the selected stride is 64, and there are 192
sample points overlapped between two adjacent chunks.

+en, the chunk signal would be windowed due to re-
duction in the discontinuity of the signal at the beginning
and end of the chunk. +is is achieved by using the
Hamming window w(n), and the final processing signal
yw(n) can be obtained as follows:

Table 1: List of terminologies used in this paper.

ATC Air traffic controller
ATCs Air traffic controllers
MFCC Mel-frequency cepstrum coefficient
CS Compressed sensing
ETF Equal-dimensional tight frame
FD Fractal dimension
ICSCA Improved CS construction algorithm (ICSCA)
NP Nondeterministic polynomial
OMP Orthogonal matching pursuit
RIP Restricted isometry property
RBF Radial basis function
SVM Support vector machine
SWFF Speech wavelet fractal feature
WLS-SVM Weighted-least-squares SVM

Original 
signal X

Sparse code 
ΨT

Compressed 
measure Φ

Compressed 
signal Y

Reconstruction algorithm

Figure 1: Flowchart of compressive sensing.
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w(n) �

0.54 − 0.46
2πn

N − 1
􏼔 􏼕, 0≤ n≤N − 1,

0, other condition,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

yw(n) � y(n) × w(n). (7)

Based on the former signal preprocess, the two typical
and prevalent speech features (pH [30] and SWFF [31]) were
selected to verify our proposed methods better, which are
based on the speech linear and nonlinear research theory
separately. +e basic signal process of these two methods is
introduced in the follow sections.

3.2.2. pH Vocal Source Feature. +e pH is a time-frequency
feature used in a speaker recognition and verification system
[30]. Research shows that this feature is closely related to the
excitation source and consists of a vector containing the
Hurst index [32]. +en, the Hurst exponent (0<H< 1)
expresses the time correlation or scaling degree of the speech
signal. Its autocorrelation coefficient function (ACF) decays
gradually in the following form:

ρ(k) ∼ H(2H − 1)k
2(H−2)

, k⟶∞, (8)

where the value of H can be associated with the spectral
characteristics of X(i){ }

N
i�1. +e detailed extraction process

can be shown in Figure 3 [30].

Step 1: the discrete wavelet transform (DWT) is applied
to decompose speech signals into approximate coeffi-
cients (a(l, k)) and detail coefficients (d(l, k)). l is the

decomposition scale (l � 1, 2, . . . , J) and k is the co-
efficient index of each scale.
Step 2: for each scale l, variance σ2l � (1/nl)􏽐kd(l, k)2 is
derived from the detail coefficient, where nl is the
number of possible coefficient values of each scale. +e
value of H is obtained as H � (1 + α)/2.
Step 3: the pH is composed of l + 1 values in
H[H0, H1, H2...Hl], and component H0 is calculated
from the original speech signal. Other values
[H0, H1, H2 . . . Hl] are obtained by repeating Steps 1 to
2 for each l detail coefficients’ sequence.

3.2.3. SpeechWavelet Fractal Feature (SWFF). +e theory of
fractal dimension (FD) and wavelet decomposition are
applied in extracting SWFF feature. Fractal is a complex
system whose complexity can be described by a noninteger
dimension called the fractal dimension (FD). It can be
defined by data and calculated approximately and experi-
mentally. It is related to H as follows [33]:

H � 2 − D, (9)

D � lim
ε⟶0

log N(ε)
log(1/ε)

􏼢 􏼣, (10)

whereD represents the fractal dimension, ε is the side length
of a small cube, and N(ε) is the number needed to cover the
measured geometry with the small cube.

In the process of wavelet decomposition, inspired by
[31], the Daubechies wavelet was chosen as the wavelet basis
function because it is highly consistent with our require-
ments. And, the frequency distribution of speech signals on

Radiotelephony

Preprocessing

Emphasis

Framing

Windowing

Feature extraction

Wavelet decomposing

Fractal dimension 

Feature selectionCompressed
sensing

Feature detection SVM

Fatigued or normal

ICSCA

Figure 2: Architecture of fatigued speech detection.
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each scale after wavelet decomposition is shown in Figure 4,
where high-frequency coefficient is the detail coefficient.

+en, the detailed calculation of FD can be introduced as
follows:

Step 1: a time series X(i){ }
N
i�1 with length N is set up.

+ere are k new time series Xm
k that are obtained by

reconstructing the time series with a delay method.
Step 2: the curve length Lm(k) of each Xm

k can be
calculated using the following formula:

Lm(k) �
1
k

􏽘

int(N−m/k)

i�1
|X(m + ik) − X(m +(i − 1)k)|⎛⎝ ⎞⎠ ×

N − 1
int(N − m/k)k

⎡⎢⎢⎣ ⎤⎥⎥⎦. (11)

Step 3: the length of the total sequence can be ap-
proximated as the average of the length of the sequence
curve generated by k delays. For different values of k, a
set of curve data related to k and L (k) can be obtained.

In the end, the detailed SWFF feature can be obtained
from the following formula:

D di( 􏼁 � FD di, kmax di( 􏼁􏼂 􏼃 i � 1, 2, 3, 4, (12)

SWFF � D(x), D d1( 􏼁, . . . D d4( 􏼁􏼂 􏼃, (13)

where FD refers the FD calculation method and kmax is set as
10. D(di) represents the FD of the detail coefficients of ith

layer.

3.3. Improved CS Construction Algorithm. +e sensing dic-
tionary and measurement matrix are constructed based on
the modified t-mean index. +e inner product of ϕi and εi is
made equal to 1, such as in equation (6), which defines the t-
mean coherence coefficient as

μt(Φ)≜
􏽐1≤i,j≤N,i≠j(|G(i, j)|≥ t)|G(i, j)|

􏽐1≤i,j≤N,i≠j(|G(i, j)|≥ t)|
, (14)

where G(i, j) represents the element in row i and column j

of the Grammatrix.+e absolute coherence coefficient is the
average value of all nondiagonal elements whose absolute
values in the Gram matrix exceed a certain threshold t. A
greedy algorithm is then used to make the Gram matrix
closer to the ideal Grammatrix. Specifically, the nondiagonal
elements are gradually reduced to near 0. Finally, Φ and Ψ
can be constructed when μt(Φ,Ψ) satisfies the threshold.

+e above process can be described as follows:

argmin
Φ,Ψ
ΨTΦ − I

����
����
2
F
. (15)

+e value of threshold t can be set to t> 0 to reduce the
number of iterations because matrix G′ cannot be com-
pletely iterated into I, and the nondiagonal elements in G′
cannot be made equal to zero. It is proved that the minimum
value of nondiagonal elements in the ETF (wqual-dimen-
sional tight frame) matrix is

tE � ±
��������

n − m

m(n − 1)

􏽲

. (16)

+e construction process and characteristics of G′ are
very similar to the ETFmatrix. In this case, equation (12) can
be modified as

argmin
Φ,Ψ
ΨTΦ − H

����
����
2
F
, (17)

where H ∈ RN∗N, the diagonal element of matrix H is equal
to 1, and nondiagonal elements are equal to
tE ∗ sign(G′(i, j)).

Solving equation (14) yields the measurement matrix
and sensing dictionary. Equation (14) can be decomposed
into the following two problems that are solved iteratively:

Problem (1): Φ � argmin
Φ
ΦTΦ − H

����
����
2
F
, (18)

Problem (2): Ψ � argmin
Ψ
ΨTΦ − H

����
����
2
F
. (19)

Evaluation and performance assessment are calculated
iteratively by using OMP and equation (11). If the difference
between the results of successive iterations is less than the

Band-pass
Filter

Low-pass
Filter

2
DWT

d(1,k)

2
Band-pass

Filter

Low-pass
Filter

2
DWT

d(2,k)

2

a(1,k)

a(2,k)

HC
H0

2
Decimator=

Figure 3: An example of the pH estimation, considering l � 2 decomposition stages.
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threshold or the number of iterations exceeds the set
maximum number of iterations, the algorithm is terminated.

+e gradient method is used to solve Problem (1). +e
values of the nondiagonal elements of the matrix can be
reduced to reduce the coherence between different columns.
+e optimization process is described as follows:

Step 1: define the cost function as C � ‖ΦTΦ − H‖
2
F.

Step 2: calculate the gradient of the cost function:

zC
zΦ

�
z

zΦ
Tr ΦTΦ − H􏼐 􏼑

T
ΦTΦ − H􏼐 􏼑􏼚 􏼛. (20)

Simplify this to

zC
zΦ

� 4Φ ΦTΦ − H􏼐 􏼑. (21)

Step 3: the complete iteration equation is

Φ(k+1) � Φ(k) − β
zC

zΦk
, (22)

where k is the number of iterations and β is the step
size, which is set as 0.001.
Step 4: use OMP to evaluate the coherence coefficient of
t and evaluate whether the difference between the re-
sults of two successive iterations is less than the
threshold.

Two points need to be considered when solving
Problem (2): (i) ensuring the correlation between the
sensing dictionary and measurement matrix throughout the
process and (ii) ensuring the consistency between Ψ and Φ,
where μt(Ψ,Φ) should be as small as possible. For over-
coming the former difficulty, we proposemethods as follows.

Matrix G′ � ΨTΦ is first constructed. +en, using the
taut operator to shrink the nondiagonal elements in the
matrix, approximation degree H is gradually reduced. Fi-
nally, a pair of perceptual dictionaries and measurement
matrices can be obtained by singular value decomposition.

+e value range of the nondiagonal elements of the
matrix is [1, −1] because matrix Ψ and matrix Φ are initially
column normalized. Applying the tighten operator further
narrows this range to [−c, c], where c< 1. A simple and

easy-to-implement operator is proposed for mapping from
[1, −1] to [−c, c]:

ρ �
4
π
∗ c∗ arctan G′(i, j)( 􏼁. (23)

It can be seen that the above tightening operator can
adjust the range of matrix G′ nondiagonal elements in it-
erations with only one parameter, c, which is set as 0.4.

Utilizing the SVD decomposition yields

G′ � U
T
VW. (24)

+e diagonal elements in matrix V are nonnegative, and
all diagonal elements are arranged from the upper-left
corner to the lower-right corner. In order to be closer to H,
set the maximum M elements in VM to be retained and then
construct as follows:

Ψ � V
1/2
M U,

Φ � V
1/2
M W.

(25)

At the same time, in order to ensure that the inner
product of corresponding atoms is 1, it should be treated
according to the following formula:

ϕi �
ϕi

ϕi

����
����2

,

εi �
εi

〈εi, ϕi〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(26)

Above all, we construct a pair of sensing dictionary Ψ
and measurement matrix Φ with a weak cross correlation.

3.4. SVM Settings. An SVM is a classification model whose
mathematical strategy involves maximizing the interval of
different kinds of data.+erefore, an SVM can be formalized
as a convex quadratic programming problem. Here, a WLS-
SVM (weighted-least-squares SVM) [34] is used for the
classification process, which is formulated as

􏽢yv �
􏽐

C
i�1 Piv 􏽢yiv

􏽐
C
i�1 Piv

. (27)

Speech Signal
0-8000 Hz

High Frequency Coefficient
4000-8000 Hz

High Frequency Coefficient
0-4000 Hz

High Frequency Coefficient
2000-4000 Hz

High Frequency Coefficient
0-2000 Hz

High Frequency Coefficient
1000-2000 Hz

High Frequency Coefficient
0-1000 Hz

Figure 4: Frequency distribution of speech signal on different scales after wavelet decomposition.
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+e ith weighting coefficient of xv is calculated as

Piv xiv( 􏼁 � A
1
iv x

1
iv􏼐 􏼑A

2
iv x

2
iv􏼐 􏼑 · · · A

n
iv x

n
iv( 􏼁, (28)

A
t
ij � exp −

xij − θt
i

βt
i

⎛⎝ ⎞⎠⎛⎝ ⎞⎠, θt
i � z

t
i , (29)

βt
i � λ

������������������

􏽐
N
j�1 μij􏼐 􏼑

m
x

t
ij − θt

i􏼐 􏼑
2

􏽐
N
j�1 μij􏼐 􏼑

m

􏽶
􏽴

, (30)

where At
ij represents the membership grade, t � 1, 2, . . . , n.

+e WLS-SVM utilizes fuzzy c-means clustering methods to
decide the rule number, which is based on the following
formula:

min Jm μij, zi􏼐 􏼑 � 􏽘
C

i�1
􏽘

N

j�1
μij􏼐 􏼑

m
xj − zi

2
, (31)

􏽘

C

i�1
μij � 1; 0< 􏽘

N

j�1
μij <N, (32)

where m ∈ (1,∞) denotes a fuzzy exponent, μij (μij ∈ U) is
the degree to which xj belongs to the ith rule, and zi is the ith

cluster center. +e advantage of a WLS-SVM is that general
errors including noise in the input and output variables are
considered as empirical errors.

Furthermore, in terms of the selection of the Gauss
kernel function, we finally use the radial basis function
(RBF) due to its superior antijamming ability for noise in
data. +e RBF kernel in this research is the same as the
activation function used by Mu et al. [35]. +e mathematical
model of the kernel function is as follows:

K xi, xj􏼐 􏼑 � exp −cxi − xj
2

􏼐 􏼑, c> 0, (33)

where c is the parameters of the kernel function.

4. Experimental Results

Experimental results were obtained on a Windows 10
personal computer equipped with a 64 bit Intel Core i5-
9300H CPU running at 2.4GHz and with 8GB of RAM. All
of the proposed methods were implemented using Python
(version 3.7) and TensorFlow (version 1.14.0) software.

4.1. Datasets and Parameters. A fatigued speech dataset [31]
consisting of 1606 speech samples fromATC radiotelephony
was used in the experiment depicted in Table 2. Due to the
proportion of samples representing fatigued speech being
less than for normal speech samples, we finally selected 824
speech samples from the dataset (412 fatigued speech
samples and 412 normal speech samples) to ensure the
authority of experimental results.

+e SWFF was then extracted as the original signal fea-
ture. +e dimension of the SWFF was 256, and according to
the progress of CS, we set the final feature dimension to be 32.

During the set of the SVM, the 824 speech samples were
divided into K� 6 groups (the overall average). Each subset
dataset was used as a verification set, and the remaining subset
dataset was used as a training set so that K models could be
obtained. +e average classification accuracy of the final ver-
ification set of these K models was used as the performance
index of the classifier under this K-CV. +e penalty factor was
set to c � 9.7656 × 10−4, and the gammaparameter was c � 0.5.

4.2. Results and Analysis. In this section, the experiments
were conducted by using two types of prevalent fatigue
features (PH and SWFF). And, the sparse autoencoder (SAE)
[36] was utilized to replace the SVM classifier. Furthermore,
the Gauss random matrix and uncompressed sample were
selected for comparisons with the ICSCA. +e fatigue state
detection results obtained by using these two nonstop
measurement matrix construction algorithms for feature
sampling are shown in Figures 5 –7 and Table 3.

Overall, it was clear that SWFF feature played better
detection performance with the same classification methods.
Considering the use of different classifiers, we can see that
the SAE method consumed less time, but the average ac-
curacy was far lower than the SVM.

In terms of the function of different measurement
matrices, compared with the detection results without fea-
ture sampling, the accuracy of ATC fatigue state detection
for Gaussian randommatrix algorithm feature sampling was
reduced by about 2%, while the detection results with
proposed ICSCA were improved to 85.11% (pH) and 94.25%
(SWFF) separately. Finally, it can see that the proposed
ICSCA method also has the fastest operation speed of 1.37
minutes (pH) and 1.21 minutes (SWFF), which features the
highest accuracy rate of 97.11%, when compared with DDL
is 93.10%, while pH is 60.36% and SWFF is 71.39%. +ese

Table 2: +e fatigue dataset utilized in this study.

Fatigue data
set Number Expression Explanation

1 Control
category R, area control; A, approach control; T, tower control

2 ATC rank 5, level 5; 4, level 4; 3, level 3; 2, level 2; 1, level 1; 0, trainee
3–10 Time (UTC) 3–6, time of starting work; 7–10, time of ending work
11 Sex F, female; M, male

12 and 13 Age Arabic numeral (age in years)

14 and 15 Order Nn, N is a digital indicator and n is an Arabic numeral indicating the nth instruction issued by
the ATC while working

16 and 17 Status 14th, “-;” 15th, voice command; 1, error; 2, ambiguity; 3, hesitation or pause; 4, fatigue
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Figure 5: +e average accuracy with Gaussian random matrix. (a) pH feature; (b) SWFF feature.
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Figure 6: +e average accuracy with uncompressed sampling. (a) pH feature; (b) SWFF feature.
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Figure 7: +e average accuracy with proposed ICSCA. (a) pH feature; (b) SWFF feature.
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findings demonstrated that the ICSCA proposed in this
study provides better improvement in both detection ac-
curacy and operation time.

5. Conclusions

In order to quantitatively and fast detect fatigue condition of
ATCs, we proposed a CS-based framework for detecting
fatigue from speech of ATCs. +en, an improved com-
pressed sensing reconstruction algorithm is proposed to
decrease the reconstruction error and achieve superior
sparse coding, which was applied to fatigued speech selec-
tion with redundant information in the original feature
vector removed. Finally, pH and SWFF speech features are
applied to a series of comparative experiments using the
Civil Aviation Administration of China radiotelephony
corpus to demonstrate that the proposed method provides a
significant improvement in the precision of fatigue detection
compared with current state-of-the-art approaches.
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